
Bayesian Inference
for Large Scale Image Classification

Jonathan Heek
Google Brain Amsterdam
jheek@google.com

Nal Kalchbrenner
Google Brain Amsterdam

nalk@google.com

Abstract

Bayesian inference promises to ground and improve the performance of deep neu-
ral networks. It promises to be robust to overfitting, to simplify the training pro-
cedure and the space of hyperparameters, and to provide a calibrated measure of
uncertainty that can enhance decision making, agent exploration and prediction
fairness. Markov Chain Monte Carlo (MCMC) methods enable Bayesian infer-
ence by generating samples from the posterior distribution over model parame-
ters. Despite the theoretical advantages of Bayesian inference and the similarity
between MCMC and optimization methods, the performance of sampling methods
has so far lagged behind optimization methods for large scale deep learning tasks.
We aim to fill this gap and introduce ATMC, an adaptive noise MCMC algorithm
that estimates and is able to sample from the posterior of a neural network. ATMC
dynamically adjusts the amount of momentum and noise applied to each param-
eter update in order to compensate for the use of stochastic gradients. We use
a ResNet architecture without batch normalization to test ATMC on the Cifar10
benchmark and the large scale ImageNet benchmark and show that, despite the
absence of batch normalization, ATMC outperforms a strong optimization base-
line in terms of both classification accuracy and test log-likelihood. We show that
ATMC is intrinsically robust to overfitting on the training data and that ATMC
provides a better calibrated measure of uncertainty compared to the optimization
baseline.

1 Introduction

In contrast to optimization approaches in machine learning that derive a single estimate for the
weights of a neural network, Bayesian inference aims at deriving a posterior distribution over the
weights of the network. This makes it possible to sample model instances from the distribution
over the weights and offers unique advantages. Multiple model instances can be aggregated to ob-
tain robust uncertainty estimates over the network’s predictions; uncertainty estimates are crucial
in domains such as medical diagnosis and autonomous driving where following a model’s incorrect
predictions can result in catastrophe [1]. Sampling a distribution, as opposed to optimizing a loss,
is less prone to overfitting and more training doesn’t decrease test performance. Bayesian infer-
ence can also be applied to differential privacy, where each individual sample has increased privacy
guarantees [2], and to reinforcement learning, where one can leverage model uncertainty to balance
between exploration and exploitation [3].

Markov Chain Monte Carlo (MCMC) methods are a standard class of methods for generating sam-
ples from the posterior distribution over model parameters. These methods are seldom applied
in deep learning because they have traditionally failed to scale well with large datasets and many
parameters [4]. Stochastic Gradient MCMC (SG-MCMC) methods have fared somewhat better in
scaling to large datasets due to their close relationship to stochastic optimization methods. For exam-

Preprint. Under review.

ar
X

iv
:1

90
8.

03
49

1v
1

 [
cs

.L
G

]
 9

 A
ug

 2
01

9

Algorithm 1 The ATMC sampler. The algorithm accepts the initialized model parameters θ0, step
size h, pre-conditioner m, and momentum noise D.

1: procedure ATMC TRAINING(θ0, h,m,D)
2: p0 ← 0
3: ξ0 ← 0
4: while t < T do
5: Gt ← minibatch gradient(θt)
6: ηt ← random normal()
7: αt ← max(D − ξt, 0)
8: βt ← αt + ξt

9: pt+h ← eβth

[
pt − exp[βth]−1

βt
Gt +

√
exp[2βth]−1

βt
αt ηt

]
10: θt+h ← hpt+h

m

11: ξt+h ← h
[
p2
t+h

m − 1
]

12: t← t+ h

ple the SGLD sampler [5] amounts to performing stochastic gradient descent while adding Gaussian
noise to each parameter update. Despite these improvements, samplers like SGLD are only guaran-
teed to converge to the correct distribution when the step size is annealed to zero; additional control
variates have been developed to mitigate this to some extent [6, 7].

The objective of this work is to make Bayesian inference practical for deep learning by making SG-
MCMC methods scale to large models and datasets. The contributions described in this work fall in
three categories. We first propose the Adaptive Thermostat Monte Carlo (ATMC) sampler that offers
improved convergence and stability. ATMC dynamically adjusts the amount of momentum and
noise applied to each model parameter. Secondly, we improve an existing second order numerical
integration method that is needed for the ATMC sampler. Third, since ATMC, like other SG-MCMC
samplers, is not directly compatible with stochastic regularization methods as batch normalization
(BatchNorm) and Dropout (see Sect. 4), we construct the ResNet++ network by taking the original
ResNet architecture [8], removing BatchNorm and introducing SELUs [9], Fixup initialization [10]
and weight normalization [11]. We design ResNet++ so that its parameters are easy to sample from
and the gradients are well-behaved even in the absence of BatchNorm.

