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ABSTRACT
Given a table where rows correspond to records and columns
correspond to attributes, we want to find a small number
of patterns that succinctly summarize the dataset. For ex-
ample, given a set of patient records with several attributes
each, how can we find (a) that the “most representative”
pattern is, say, (male, adult, ∗), followed by (∗, child, low-
cholesterol), etc? We propose TSum, a method that pro-
vides a sequence of patterns ordered by their “representa-
tiveness.” It can decide both which these patterns are, as
well as how many are necessary to properly summarize the
data. Our main contribution is formulating a general frame-
work, TSum, using compression principles. TSum can easily
accommodate different optimization strategies for selecting
and refining patterns. The discovered patterns can be used
to both represent the data efficiently, as well as interpret it
quickly. Extensive experiments demonstrate the effective-
ness and intuitiveness of our discovered patterns.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

1. INTRODUCTION
In this paper, we focus on the problem of effectively and

succinctly summarizing a table of categorical data. In par-
ticular, we are interested in the following questions: How
can we find a few patterns, that summarize the majority of
the rows? How can we effectively characterize the signif-
icance of each pattern, as well as how many patterns are
sufficient to summarize the structure of the dataset?

A few examples of applications include: (a) summarizing
patient records including symptoms, to find that, e.g., “most
patients have in common that they are male, middle-aged,
and have high cholesterol, then most patients are children
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with chickenpox, and then female with osteoporosis,” and
these patterns describe the majority of patients; (b) sum-
marizing a set of click fraud clicks to grasp what these spam
clicks have in common (e.g., same IP address or query words,
etc.). The patterns cover a big portion of spam clicks and
provide useful information to determine the cause/property
of the spam attacks. The informal problem definition is
Given a table with N rows and D categorical attributes,
Find a few good patterns, that properly summarize the ma-
jority of those rows.

To achieve the above, the fundamental question is how to
measure the goodness of a pattern? We propose to formu-
late this as a compression problem. Intuitively, a pattern is
“good” if it leads to high compression.

The discovered table summary can be used to represent
the data more efficiently and to interpret them quickly, by
revealing the combinations of features (i.e., patterns) that
properly summarize the data. Our main contributions in
this paper are the following:
Compression-based formalization: We propose to ap-
proach the problem as outlined above. This permits us to
discover the patterns and to suggest the appropriate number
of patterns without human intervention.
Generality: Our proposed TSum framework can accommo-
date different strategies for searching in the pattern space
(e.g., strategies that may incorporate domain knowledge).
Effectiveness: We demonstrate that the discovered pat-
terns are informative and intuitive, by conducting an exten-
sive experimental evaluation.
Scalability: We propose a strategy to discover the patterns,
based on our formalization, that is linear on the number of
rows N .

1.1 Summarizing Click Fraud Attacks
A click fraud filtering system examines ad clicks and filters

clicks that are considered invalid. From time to time, there
may be sudden increases of clicks filtered by the system.
These sudden increases of invalid clicks may due to (1) new
click fraud attacks caught by the system, (2) system mis-
configurations at the ad network partner or publisher sites,
and so on. These increases of invalid clicks create “spikes”
in the ad click traffic.

Our proposed method can automatically generate a sum-
mary for the “spikes” in click-fraud invalid clicks, so that
an engineer can easily grasp what these spam clicks have in
common (e.g., same IP address or query words, etc.). The
summary generated by the proposed algorithms consists of
the major patterns among the invalid clicks. These patterns



provide useful information for determining the cause of an
alert and whether there are leakages in the filters.

In the remainder of the paper we first introduce the pro-
posed method, then present experiments, followed by dis-
cussion, related work and conclusions.

2. PROPOSED METHOD - OVERVIEW
Our goal is to design a data mining process for finding and

ranking patterns that can properly summarize a data table.
Starting with the informal problem definition given in the
introduction, we proceed by formalizing the key concepts of
our proposed TSum framework. Our formalization is based
on the Minimum Description Length (MDL) principle [11,
7]. Furthermore, our proposed framework is modular, al-
lowing users to plug any pattern generation method into the
framework. Our framework will subsequently choose those
patterns that summarize the table well. Users have the flex-
ibility to incorporate domain knowledge in the process by
using a domain-specific pattern generation method.

First, we need to define precisely what we mean by “pat-
tern” and then we define the objective function that deter-
mines which are good patterns. Finally, to illustrate the
flexibility of TSum, we describe two strategies for pattern
generation and show that the TSum framework can com-
pare and incorporate both.

