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Abstract—Cloud providers such as Google are interested in
fostering research on the daunting technical challenges they
face in supporting planetary-scale distributed systems, but no
academic organizations have similar scale systems on which
to experiment. Fortunately, good research can still be done
using traces of real-life production workloads, but there are
risks in releasing such data, including inadvertently disclosing
confidential or proprietary information, as happened with the
Netflix Prize data. This paper discusses these risks, and our
approach to them, which we call systematic obfuscation. It
protects proprietary and personal data while leaving it possible to
answer interesting research questions. We explain and motivate
some of the risks and concerns and propose how they can best be
mitigated, using as an example our recent publication of a month-
long trace of a production system workload on a 11k-machine
cluster.

I. INTRODUCTION

Many in industry want to guide academic work to increase
its relevance to their company’s technical challenges, and
believe that giving academic researchers access to relevant
workloads would help both groups. Many of the largest
clusters today are used for commercial workloads that support
large-scale Internet services, which have different challenges
than scientific and academic environments. Without guidance
from data such as traces, researchers must make assumptions,
but these may be at odds with the actual workloads. For
example, traces from Hadoop MapReduce analytics clusters
at Facebook and Yahoo showed that small jobs dominated the
workload [1]. Reducing the response time of these small jobs
was much more important than making small improvements in
the throughput of the large ones, an insight that was contrary to
a widely-shared intuition and previously available benchmarks.
This would not have been obvious without access to traces of
the real systems.

Traces of production systems are widely used within indus-
try. Unfortunately, release of these datasets is rare, because
they may contain sensitive information, or provide indirect
evidence from which sensitive information can be deduced.
Most prior work with sanitizing production traces deals with
privacy concerns. Although privacy is a serious problem, it
is not the only issue. Indeed, some traces have no privacy
component, but are still sensitive because of business secrets
that may be leaked, directly or indirectly.

This paper reports on techniques we developed to remove
commercially sensitive information from production traces in

TABLE I
KEY OBFUSCATION TECHNIQUES FOR OUR TRACE.

Data type Examples Transformation
open time, CPI unchanged
strings job name, user name hashed

enumerated constants priority, scheduling class ordered (mapped to
unique integers)

resource sizes cores, RAM rescaled (divide by
max, limit precision)

other constraints (special)

a way that has little or no impact on the value of the traces to
researchers. We call this process obfuscating the trace; it is a
generalization of anonymization, which is frequently used to
describe the removal of personal information and replacing the
names of various components with hard-to-guess stand-ins.

The methodology described in the paper is quite general.
However, we use the following scenario to ground our dis-
cussion. We recently prepared a cluster scheduler workload
trace of a current commercial system for release to the public.
The trace contains information about jobs submitted by users;
each job is made up of one or more tasks, each of which has
associated requirements and resource usage data. The client
names stored in the original traces are of internal services
or employees, and the tasks correspond to batch workloads
or services that handle many external users. As a result, we
are not really concerned about privacy: although the trace
includes data about services that deal with data about external
customers, the system being traced touches relatively little
personal information. The bigger issue is that the company
would prefer that we not accidentally reveal certain details
about the hardware and software used in the cluster.

Obfuscation is surprisingly hard to do well. One factor that
makes it difficult is that outsiders can use information from
outside a trace to discover its secrets. This information can be
simple facts about the world—like that “people often search
for their own name” or “many programs request CPUs in units
of a complete core”. It is not possible to enumerate all such
discoveries, so the problem is one of managing risk.

A. Contributions

In this paper, we present concerns that companies have
about the risks of releasing traces from production systems.
To address these concerns, we introduces mechanisms for



obfuscating traces in a way that has little impact on the value
of the traces to researchers. We applied these mechanisms to
traces from Google production clusters, and have published 30
days of sanitized production data from a Google cluster.

The remainder of the paper is structured as follows. Section
II surveys prior work. Section III summarizes why companies
suppress certain information in production traces, and section
IV discusses best practices for trace obfuscation. Section V
describes difficulties inherent in trace obfuscation and some
of the perils of hiding too much information. We illustrate
the choices we made for our trace in section VI and our
conclusions are contained in section VII.