We show that the ATMC sampler is able to outperform optimization methods in terms of accuracy,
log-likelihood and uncertainty calibration in the following settings. First, when using the ResNet++
architecture for both the ATMC sampler and the optimization baseline, the ATMC sampler signifi-
cantly outperforms the optimization baseline on both Cifar-10 and ImageNet. Secondly, when using
the standard ResNet for the optimization baseline and the ResNet++ for the ATMC sampler, multiple
samples of the ATMC that approximate the predictive posterior of the model are still able to outper-
form the optimization baseline on ImageNet. Using the ResNet++ architecture, the ATMC sampler
reduces the need for hyper-parameter tuning since it does not require early stopping, does not use
stochastic regularization, is not prone to over-fitting on the training data and avoids a carefully tuned
learning rate decay schedule.

2 ATMC Sampler

In this section we define the Stochastic Differential Equation (SDE) that gives rise to the ATMC
sampler described in Algorithm 1. A detailed background and framework for constructing SDEs
that converge to a target distribution can be found in [12].

2.1 General form of the SDE

Our starting point for constructing the ATMC sampler is the framework of Stochastic Differential
Equations. We are interested in SDEs that converge to a distribution p(z) for which we can evalu-
ate ∇ log p(z). Because only the gradient of log p(z) is required, it is sufficient to define an energy
functionH(z) = − log p(z)+C up to a constantC. As a consequence, we can sample from the pos-
terior distribution p(θ|x) by only evaluating the energy function gradient∇H(θ) = −∇ log p(x, θ).

2

The general form of SDEs converging to p(z) for which only the gradient of p(z) is required is as
follows [12]:

dz = − [D(z) +Q(z)]∇H(z)dt+ Γ(z)dt+
√

2D(z)dWt, Γi(z) =

d∑
j=1

∂ [Dij(z) +Qij(z)]

∂zj
,

(1)

where D(z) is a positive-definite matrix that determines the amount of noise, Q(z) is a skew-
symmetric matrix that mixes energy between variables, and Γ(z) is a correction factor that com-
pensates for dynamics that depend on the current state z. The ATMC sampler that we propose is an
instance of (1) for specific definitions of H(z), D(z), and Q(z).

2.2 Energy Function

We start by defining the energy function H(z). The energy function for the model posterior p(θ|x)
is defined by the loss function L(θ) = − log p(x, θ). Because the dataset x is generally large, we
would like to only evaluate a mini-batch loss L̃(θ). However, naively using a stochastic gradient
in (1) will result in significant bias [13]. Motivated by the Central Limit Theorem, the stochastic
gradient is assumed to follow a Gaussian distribution∇L̃(θ) ∼ N (∇L(θ), B) where the covariance
B is additionally assumed to be diagonal and constant w.r.t. θ. The energy function for the ATMC
sampler is defined as:

H(θ, p, ξ) = L(θ) +K(p) +
1

2

(
ξ − diag(B)

2m

)2

, (2)

where p is the momentum, K(p) defines the momentum distribution, and ξ is a control variate
referred to as the temperature. Both p and ξ have the same dimensionality as θ. The distribution of
the control variate p(ξ) depends on the amount of noise B in the stochastic gradient estimate L̃(θ).

2.3 Noise robust dynamics

Next we define the dynamicsQ(z) andD(z) such that the SDE that results from (1) can be simulated
without the need to evaluate B:

D(θ, p, ξ) =

0 0 0
0 α(ξ)m+ 1

2B 0
0 0 0

 , Q(θ, p, ξ) =

(
0 −I 0
I 0 m∇K(p)
0 −m∇K(p) 0

)
, (3)

where α(ξ) is a non-negative function that determines how the temperature ξ affects the amount of
noise added to the momentum update.

We first illustrate the resulting SDE by using a simpler Gaussian momentum distribution K(p) =

‖p‖2 /(2m) (where m is a hyper-parameter). We substitute the dynamics Q(z) and D(z) defined in
(3) and energy function H(z) defined in (2) into (1):

(
dθ
dp
dξ

)
=

 p/m
−∇L̃(θ)− β(ξ)p

p2/m− 1

 dt+

0 0 0

0
√

2α(ξ)m 0
0 0 0

 dWt, β(ξ) = α(ξ) + ξ, (4)

where we use ∇L̃(θ)dt = ∇L(θ)dt +
√
BdWt to replace the gradient of the loss with the mini-

batch estimate. The momentum p is dampened by a friction term β(ξ)p that depends on the choice of
α(ξ). The stochastic gradient noise B does not show up in (4) due to the particular choice of energy
function H(z) and dynamics Q(z), D(z). Note however this analysis relies on the assumption that
the covariance of the stochastic gradient noise B is constant in θ and a single temperature variable
per parameter can only correct for a diagonal covariance B. We do not expect that this assumption

3

will hold in practise and the approximation will therefore lead to bias in the samples. However,
annealing the step size ε will reduce the error due to mini-batching together with other sources of
discretization error [5].

2.4 Adaptive Noise Thermostat

Finally, we must choose a function α(ξ) which controls the amount of noise and momentum damp-
ing β(ξ). Previous work uses the Nosé-Hoover thermostat that is defined by α(ξ) = D where D is
a constant determining the amount of noise added to the momentum update [7]. Although the Nosé-
Hoover thermostat is able to correct the stochastic gradient noise B, the correction comes at the cost
of slower convergence because additional friction β(ξ) is applied asB increases. Another drawback
of the Nosé-Hoover thermostat is that it causes negative friction when ξ < −D. In the negative
friction phase β(ξ) < 0, previous gradient terms are amplified rather than dampened. Although this
behavior is mathematically sound we find that it can cause exploding momentum variables.