2.1 Examples and Definitions
The typical application of the proposed TSum framework

is to summarize a transactional data set with categorical at-
tributes. More specifically, each record in the data set is
a tuple (A1=v1, . . ., AD=vD), where Ai are the attribute
names and vi are the attribute values. In this work we con-
sider categorical values, but it is possible to extend to other
types. When the order of the attributes is known, we omit
their names in a data record (v1, . . ., vD).

In this work, a pattern is a “template” that is matched by
a set of records.

Definition 1. (Pattern, matching attributes, and
pattern size) A pattern is a tuple (A1=u1, . . ., AD=uD),
where ui can either be a specific value or a “don’t care” sym-
bol (denoted as “∗”). Attribute Ai is a matching attribute iff
ui 6= ∗. The number of matching attributes in a pattern P
is the size of the pattern, denoted size(P ).

Following established database terminology [4], the patterns
used in this work are partial match patterns. A pattern is a
conjunction of conditions.

For example, consider the patient records in Figure 1, with
attributes (gender, age, blood-pressure). Two example pat-
terns are P1 =(gender=M, age=adult, blood-pressure= ∗)
and P2 =(gender= ∗, age=child, blood-pressure=low). To
simplify the notation, we either omit the “dont’ care” at-
tributes from the pattern representation, i.e., P1 =(gender=M,
age=adult) and P2 =(age=child, blood-pressure=low), or
omit the attribute names, i.e., P1 =(M, adult, ∗) and P2 =(∗,
child, low).

Furthermore, we say that a data record (v1, . . ., vD) is
covered by a pattern P = (u1, . . ., uD) if either vi=ui or
ui=∗ (“don’t care”). A data record is coverable by different
patterns, and a pattern can cover more than one record in
a data table. In Figure 1, the records in the top of the table
are covered by the first pattern, the records in the middle
are covered by the second pattern, and the records in the

gender age blood-pressure

ID01 M adult normal
ID02 M adult low
ID03 M adult normal
ID04 M adult high
ID05 M adult low
ID06 F child low
ID07 M child low
ID08 F child low
ID09 M teen high
ID10 F teen normal

Figure 1: Example table with patient records. Lines
highlight the groupings a human might identify:
P1 =(male, adult, ∗) and P2 =(∗, child, low).

bottom are covered by neither pattern. Intuitively, a human
would consider these two patterns as a good summary of the
example table: most of these patients are either adult males,
or children with low blood pressure.

Definition 2 (Pattern set and list). A pattern list
is an ordered sequence of patterns P = [P1, P2, . . .], while a
pattern set is simply a set of patterns P = {P1, P2, . . .}, with
no particular order.

The reason for distinguishing between set and list will be-
come clear later.

A collection of patterns provides a way to summarize a
data table. For example, in Table 1, the pattern P1 can be
used to summarize the first five records. In particular, the
data record ID01 can be summarized as “pattern P1 with
(blood-pressure=‘normal’)”. Note that the more a pattern
P covers a data record R, the better P can summarize R
(i.e., the less additional information we need to give to fully
describe the data record R). Similarly, the pattern P2 can
be used to summarize data records ID06, ID07, and ID07. In
general, a pattern can be used to summarize all of the data
records that it covers. In the example, records ID09 and
ID10 are not covered by any pattern, and therefore, cannot
be summarized by any pattern.

Our goal is to identify a collection of patterns that best
summarize a data table.

Problem 1. (Summarizing a table with categori-
cal data) Given a data set T that consists of records with
categorical attribute values, find patterns P that summarize
the data set T .

Next, we formalize how we choose P. We propose to use
the concept of “encoding cost” to quantify the summariza-
tion quality of a given pattern collection. Specifically, we
define a cost function that measures the effectiveness of a
pattern list on compressing the given data table.

Problem 2 (Compression Cost Estimation). Given
a table T and a list of patterns P = [P1, . . . , Pm], estimate
the resulting compression cost CC(T ,P).

Given several competing pattern collections, our proposed
framework TSum will identify and refine a pattern list that
best summarizes the given data set, where the output pat-
tern list achieves the smallest encoding cost.



Problem 3 (Pattern selection). Given a data table
T and several pattern collections P1, . . ., Pm: Identify a
pattern collection, refine the patterns, and output a pat-
tern list that achieves the lowest compression cost for the
data table T .