II. PRIOR WORK

Several traces of real systems have been released to the
public. Almost any trace has some issues that prevent its
release in its raw form; this section lists a few examples, and
what was done about these issues.

Traces captured from academic contexts may not be sub-
ject to commercial concerns, but careful consideration to
the amount of personal identifying information (PII) is still
required. Depending on the type of trace, this may be a major
issue or simply not a problem – e.g., resource usage data from
a scientific batch processing facility is largely unrelated to
personal activities.

Well-studied classes of traces include filesystem accesses
and network traffic. Several network traces from academic and
research environments are distributed to the public [2]–[4].
These provide the public with a collection of traces, typically
gathered from academic and research sources. The obfuscation
in these traces ranges from removing HTTP request and
response bodies (in an HTTP trace) to replacing all web page
URLs and usernames with their opaque identifiers (in an home
web access trace). Regardless of the degree of obfuscation,
the LBNL-hosted Internet Trace Archive [2] requires that
“archive users agree to not perform traffic analysis aimed at
circumventing the degree of privacy present in the trace”.1

Recent network traces have enjoyed more systematic ap-
proach to anonymization (such as described by [5]). Since
these traces are used to evaluate systems that work on raw
network traffic, these techniques focus on transforming net-
work traces containing at least packet headers to “equivalent”
network traces that omit private information. Most notably, this
requires omitting raw IP addresses, but more subtle channels
also need to be removed, such as TCP timestamps (which
can identifying machines [6]) or HTTP response size patterns
(which can identifying web sites [7]).

Several traces of network filesystem activity have been
created by researchers (such as [4], [8]–[10]), usually from
their own installations. Some of these traces are even from

1One of the larger issues for the community is the eagerness with which
some people pursue reverse engineering trace data to see what can be found,
and then publish the result, without necessarily considering the broader
consequences. Non-disclosure agreements are sometimes used in an attempt
to reduce the risk of this happening. They have other drawbacks, but these
are outside the scope of this paper.

commercial installations [11]. In obfuscating these traces,
it has usually been considered sufficient to replace each
component of filenames and each username with a distinct
identifier, but this may still leak some information about
directory structures, file types, and so on.

Research grid computing installations [12] and traditional
supercomputing installations [13] have made batch job-
scheduler traces available. These traces typically include only
relatively coarse-grained information about resource demands
and usage. Typical obfuscation—if any—consists of replacing
user, group and (possibly) job names with unique identifiers.
Users of these systems do not generally feel the need to hide
the fact that they are using them, or the types of programs they
are running. Many of the datasets that have been released to the
general public are limited purpose: for example, a collection
of disk failure information [14] was released to allow others
to reproduce the results of a paper on the topic.

Although research based on commercial workloads is not in-
frequent, there are few publicly-available commercial datasets
and so analyses of commercial datasets are usually performed
within the providing company, or by private arrangement with
a research group. For example, the first author’s (academic)
research group has obtained batch workload traces from some
large Internet companies, but these were available only under
an agreement to not share the trace widely.

Research labs of companies will sometimes release data
about their own systems, which are less commercially sen-
sitive than systems running end-user workloads. For example,
storage-system traces were made available for some research
systems at HP Labs [15], but almost no examples of traces
from commercial systems, whether running production code
or benchmarks. One of the reasons offered was a fear of
“giving away a commercial advantage”; another was “getting
the system managers to agree – and they saw no point in
releasing such traces” [16].

III. REASONS TO OBFUSCATE

There are several threats that obfuscation is meant to
prevent. The most publicized are privacy risks: that the
trace might reveal some embarrassing information about an
individual, which may have legal consequences and cause
public-relations difficulties. Another threat is the accidental
release of proprietary information to competitors or customers.
Another is leaking information that a malicious (or aggressive)
competitor might use to damage the trace provider business
through financial, political, or technical means – for example,
a trace might accidentally reveal how to “game” one of the
provider’s services. This list is by no means exhaustive; we
expand a little on a few of them below.

A. Competitive concerns

There are several types of trade secrets that a company may
want to avoid revealing through traces. Exact policies differ
between companies; there is no single formula. Our examples
are intended to illustrate common concerns that make releasing
commercial traces challenging.



One class of secrets is information about unreleased prod-
ucts. When leaked, this can create substantial media attention,
bypass carefully-planned marketing campaigns, force prema-
ture release (or delays), and allow competitors to undermine a
new product, resulting in lost revenue. The resulting damages
can be millions of dollars. Less frequently publicized, but
still potentially bad, is information that is only likely to be
useful to competitors or malicious third-parties. For example,
these groups may be interested in inferring the company’s
supply chains, algorithms used for handling abuse, or the exact
versions of hardware and software used internally.

Protecting information about a new product may be non triv-
ial if prototypes of it are using shared infrastructure services
that are being traced. This is not easy to bypass by releasing
only traces of systems that serve no unannounced products –
beside the difficulty of determining whether this is happening
(it may not be known), or manually selecting parts of larger
workloads (it may be too hard at scale), some products may
not be acknowledged publicly for many years (if ever), so any
traces old enough to meet the requirement will likely be long
out of date.

Companies often want to avoid giving their competitors per-
formance targets to aim for. Knowing that certain performance
goals are practical would allow competitors to better allocate
their engineering resources. For example, the existence of
Google’s MapReduce system is public, but releasing precise
performance information would likely create an instant bench-
mark for other MapReduce implementations. This effect can
be seen with the TeraSort benchmark: one year after Google
released their time (68 seconds), Yahoo’s Hadoop engineers
had approximately equalled that time [17]. While there are
benefits to releasing explicit performance targets, companies
want to make such decisions explicitly.

Precise information about hardware and software could
permit disruption of a company’s business. For example,
companies running large scale services may have chosen
certain hardware components several years in advance of their
production deployments, and may be committed to buying
these particular components to gain price discounts. Given
that they acquire or replace (at least) tens of thousands of
servers and pieces of related equipment per year, they may
account for a substantial portion of the entire market for
some hardware components, and thus a potential target. A
malicious competitor could increase costs by bidding up the
price or causing an artificial shortage of selected, critical
components, such as FLASH chips, or a particular kind of
processor. Supply-chain management is hard enough without
complicating it by introducing knowledgeable antagonistic
agents.

Another concern is vulnerabilities to external attack in
hardware or software. Since large-scale services tend to have
relatively homogeneous hardware, firmware, and software
platforms, each of these components is a high-value target.
To make attacks more expensive to perform, service operators
want attackers to have to guess the configurations and waste
resources attacking systems the operator does not have.

Since it could allow the inference of performance targets,
supply chains, and exact hardware configurations, information
about the actual resources of each physical machine is often
considered sensitive (e.g., the amount of RAM, number of
cores, the network bandwidth). Even worse is information
that might reveal the total size of a company’s computing
resources, as that may implicitly provide financial and capa-
bility data that a company would prefer to keep secret from
its competitors, customers, and even suppliers.

B. Privacy obligations

The most obvious reason to obfuscate a trace of an online
service is because end users may have provided (or generated)
data with the expectation it would remain private. For example,
these services may manage e-mail addresses, word processing
documents, and web viewing and searching history. To allevi-
ate regulatory concerns and preserve user confidence, service
providers typically promise not to release any personally
identifiable information (PII). Such information is varyingly
defined to include information that “can be used to contact
or identify [users]” [18] or that “personally identifies [users]
. . . or can be reasonably linked to such information” [19].
Frequently, laws and regulations attempt to enforce similar
requirements.

Identification cannot be prevented by simply omitting
names, social security numbers, postal addresses, e-mail ad-
dresses, etc. Violations in privacy from anonymized’ database
releases can arise from surprising correlations between the
released data and publicly available data about people [20],
[21]. For example, gender, birth date and 5-digit zip code
uniquely identify around 63% of Americans [22].

However, many interesting traces, such as ours, are intended
to characterize hardware and software and their behaviors,
not end users. Such traces do not need to include any infor-
mation correlating user requests to each other or identifying
the specific resource that an end user was served by. The
primary personal privacy concern comes from the messiness
of the data: logs intended to show technical information may
include portions of requests, database keys, file names, etc.
Unfortunately, the need to remove such information generally
makes it impossible to release freeform logs without extensive
(and time-consuming) normalization of their contents.