3. PROPOSED FRAMEWORK
The proposed TSum framework uses the compressed size

of a data table to choose the most successful patterns. In this
section, we first describe how to use a pattern to compress
data records, and we introduce our proposed compression
encoding scheme. Then, we will describe our “pattern mar-
shalling” procedure for ordering and refining an unordered
set of patterns S. The output of “pattern marshalling” is
an ordered list of patterns PMA(P). We propose a scheme
to compute the overall compression cost of a table T using
PMA(P). At the end, TSum selects and outputs the pattern
list PMA(P∗) which achieves the best compression cost on
the given data table T .

3.1 Pattern Encoding and Compression Cost
We first define a few important concepts. As we men-

tioned earlier, the coverage of a pattern P is the count of
records that satisfy P . The footprint of a pattern P on
a data set T , denoted as FP(P, T ), is the number of bits
that the pattern can represent and thus save: FP(P, T ) =
Cov(P, T ) ∗ size(P ). Intuitively, the footprint of a pattern
P on a data table T is correlated to the number of matched
attributes covered by the pattern P on T .

We propose an encoding scheme to compress the set of
data records covered by a pattern P . The proposed encod-
ing scheme can be illustrated using the example in Figure
1. In the figure, pattern P1 covers the records ID01, ID02,
ID03, ID04, ID05. These five records can be compressed by
specifying three components: the pattern P1, the number of
records covered by P1, and the attribute values that are not
covered by P1.

The matched attributes, matched(P ), of a pattern P=(u1,
. . ., uD), are exactly the attributes that the pattern specifies;
the rest we shall refer to as the don’t care attributes.

Definition 3 (Model cost of a pattern). The cost
of encoding a pattern is:

CC(P ) = D +
∑

i;Ai∈matched(P )

Wi (1)

A pattern P=(u1, . . ., uD) can be encoded in two parts: (1)
a D-bit bitmap specifying the matching attributes (bit value
1) and the “don’t care” attributes (bit value 0), and (2) the
values of the matching attributes. Since Wi is the number of
bits for encoding the values of attribute Ai, this completes
the definition.

Definition 4 (Compression cost of a pattern). Given
a pattern P and a data table T , the set of records R covered
by P can be compressed in CC(P, T ) bits, that is

CC(P, T ) = CC(P )+ log∗(N)+N ∗
∑

i,Ai 6∈matched(P )

Wi. (2)

where log∗(N) is the cost in bits to store the self-delimiting
version of integer N (see [11]).

Symbol Definition
N Number of records
D Number of attributes
Wj Average number of bits for j-th attribute
Vj Vocabulary = number of distinct values of

j-th attribute
P pattern-list = (P1, P2, . . . , Pk)
k Number of patterns in pattern-list
Ni Number of records matching the i-th pattern

log∗(i) Number of bits to encode integer i

Table 1: Symbols and definitions

The compression requires encoding 3 pieces of information:
(1) the pattern P , (2) the number of records covered by P ,
and (3) the attribute values in R that are not covered by P .
Since N is the number of records in R (the coverage of P
on T ), the second term follows. In practice, we substitute
log∗(N) with log∗(N) = 2∗dlog2(N +2)e. The third term is
the cost for encoding the attribute values of R that are not
covered by the pattern P . This completes the justification
of Definition 4.

Table 1 gives the definitions of symbols that we use.

3.2 Marshalling and Refining a Pattern Set
With our proposed encoding scheme introduced in Defi-

nition 4, given a pattern set P = {P1, . . . , Pk}, we can now
compress a data table T by compressing the records covered
by each of the patterns Pi in P. However, in some cases, a
data record may be covered by more than one pattern in the
given P. How do we resolve such conflict and achieve the
best compression? In this section, we introduce a “pattern
marshalling” procedure to determine a precedence among
the patterns in P and compress a data set using the pat-
terns in their marshalled ordering.

We propose to order the patterns according to the bene-
fit that a pattern can provide in terms of the “compression
savings.”

Definition 5 (Compression saving). The compression
saving of a pattern P on a data table T , denoted as Saving(P, T ),
is the amount of compression it can achieve. Specifically, it
is the difference of bits between the uncompressed and com-
pressed representations of the data records covered by pattern
P . Let N be the number of records covered by pattern P and
D be the number of attributes in T . Then,

Saving(P, T ) = Benefit(P, T )−Overhead(P, T ). (3)

Intuitively, Saving(P, T ) consists of two terms: (1) the ben-
efit of using the pattern to represent data records,

Benefit(P, T ) = (N − 1) ∗
∑

i,Ai∈matched(P )

Wi, (4)

and (2) the overhead of using the pattern in the representa-
tion,

Overhead(P, T ) = D + log∗(N) (5)

To resolve the conflict when a data record is covered by
more than one pattern, we propose to “marshall” the pat-
terns according to their compression saving. The pattern
with the highest compression saving will take precedence



over other patterns. Therefore, when there is a coverage
conflict, the data record will be assigned to the pattern with
the highest compression saving.