IV. OBFUSCATION STRATEGIES

In this section, we discuss a few common strategies used
to protect or remove sensitive information from a trace. There
are basically three techniques: culling out parts of the original
information and excluding it from the obfuscated version,
subsetting to only a portion of the total data available, and
transforming the original data in some manner that is hard to
reverse-engineer, such as providing only aggregate (summary)
data.
• Culling: only certain parts of the original trace data (e.g.,

fields in a trace record), need be included - the remaining
data is omitted, or culled. This is often used on traces of
end user actions, to eliminate PII. Because raw trace data



may contain labels that are user or product names or even
excerpts of processed data, obfuscation almost always
requires limiting the types of data in the released trace
and culling (or aggressively transforming) any free-form
text fields. Culling also helps make traces more compact.

• Subsetting: traces can also be obfuscated by selecting only
a part of the available data (e.g., only certain clusters
from the ones a company runs). This can be a productive
strategy since most researchers are more interested in rich
and representative data than complete data.

• Transformation: instead of deleting or ignoring informa-
tion, it can be included in a different form (e.g., names
could be sorted and then replaced by their position in the
list; a text string can be replaced by its hash). The data
items that occur in trace records can be thought of as
defining columns. For each column in the raw data, there
are numerous possible derived columns which preserve
some information in the source column (such as equality
between entries) while discarding at least some sensitive
information.

• Aggregation: a special kind of transformation is to replace
the actual data with a summary. For example, a distri-
bution of job inter-arrival times, rather than the actual
starting times.

A practitioner should select the operations trace consumers
should be able to do (such as ‘comparing resource measure-
ments’) and use these techniques to provide some minimal
information sufficient to do so.

A. Comparison-preserving obfuscations

Probably the most common obfuscation transformation is
to hide the actual values of names or labels, such as user
names. The trick is to preserve the relationships between the
values, such that a set of records describe work submitted by
the same user. There are several common transformations for
this purpose, including:

1) Put all visible labels for a column in some information-
free order (such as random order or the order they first
appear in the trace); assign them unique numbers in this
order; include only the numbers in the output trace.

2) Take a keyed cryptographic hash (such as HMAC-
SHA256) of the original label using a secret key that
is unique over some space (e.g., the datatype).

3) Encrypt the values using non-randomized encryption
(such as AES-CBC [23] with an initialization vector
derived from keyed cryptographic hash of the encrypted
value) using a key that is unique for the data type
(an approach like this is implemented by HP Labs’
DataSeries [24] library).

Approach 1 produces compact labels and is ideal when the
space of all possible labels is easily determined in advance.
Approach 3 has the advantage of being reversible by the trace
providers, but it produces much larger identifiers (especially if
everything is padded to hide length information). Approaches
2 and 3 have the advantage of not requiring an explicit label-

generating phase and so are better suited to labels with many
possible values.

In any case, trace producers should make an explicit de-
cision about what columns of labels should be matched to,
or correlatable with, other columns. Those where the trace
consumer should be able to identify equality relationships
should use the same transformation, and those which the
trace consumer should not be able to correlate should use an
independent transformation—different cryptographic keys or
list of labels.

When the trace consumer should be able to identify more
than equality relationships within a column, a different type
of transformation is required. For example, to allow inequality
and ordering comparisons across discrete values, while hiding
the actual values, one can gather all the values for the column,
sort them, and replace each value by its index into this list.
This is likely to be a useful for parameters like software and
hardware versions. This technique may also be applicable to
parameters whose absolute numerical value is meaningful to
performance—such as the number of disks on a machine—but
restricts the kind of analyses that can be done (e.g., this cannot
readily support determining the mean load on a disk drive).