More specifically, given a set of patterns S, the “pattern
marshalling algorithm (PMA)” iteratively picks a pattern
from S which has the highest compression saving. After
each iteration, the data records that have been covered by
the patterns chosen so far will be removed from consider-
ation. The compression saving of the patterns at the next
iteration is considered only on the remaining data records
which have not been covered by any chosen pattern. In
other words, at each iteration, the pattern chosen is that
with the best “incremental compression saving.” The PMA
algorithm repeats the iterations until no pattern has positive
incremental compression saving.

Definition 6 (Residue data table). Given a data ta-
ble T and a pattern collection P, we defined the “residue data
table” of T , with respect to P, as the data records that are
not covered by any of the patterns in P. We denote the
residue data table as T \ P.

Definition 7 (Incremental compression saving).
Given a list of patterns P = [P1, . . . , Pl] and a data set T ,
the “incremental compression saving” of a new pattern P ,
with respect to P, is defined as:

Saving(P, T \P) = Benefit(P, T \P)−Overhead(P, T \P).
(6)

Intuitively, Saving(P, T \ P) is essentially the compression
saving of P on the residue data table T \ P .

Given a set of patterns, the PMA algorithm ranks the pat-
terns by their (incremental) compression saving, and outputs
a list of patterns that are useful in compressing the data ta-
ble in question. Algorithm 1 shows the pseudocode of the
PMA algorithm.

To compress the entire data table T using a “marshalled”
pattern list P = [P1, . . . , Pk], we propose a procedure sim-
ilar to the PMA algorithm. The procedure starts from the
first pattern P1, compresses the records in T covered by P1,
and then continues to the next pattern and compresses the
records in the residue data set.

In practice, we always include the “don’t care” pattern,
i.e., (*, . . ., *) in the pattern list when compressing a data
table. The “don’t care” pattern can be used in representing
the data records that are not covered by any other pattern
in the given pattern list.

We now can define the total compression cost of a data
table T , using a given set of (marshalled) patterns P:

Definition 8 (Compression cost of a data table).
Given a data table T and a “marshalled” pattern list P =
[P1, . . . , Pk], the total compression cost of T using P is:

CC(P, T ) =

k∑
i=1

CC(Pi, T \ {P1, . . . , Pi−1}). (7)

In the equation, CC(Pi, T \ {P1, . . . , Pi−1}) is the compres-
sion cost of Pi on the residue data table T \ {P1, . . . , Pi−1}
(see Definitions 4 and 6).

Definition 9 (The TSum framework). Given a data
table T , and an input collection of pattern sets I = {P1, . . . ,Pk},
the TSum framework selects and refines (through marshalling)

a pattern set P∗ that best summarizes the table T in terms
of compression saving. In the functional form,

P∗ = TSum(T , I = {P1, . . . ,Pk}), (8)

where

P∗ = arg min
PinI

CC(T , PMA(P)). (9)

The final output of the TSum framework is the marshalled
pattern list PMA(P∗).

4. PATTERN GENERATION STRATEGIES
The TSum framework takes in one or more pattern sets

and selects a pattern set (after “marshalling”) that is best in
summarizing a data table. The input pattern sets are there-
fore important regarding the quality of the summarization.
In this work, the best summarization for a data table cor-
responds to the pattern set that best compresses the data
table. Unfortunately, there are exponentially many possi-
ble pattern sets that can compress the data table, and it is
difficult to find the one that achieves the best compression.

In this section, we introduce two strategies for generat-
ing a pattern set that captures the major characteristics
of a data table, namely, the “Spike-Hunting” strategy and
the “Local-Expansion” strategy. The Spike-Hunting strat-
egy identifies the major multi-dimensional “spikes” in the
given data set, where the “spikes” usually correspond to
(and, summarize) major groups of data records in the data
set. On the other hand, the Local-Expansion strategy tries
to “grow” patterns to increase the compression saving on the
data records.

4.1 The Spike-Hunting Strategy
Real world data sets usually contain clusters among at-

tribute values. These clusters sometimes capture key prop-
erties of the data set and provide a good summary of the
data set. The most significant clusters of attribute values
also reveal themselves as “spikes” in the multi-dimensional
attribute space. In this work, each spike is represented as a
set of conditions such as {A = a,B = b, . . .}, which is the
same representation as that of a pattern (Definition 1).

We propose a pattern generation strategy (“Spike-Hunting”)
to find these attribute-value spikes (patterns) in a data ta-
ble. At the high level, the procedure of the “Spike-Hunting”
strategy is as follows: First, pick an attribute A that is
“spiky” with respect to the marginal distribution of A, and
then find the attribute values of A that forms the spike (say,
A = a). Then, recursively repeat the same steps of picking
spiky attributes and finding spike values, from the attributes
that have not been considered yet and conditioned on only
the data records that satisfy the spiky conditions found so
far. Algorithm 2 shows the algorithm details.

Intuitively, the Spike-Hunting algorithm progressively searches
for a multi-dimensional spike starting from single attributes.
When a spike is found in the marginal distribution of one
attribute, the algorithm continues to refine that spike by ex-
amining the marginal distributions on other attributes, con-
ditioned on those attributes (and their corresponding spike
values) that have already been included in the spike pattern.

In the Spike-Hunting algorithm, we use the entropy of an
attribute’s (conditional) marginal distribution to determine
if there is a spike on that attribute. Then, we determine the
values in the conditional marginal distribution that belong



Algorithm:(Pattern Marshalling) PMA (S, T)

Input: T : Table, N rows, D attributes
Input: S: Set of m patterns {P1, . . . , Pm}
Output: The best pattern-list P = [Pi1 , ...Pik ]
P = ∅;
R = S;
while R 6= ∅ do

//Select the pattern with the top “incremental” compression saving.
Sort R by the Saving(P, T \ P), w.r.t. P ; Let the top pattern be Ptop = arg maxP∈R Saving(P, T \ P);
Let the incremental compression saving be btop = maxP∈R Saving(P, T \ P)
//btop could be non-positive, if so, ignore the pattern Ptop.
if btop > 0 then

//Append Ptop at the end of the output pattern list P.
P ← [P, Ptop] ;

end
//Update remaining patterns.
R← R \ Ptop ;

end
//P now is a sorted list of patterns.
return P

Algorithm 1: Pattern-marshalling algorithm (PMA): Picks patterns with the best incremental compression saving, and
skips the ones with zero or negative saving.

to the spike (i.e., the values which are by far more prob-
able than other values). We take the top few values of A
that capture the majority of the energy (variance) of the
(conditional) distribution as the spike values.

We note that the high-level procedure of Spike-Hunting
algorithm looks similar to the CLIQUE algorithm [3], if we
viewed each distinct attribute value as an “interval” when
using CLIQUE. One difference between the proposed Spike-
Hunting algorithm and CLIQUE is the objective function
used in selecting the (subspace) dimensions. In particular,
Spike-Hunting uses the entropy function, followed by the en-
ergy ratio check, whereas CLIQUE uses a user-specified den-
sity threshold, to identify dimensions having dense regions.
In our experiments (Section 5), we will show that TSum
can work with any pattern generation strategy, whether it
be Spike-Hunting (a strategy with a procedure similar to
that of the CLIQUE algorithm) or any other strategy, and
compare and select the appropriate patterns from the ones
generated by these different strategies.

4.2 The Local-Expansion Strategy
Based on the proposed compression cost function (Defi-

nition 4), we also design a pattern generation strategy that
directly looks for patterns that could minimize the compres-
sion cost. Our approach for finding each such pattern is a
“best-first” approach: we start from single attributes first
and find a single-condition pattern P = {(A = a)} that has
the best compression saving, and then expand the pattern
by adding other conditions until the compression cost can
not be improved. To find the next pattern, the same proce-
dure is repeated, but only on the “residue” data table, the
part of the data table not covered by the patterns found so
far. Because this strategy generates a pattern by expanding
in a “best-first” fashion, we called this strategy the “Local-
Expansion” method. Algorithm 3 shows the details of this
method.

Figure 2 illustrates the process of pattern expansion (Al-
gorithm 4). A pattern P1 will be expanded to P2 by adding
an additional condition, if the compression saving (indicated

A1 A2 AD

N1

N2

W2W1

N1'

Figure 2: Illustration of pattern expansion: The
blue area indicates the saving that a pattern P1 can
achieve. The Local-Expansion algorithm will expand
P1 to P2 (depicted by the red area) if P2 has bigger
compression saving (that is, roughly speaking, if the
red area is bigger than the blue area).

by the colored areas in the figure) increases. According to
Definition 5, the compression saving of a pattern is domi-
nated by the term Benefit(P, T ), which is closely related to
the colored area in the figure.