B. Continuous measurements

Continuous-valued measurements are much more problem-
atic to obfuscate. There are several properties of such infor-
mation that a trace producer may want to preserve, such as:

1) whether two values differ by a large amount and in what
direction;

2) the approximate ratio between any two values;
3) the approximate magnitude of each value; or
4) the presence of small differences between values;

Information of type (2) or (3) is likely to be most useful for
researchers since they are straightforward to use for replay.
To attempt to provide only ratios, one can linearly rescale the
values in some uninformative way: for example such that the
medium datum of that type in the trace is 1. To avoid providing
information of type (4), the precision can be reduced, e.g., by
rounding values to a small number of digits.

A common proposal is to rescale continuous measurements
in order to hide sensitive hardware configuration information.
Unfortunately, it is often difficult to reveal ratios without also
providing approximate magnitudes, which may be sensitive
information (e.g., the distribution of the number of cores per
CPU in a cluster of machines). If someone examining the trace
can estimate the true value of any one sample, then they can
use that information to reveal the approximate magnitude of
all samples in the trace.

For resource consumption in particular, a task might be
using a certain number of some discrete resources like disk
drives or CPU cores. A natural measure of the usage of each
of these discrete resources is continuous: e.g., CPU-seconds
used per second or disk read bandwidth achieved, so it might
be thought that simply rescaling the consumption would be
good enough. Not so. It is likely that a disproportionate share
of programs will fully utilize all of a discrete resource such as



Fig. 1. Histogram of task CPU utilization measurements from a cluster
at Google. The x-axis represents the number of CPU-seconds per second a
task used on a machine during a 5-minute measurement period. The data
includes all available measurements of all tasks on the cluster over many
days, except that measurements greater than 2.4 CPU-seconds per second
are omitted. These measurements were bucketed into 0.01 CPU-second per
second bins; the y-axis represents the portion of measurements falling into
each bin.

Fig. 2. The same data as in Figure 1, grouped into bins that are 0.2 CPU-
seconds per second wide instead of 0.01. There is still a distinguishable event
at 1.0 cores.

a CPU core, so this may be used to reveal the actual resources
counts.

For example, figure 1 shows an excerpt from the histogram
of task CPU utilization measurements on a cluster at a Google.
Each measurement represents the number of CPU-seconds
per second used by a task on a single machine over the
measurement time period, which is 5 minutes. It is easy
to see from this histogram where “1 core” is because a
disproportionate number of task samples show one core being
fully utilized.

This effect might be mitigated by providing much less
precision in the provided ratios or averaging the utilization
over longer periods of time—but a lot of precision may need
to be culled. For example, the bump near 1.0 cores is still clear
when CPU usages are only given to a precision of one-fifth
of a core.

Averaging over long periods of time will diminish the effect
because fewer samples will experience full utilization of a unit
of the resource. Like removing precision in magnitude, such
averaging would clearly diminish the utility of the trace, since
it would require hiding the existence of tasks with sustained
CPU bursts.

To prevent this type of attack, trace providers might try
to distort the distribution. Unfortunately, many examples of

combining two resource usages may reveal the shape of the
distortion. Any useful distortion will preserve the property
that values which are originally close will be close in the
resulting distribution. Given this, one can bucket the distorted
distribution into N fixed sized buckets and approximate the
inverse of the distortion function in each bucket by a list
of N numbers D[i]. Knowledge that some (distorted) mea-
surement S is the sum of a,b, . . ., reveals information about
D: D[S] ≈ D[a] + D[b] + . . .. With sufficiently many such
samples and a guess for any D[x], this information produces an
overdetermined system of approximate equations. This system
can framed as an optimization problem to minimize some
measure of the error and solved using standard techniques.

Thus, trace producers cannot rely on distorting measure-
ments if they also provide aggregations of the measurements.
This severely limits the information that can be provided
since implicit aggregations—for example, the capacity of
machines—are ubiquitous in any trace that measures both the
incoming workload and its effects.

One could imagine that there are ways to add random
noise to flatten the distinctive bumps in the distribution.
Unfortunately, the noise might need to be quite large. A trace
consumer can remove the noise by combining similar values
together: for example, one may guess that tasks within a
job have similar resource utilizations; making it possible to
identify multiple (noisy) samples of a particular value. The
samples can be averaged together to produce a low variance
estimate of the mean.