4.3 General Pattern Generation Strategy
The two strategies that we presented above, the Spike-

Hunting method and the Local-Expansion method, are just
two of the many possible methods for generating pattern sets
to summarize a data table. We would like to emphasize that
the proposed TSum framework can work with any pattern
set, regardless of whether it is generated by our proposed
strategies or not.

The two strategies we proposed are two special cases of a
more general strategy for pattern generation. Conceptually,
the Spike-Hunting and Local-Expansion algorithms are both



Algorithm:Spike-Hunting (T )

Input: A table T with N rows and D attributes
Output: A list of patterns P
P = ∅;
foreach attribute A in T do

//Check whether A’s marginal distribution is spiky.
if Entropy(A) ≤ threshold then

Identify the values forming the spike SV = {a1, a2, . . .};
foreach value a in {a1, . . .} do

//Create a table conditioned on A = a.
Let T ′ be the table which contains records with A = a, and does not include the attribute A;
//Recusively find the spikes.
SubPatterns = Spike-Hunting (T ′);
foreach pattern P in SubPatterns do

Pnew = {A = a} ∪ P ;
P = P ∪ Pnew ;

end
end

end
end
return P

Algorithm 2: The Spike-Hunting algorithm.

Algorithm:Local-Expansion (T )

Input: A table T with N rows and D attributes
Output: A list of patterns P
P = ∅;
while T is not empty do

//Expand from an empty pattern (Algorithm 4).
P = Expand(T ,∅)
//Stop, if we cannot achieve more compression saving.
if P == ∅ then

break;
end
//Found a new pattern.
P = P ∪ {P};
//Update the table by removing records covered by P .
T = T − { tuples covered by P};

end
return P

Algorithm 3: The Local-Expansion algorithm

doing a traversal on a lattice space of all possible patterns.
The two algorithms have different criteria to decide which
branch to traverse first and when to stop the traversal.

Figure 3 illustrates the lattice structure of our space, using
the “patient” toy dataset in Figure 1. We start from the
empty pattern-list ((*,*,*)), and we proceed with two types
of expansions: (a) condition-expansion, where we add one
more condition to one of the existing patterns of the pattern-
list (see thin-lines in Figure 3), and (b) pattern-expansion,
where we append one more pattern to the pattern list P
(thick line in Figure 3)

The Spike-Hunting and Local-Expansion methods use dif-
ferent criteria when doing condition-expansion. The Spike-
Hunting method does the condition-expansion step when it
detects additional spiky attribute values, and the expansion
to a new attribute can have multiple choices of values (if the
spike consists of more than one value). On the other hand,
the Local-Expansion method expands with a new condition
if adding the new condition can increase the compression

saving of the pattern.
Both methods do a series of condition-expansion opera-

tions until the expansion of a pattern stops, then a pattern-
expansion operation is performed to find the next pattern.
Both methods do not revisit a pattern after it is finalized.
Regarding the pattern-expansion operation, the Spike-Hunting
method starts a new pattern by back-tracking from the pat-
tern finalized before. On the other hand, the Local-Expansion
method starts a new pattern from scratch, but considers only
the data records on the residue data table, not on the entire
table.

5. EXPERIMENTS
In this section, we consider the following data sets from

UC-Irvine repository.

• ADULT50-: Adults with income less than 50K (24720
records, 7 attributes).
• ADULT50+: Adults with income greater than 50K (7841



Algorithm:Expand(T , P )

Input: T : A table with N rows and D attributes
Input: P : A pattern from which to start the expansion
Output: Pexpand: An expanded pattern with a best compression saving
foreach attribute A not included in P do

foreach value a of A do
Let P ′ be the expanded pattern by appending (A = a) to P .;
Compute the compression saving of P ′ on T .

end
end
Let Pbest be the expanded pattern with the biggest compression saving Saving(T , Pbest).;
if Saving(T , Pbest) > Saving(T , P ) then

//Continue the expansion recursively.
return Expand(T , Pbest)

end
else

return P
end

Algorithm 4: Expanding a pattern to improve compression saving. The best pattern may be the empty pattern, i.e., no
pattern: (*, *, . . . , *).

Dataset ADULT50- ADULT50+ CENSUS NURSERY

Best Local Expansion Local Expansion Spike Hunting Local Expansion
Bits 447,477 124,252 2,037,398 216,126
Coverage 100% 100% 43.81% 100%

Table 2: Winning heuristic, for each dataset

( (*,*,*) )

( (M,*,*) ) ( (F,*,*) ) ( (*,A,*) ) ( (*,*,L) )

( (M,A,*) ) ( (M,*,*), (F,A,*) )

Figure 3: Lattice organization of our search
space. Light line: “condition-expansion”; thick
line:“pattern-expansion”.

records, 7 attributes).
• NURSERY: Nursery data (12960 records, 9 attributes).