C. Timeseries data

Traces usually contain data about the times of events.
These data are particularly concerning for obfuscation because
timing data from one source is easy to correlate with timing
data from another source (finding external data sources to
join against could be difficult for other data types). High-
precision timing information is likely to allow correlating
supposedly obfuscated requests to each other and perhaps
obtaining precise performance benchmarks. To prevent easy
correlation with external events, a trace provider can shift all
the times to some new origin, and perhaps rescale the result,
so that absolute timings are not available. Relative timings
can be obfuscated by providing only low-precision timing
information. To prevent anyone from obtaining aggregate
relative timing information (as might indicate performance),
the precision must be low, and/or noise should be added to the
raw times first: the number of times a quantity “crosses over”
a rounding boundary will provide an estimate of the mean if
the shape of the distribution of the times can be guessed.

Even low-precision timing information risks correlating the
trace to real-world events that may affect the workload. For
externally visible services, outsiders might be able to correlate
spikes or outages in a service to events in the trace. For
example, the GMail service could be identified data based
only on a correlated spike in abnormal task termination events
and the date of a publicized outage. This effectively leaks
information about which service this is, even though its name



may have been obscured. Even without a event like this, it
still may be possible to distinguish between different types of
services based on diurnal or weekly patterns.

D. Hierarchical data

Many traces contain fields that are hierarchical. Common
examples are filenames and IP addresses. Filenames and IP
addresses sharing a prefix are likely to be related to each
other and many analyses would benefit from this information.
Releasing hierarchical information needs to be done with
caution. For example, previous work on obfuscating packet
traces [5], [25] has found that network traces contain scans
across the IP space in sequential order. Combined with a
few known IPs, this would easily permit discovery of a large
number of IP mappings. Similar problems may exist for other
hierarchical fields.

To preserve hierarchies, but suppress the names, one strat-
egy is to break each of these hierarchical-name columns
into multiple columns, where each synthetic column is a
prefix of the original. For example, to obfuscate the filename
“/usr/bin/scp”, one could divide it into three (“/usr”, “/usr/bin”,
and “/usr/bin/scp”), and transform each of these using an
equality-preserving scheme. If necessary, the obfuscated trace
might be culled to include only the prefixes. If the ordering
of items is likely to reveal sensitive information (as with IP
addresses), then the trace provider should explicitly check the
trace for scans through the name hierarchy.

E. Sampling-based strategies

Traces can also be obfuscated by subsetting data sources
(e.g., providing only a short-duration trace, or only a subset of
the available systems or resources). This is common, especially
in older traces, because of limitations on the quantity of
information that could be gathered, stored, delivered, and
processed.

Subsets can be picked to suppress sensitive information.
For example, concerns about supply-chain disruptions can
be mitigated by providing a trace from machines that are
not representative of the company’s newer acquisitions or
future provisioning plans. Some services will span most of a
company’s infrastructure; for these services, selecting only a
subset will yield an incomplete trace that cannot (for example)
be replayed easily. Nevertheless, for many uses, providing
fuller information for a subset of the actual machines is likely
to be more useful than less precise information for the whole
fleet of machines.

In addition to taking a subset of machines or jobs, one could
also provide only aggregated data. That is, instead of providing
records for each observed machine, job, task, request, etc., the
trace provider might only provide descriptions of groups of
machines, tasks, and jobs collectively. This mitigates concerns
that are based on finding out information about particular jobs,
users, or machines types. One form in which such aggregate
data could be provided is as a synthetic trace or trace generator.
This technique is proposed [26] as a way to produce exportable
benchmarks from proprietary traces.

Aggregation limits the kinds of analyses that can be done
on traces – in particular, on better ways to do the aggregation.
The best that can be hoped for is that a trace synthesized from
the aggregates will induce similar behaviors on the system as
did the real one, but this is hard to test. For example, if the ag-
gregation involves describing clustering of tasks with “similar”
requirements, then a fair amount of information has already
been suppressed; it is also likely that the clustering process
is itself imperfect, and omits some important correlations. A
synthetic trace produced from these cluster descriptions would
have the same problems.