We run TSum with the two proposed pattern generation
strategies, Spike-Hunting and Local-Expansion. Table 2 re-
ports the winning strategy and the corresponding bit cost.
Notice that Local-Expansion usually wins, but not always.
In general, Local-Expansion tends to choose patterns with
much broader coverage, because these typically give larger
compression saving. On the other hand, Spike-Hunting tends
to produce patterns with much fewer ”don’t cares”(∗), which
usually correspond to fairly focused spikes and, hence, have
lower coverage. In other words, Local-Expansion tries to
cover as many rows of the table as possible, whereas Spike-
Hunting will mostly cover “hot-spots” in the table. Shorter

patterns help reduce the bit cost by covering a larger num-
ber of rows, whereas longer patterns cover more attributes
and therefore need fewer bits to describe each row they
cover. Spike-Hunting will try to explore as many attributes
as possible by considering all rows in the table, whereas
Local-Expansion progressively excludes rows by considering
only the remainder table. If “hot-spots” are fairly spread
out, then Spike-Hunting may succeed in finding patterns
that achieve a lower bit cost. In general, however, Local-
Expansion will tend to produce patterns with lower bit cost.

Finally, we should point out that, our pattern marshalling
method will refine any pattern set and rank patterns with
respect to how “informative” they are, whether they are pro-
duced by Local-Expansion, Spike-Hunting, or another strat-
egy. Next we give more details for each dataset.

ADULT dataset. This dataset is from the UCI repository,
and is already naturally subdivided into two classes: people
above or below income of $50K (ADULT50+ and ADULT50-,
respectively).

For ADULT50-, the Local-Expansion algorithm wins, with
a bit cost of 447, 477. The top 3 patterns are listed in Table
3. In the table, ”footprint” indicates the number of bits used
in encoding the attribute values matched by a pattern.

For comparison, in Table 4 we also show the top patterns
selected by Spike-Hunting, even though this is not the win-
ning strategy on this data set (total bit cost 470,406). We
clearly see that these patterns have much fewer don’t care
attributes. Both sets of patterns make sense. Those selected
by Local-Expansion show the important broad properties in
the dataset (as reflected by the lower total bit cost), whereas
those selected by Spike-Hunting are more focused on hot-
spots in the data set that are important (i.e., hot spots that



age workclass education marital occup. race sex Footprint Benefit Coverage
∗ private ∗ ∗ ∗ white ∗ 104104 104061 60.16%
∗ ∗ ∗ ∗ ∗ white ∗ 17481 17442 23.57%
∗ private ∗ ∗ ∗ black ∗ 13657 13614 7.89%

Table 3: Top three patterns of the winning strategy (Local-Expansion) selected by TSum for ADULT50- data.

age workclass education marital-status occup. race sex Footprint Benefit Coverage
20–30 private some-college never-married ∗ white ∗ 22192 22137 4.72%
20–30 private HS-grad never-married ∗ white ∗ 21071 21016 4.49%
30–40 private HS-grad married-civ-spouse ∗ white M 12680 12624 2.56%

Table 4: Top three patterns (ranked by our pattern marshalling algorithm) using Spike-Hunting on ADULT50-.

still achieve notable reduction in bit cost).
In summary, both algorithms produce reasonable sum-

maries, with broad characteristics that reflect the design
goals of each optimization heuristic. Furthermore, the pat-
terns produced by the winning strategy (Local-Expansion),
as chosen by TSum, make sense as a good summary of the
broad characteristics of the dataset: people at this income
bracket are usually younger, there is no dominating mari-
tal status, and no dominating occupation. This is naturally
reflected by our proposed bit cost, and agrees with intuition.

Before we continue, we note that, for each pattern, the
footprint is a good approximation of the benefit, i.e., the
actual number of compression bits. Thus, for the remaining
datasets we just show footprint.

For ADULT50+, TSum again chooses Local-Expansion as
the winning strategy, with a total bit cost of 124, 252. Table
5 further shows the top three patterns selected by TSum.
The observations when comparing against Spike-Hunting are
very similar to those for ADULT50-. Finally, the patterns
again make sense and form a good summary of the broad
characteristics: people in this income bracket are usually
older, and thus married.

CENSUS dataset. Here Spike-Hunting is chosen as the win-
ning strategy by TSum, with a bit cost of 2, 037, 398 (ver-
sus 2, 210, 319 bits for Local-Expansion). As noted earlier,
we believe this is because the spikes in this dataset are
more broad. In more detail, Local-Expansion progressively
searches for patterns, favoring those with higher coverage,
and subsequenty excluding the covered rows in its search.
On the other hand, Spike-Hunting tends to give patterns
with more attribute values (and fewer ”don’t cares”) at the
cost of typically lower coverage. However, each covered
record can be described with fewer bits, since the Spike-
Hunting patterns tend to include more attributes. In sum-
mary, both algorithms produce reasonable summaries ac-
cording to the design of their optimization heuristics (and
the marshalling process of TSum can produce a good rank-
ing of patterns from either strategy) and, depending on the
structure of the dataset, one strategy may be overall better
than others. Again, the total bit cost reflects the properties
of good summaries of the broad characteristics.

Nursery dataset. The nursery dataset is essentially syn-
thetic, with mostly independently uniform random distri-
butions, and thus it is interesting to note that TSum finds
no meaningful summary because none exists. The results

Figure 4: Linear scalability: run time vs number of
records.

themselves are not interesting, and thus omitted.

5.1 Scalability
Figure 4 shows that the running time of our algorithm is

linear on N (number of records). The dataset was ADULT50-
and we sampled records, with sample sizes from 4000 to
24720. We report the average running time over 5 runs,
along with the error-bars (red) for one standard deviation.

6. BACKGROUND AND RELATED WORK
Clustering and co-clustering There are numerous such al-

gorithms including methods for numerical attributes (Birch
[15], CURE [8], DBSCAN [12], and OPTICS [5]), categorical
attributes high dimensional variations (subspace clustering
[3] and projected clustering [2]). All of these methods finds
cluster centers alone, or cluster centers together with subsets
of dimensions. However, they generally do not produce pat-
terns or rules. Furthermore, most of the above approaches
need some user-specified parameter or threshold.

Association Rules Association rules typically operate on
sets (or, binary attributes), such as “market baskets.” How-
ever, (a) they need user-defined parameters (e.g., min-support,
etc), and (b) they generate too many rules, which defeats
the purpose of summarization. Several publications try to
address this issue, e.g., [1, 13, 14, 16]. Most of this work
needs some user-defined parameter. More importantly, the
pattern sets that any of these approaches produce can be



age workclass education marital-status occup. race sex Footprint Coverage
∗ ∗ ∗ married-civ-spouse ∗ white male 38108 69.43%
∗ private ∗ ∗ ∗ white ∗ 6360 13.52%
∗ ∗ ∗ married-civ-spouse ∗ ∗ ∗ 2550 10.84%

Table 5: Top three patterns of the winning strategy (Local-Expansion) selected by TSum for ADULT50+ data.

incorporated in our proposed framework, as an alternative
optimization strategy, and TSum will rank those patterns
and choose an appropriate number to form a good summary
of the general characteristics of the data set.

SVD, LSI and dimensionality reduction These methods
operate on matrices, and have been successful in numerous
applications, e.g., [6, 9]. However, in most cases (a) some
user-defined parameters are required (e.g., how many singu-
lar values/vectors to keep), and (b) the resulting patterns
are hard to interpret (vectors in high-dimensional space).

Compression, MDL, and Kolmogorov complexity Lempel-
Ziv [10] and LZW are suitable for strings. However, since we
would need to linearize the table, an ordering of both rows
and columns would be necessary, which is not an easy prob-
lem. MDL [11, 7] is a vital concept. At the high level, TSum
exactly tries to find a pattern language and the correspond-
ing patterns, so that the table (using the patterns) together
with the chosen patterns themselves can be compressed as
well as possible.

As far as TSum is concerned, any method that gener-
ates patterns from a given data table can work side-by-side
within the TSum framework. The pattern generation meth-
ods (either a clustering algorithm or a pattern enumeration
method) provide “pattern candidates” for TSum, and the
TSum framework will pick the patterns that are suitable for
describing the data table.

7. CONCLUSIONS
In this paper we present TSum, a method to efficiently dis-

cover patterns that properly summarize a data table. Our
main contribution is the rigorous formalization, based on the
insight that table summarization can be formalized as a com-
pression problem. More specifically, (i) we propose a com-
pression cost objective to effectively discover proper sum-
maries that reveal the global structure of the data table, and
(ii) show how different optimzation strategies can be acco-
modated by our framework, and (iii) propose two strategies,
Spike-Hunting and Local-Expansion, each designed with dif-
ferent goals for their optimization heuristics.
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