F. Differential privacy

Differential privacy [27] is a measure of the privacy pro-
vided by a computation based on how much the addition
or deletion of a single data record can affect its output. A
computation is differentially private if the possibility of getting
a particular result changes less than a given threshold when a
record is added or removed from the dataset. This threshold
can be thought of as a privacy budget and can be divided
among many computations to get more results and still satisfy
a higher-level privacy goal. Because of this composability,
differential privacy can be provided nearly generically by
building on top of fundamental operations that add carefully
chosen noise. To hide the presence of any individual record,
these operations must be aggregates, but can be as general
as “count the number of records such that a user-supplied
function is true”.

Probably the most attractive feature of differential privacy is
that a trace producer does not need to guess which questions
the trace should answer. Systems (such as [28]) have been
proposed where within a privacy budget, trace producers could
allow researchers to write arbitrary queries against the raw
data and get automatically obfuscated results. The privacy
budget makes this less attractive because it requires that only
to a limited set of trace consumers be granted access, and all
their queries must contain aggregates. Also, many competitive
concerns are not addressed by the differentially privacy guar-
antee which, by design, preserves aggregate values. Even for
personal privacy concerns, there is a practical problem of how
to set the privacy budget since it may not be clear how many
records need to be masked to prevent the identification of one
person’s activity.

V. SOME PERILS OF EXCESSIVE OBFUSCATION

Obfuscation can be taken too far. The most common prob-
lem is missing information. For example, [29] uses traces to
evaluate the effectiveness of caching in a batch system; it could
not have been done on a trace summary like that proposed by
[30] which only reflects data sizes and compute times.

This section discusses a few of the difficulties that may arise
when using an obfuscated trace.

A. Unavailable information

All traces are incomplete in some manner, possibly just
because some desirable information was not readily available



from the system being traced. When researchers produce their
own traces, they may be able to do follow-up work to collect or
approximate this extra information, but for traces released by
third parties, applying such remedies is likely to be impossible.

Many real workloads are “half-open” loops: part of the
workload is generated because prior tasks finished; other parts
appear asynchronously. HTTP requests are an example [31]:
some resources (e.g., images) are requested only because they
are referenced by others (web pages).

Job- and task-level workloads are likely to have this flavor,
too: users may use higher-level tools (such as [32]–[35]) to
write workflows on top of a lower-level scheduler from which
the trace is extracted. Unless the obfuscation is done with
care, the workflow’s dependency information is easy to cull
by mistake.

Enough information may be present in the original raw
trace to make reasonable estimates of dependencies. One could
look for similar service names, user names, filenames, job
names, binary names, etc. High-quality replay might involve
processing those “hints” to find likely dependency chains. But,
much of this information is likely to be suppressed or provided
in a form that makes such analysis difficult to verify.

B. Missing semantics
Researchers analyzing traces frequently use knowledge of

the purpose of the programs that appear in a trace. For
example, this knowledge is important to argue that researcher’s
proposal would actually affect metrics that its users care about.
Similarly, researchers modelling traces want to verify that
their models are capturing attributes that are universal and not
simply artifacts of one company’s implementation.

Understanding the purpose of jobs within traces of shared
infrastructure services is difficult. Standard labels, like job
names, are not likely to survive obfuscation. The trace may
provide many exportable hints of job purpose, like priorities,
resource requests, and filenames, but these are imprecise
and subject to company-specific quirks (such as defaults or
approval requirements).

A researcher might use these hints to infer new scheduler
constraints (such as deadlines) or to predict the workload.
For example, proposals to automatically scale up and down
allocations to a service (for power [36] or cost [37]) depend
on short-term workload predictions. These systems could train
a workload model using the trace, but the researcher would not
know whether the model learned properties that are universal
(such as end-user request patterns) or quirks of the company
(such as periodic automated jobs being released at a particular
time).

In short, it is helpful to consider the purposes to which
traces will be put when making them available. If the goal is
to foster work on improved scheduling algorithms (say), then
the traces should include information to aid both replay and
understanding of the workload.

VI. OBFUSCATING OUR TRACE

In November 2011, we released a trace of 29 days of
job requests and usage data for a medium-sized production

compute cluster at Google that contained about 11 000 com-
puters, using the techniques described in this paper. Our most
difficult competitive concerns were addressed by subsetting: to
avoid revealing the size of the company’s computing “fleet”,
we choosing a single cluster; to avoid releasing sensitive
machine configuration information, we chose an older cluster
whose machines did not have unusual hardware; to avoid most
concerns about revealing application performance or structure
we chose a cluster with a varied workload – one with many
important services but not dominated by an especially sensitive
service such as ad serving.

We took time to explain and verify the trace. Since we do
not use a publicly available scheduler, we provided explicit
documentation about the meaning and origin of each of the
trace fields [38]. Before releasing the trace data, we checked it
for internal consistency and against an alternate internal source
of the trace information. These checks identified some bugs
in our transformation code and our monitoring infrastructure
that would have made the trace difficult to interpret, and might
have been impossible for outside users to discover. One goal
was to support experiments on job-scheduling, so we made
sure to provide information about jobs that started and finished
outside the time window of the trace, but excluded computers
that were statically assigned to particular uses or users. (This
caused a small infidelity for jobs that spanned two classes of
machine, but the effect was around 0.003% of the load in the
cluster.)

We used a combination of the techniques discussed above
to transform the trace fields. For scheduling constraints
on quantities like version numbers and spindle counts,
we sorted the used values for each machine attribute and
assigned an integer to each value. We then normalized
all the constraints (equality or inequality comparisons
against attributes) to use these integers. For example, if
machines in the trace had version 2.4, 2.6, and 3.0 of
some software, we represented these versions as 1, 2, and
3, respectively. A constraint like ‘version >= 2.6’
would be obfuscated to ‘opaque > 1’; and
‘version != 2.4 && version != 2.5’ to
‘opaque != 1 && opaque != 0’ (using 0 since
2.5 never appears on a machine).

Text fields were encrypted using a keyed cryptographic hash
(HMAC-SHA256) with a different key for each field type,
derived from a keyed cryptographic hash of the field name
and data type using a single master key for the trace. We
hid the identity of particular services by hashing job and user
names in this fashion, but to allow correlation analyses we
provided normalized job names that stay the same across job
re-executions.

For resource-size data such as capacity, usage and scheduler
request sizes, we rescaled the resource units so the maximum
observed machine capacity in the trace was 1.0, and deliber-
ately limited the amount of precision we provided so that the
intervals between possible values would not trivially identify a
“unit” quantity. Despite this, we recognized that our rescaling
of usage information was likely to be ineffective for at least



some types of resources (such as CPU usage) – but we did so
consciously.

We also provided some information in unobfuscated form,
such as cycles per instruction and memory accesses per
instruction measurements, since we did not believe it would
otherwise be useful.

We believe that the balance we struck was able to meet the
needs of our research colleagues and our own requirements
for restricting some commercially-sensitive information.

VII. CONCLUSION

Removing private and competitive information from traces
without damaging the utility of the trace is challenging.
Ultimately, all obfuscation techniques must strike a balance
between supporting interesting analyses and the risk of re-
vealing confidential information. A significant problem is the
lack of certainty: one cannot prove that everything has really
been sanitized.

Privacy concerns make it difficult to release precise infor-
mation about user activities because the user information that
makes those traces unique also poses a privacy risk. Com-
petitive concerns create different challenges (e.g., releasing
aggregate data may be undesirable), as well as some similar
ones (e.g., job names may be as sensitive as customer names).

Applying the most effective obfuscation schemes will
severely limit the analyses that can be performed. Neverthe-
less, this may be appropriate when fairly complete data is
important (e.g., for evaluating schemes for balancing work
between datacenters). Otherwise, it may be more useful to
provide a more complete set of data from a smaller source
than a small amount of data from a broad range of systems.

As always, there’s no free lunch. Academics should recog-
nise that the reasons for industry’s hesitations are real, and
important. If industry would like to foster higher-quality, more
relevant research into their problems, they will need to find
ways to accept some of the inherent risks, and make more
data accessible. We hope that this paper will serve to provide
guidance on the likely consequences, and best practices for
doing so.
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