Our choice of α(ξ) is based on the idea that negative friction should not occur and convergence
speed should not be reduced by the stochastic gradient noise. Based on this intuition, we define the
ATMC sampler by α(ξ) = max(D− ξ, 0). The ATMC sampler is best characterized by the various
temperature stages. For 0 < ξ < D the total amount of noise added to the momentum is D and
the friction coefficient β(ξ) = D. At this stage, the stochastic gradient noise is compensated for by
adding less noise to the momentum update. IfB � D the dominant stage will be ξ > D resulting in
β(ξ) < D and zero noise being added to the momentum. Finally, when ξ < 0 the friction coefficient
β(ξ) = D and the noise added to the momentum is proportional to D − ξ. Thus, the momentum
always experiences a minimum amount of friction β(ξ) ≥ D determined by the hyper-parameter
D and the noise added to the momentum update is automatically adjusted based on the amount of
noise present in the stochastic gradients.

2.5 Momentum energy function

Following [14], we generalize the momentum energy function K(p) to the symmetric hyperbolic
distribution which is defined as follows [14]:

K(p) =
∑
i

mc2

[√
p2i
m2c2

+ 1− 1

]
, (5)

where m and c are hyper-parameters. The Gaussian kinetic energy K(p) = ‖p‖2 /(2m) is a special
case obtained by taking the limit c→∞. The magnitude of parameter updates ‖∆θ‖ is determined
by the gradient of the momentum:

‖∆θ‖ = ‖∇K(p)‖ =

∥∥∥∥ p

M(p)

∥∥∥∥ , M(p) = m

√
p2

m2c2
+ 1. (6)

Hence, the hyperbolic distribution results in relativistic momentum dynamics where the parameter
updates are upper bounded by c and the pre-conditioner M(p) depends on p. The average update
magnitude E [‖∇K(p)‖] ≈ 1/

√
m for c � m. Consequently, the parameters m and c are inter-

pretable hyper-parameters controlling the average and maximum parameter update per step together
with the step size h.

The SDE we derive in (4) and integrate in Sec. 3 uses a Gaussian momentum energy function for
clarity. Deriving ATMC with a different momentum distribution like the hyperbolic distribution
amounts to substituting (2), (3), and the alternative momentum distribution into (1). For the hyper-
bolic distribution, the dynamic friction coefficient β(ξ) will also depend on p. For the numerical
integration of (4) with a hyperbolic momentum distribution we assume β(ξ) to be constant in p.

4

x Conv 1x1 BatchNorm ReLU Conv 3x3 BatchNorm ReLU Conv 1x1 BatchNorm + x ReLU

x Conv 1x1 SeLU Conv 3x3 SeLU Conv 1x1 + x SeLU

Figure 1: Residual blocks in respectively the ResNet and ResNet++ architectures.

3 Improved numerical integrator for MCMC samplers

In this section we construct the numerical integrator required to numerically approximate the ATMC
sampler defined in (4). An efficient numerical integrator can be constructed by splitting the SDE into
two terms:

(
dθ
dp
dξ

)
=

 p/m
0

p2/m− 1

 dt

︸ ︷︷ ︸
A

+

 0
−∇L̃(θ)− β(p, ξ)p

0

 dt+

0 0 0

0
√

2α(z)m 0
0 0 0

 dWt︸ ︷︷ ︸
B

. (7)

Hence, we obtain a linear ODE in part (A) that updates the parameters θ and the thermostats ξ and
a linear SDE in part (B) that updates the momentum p. The operators that simulate these dynamics
exactly for a time step h are denoted φhA and φhB , respectively. Using the Strang splitting scheme
yields a second order method [15]:

φh = φ
h/2
B ◦ φhA ◦ φ

h/2
B . (8)

The first operator φhA is given by

φhA(zt) =
(
θt + hptm pt ξt + h

[
p2t
m − 1

])T
. (9)

The second operator φB is an instance of the Ornstein–Uhlenbeck process which can also be com-
puted exactly as follows:

φhB(zt) =
(
θt eβ(ξt)h

[
pt − γ1(ξt)∇L̃(θt) +

√
γ2(ξt)α(ξt) ηt

]
ξt

)T
, (10)

γa(ξt) =
exp[a β(ξt)h]− 1

β(ξt)
. (11)

Previous work [15] on higher order integrators for samplers splits the SDE into three parts where the
third term is obtained from separating the friction term from the other terms in the momentum update
φB . By integrating (10) exactly the gradient step and the noise and gradient term are directly affected
by the friction. An exact momentum update provides additional robustness to large gradients because
the temperature will increase in order to compensate for momentum updates that would lead to
excessively large steps. Another advantage of a two-way split integrator is that the first and last
steps in (8) can be fused together such that only a momentum update is performed per iteration.
Algorithm 1 shows the pseudocode for the ATMC sampler with the split integrator defined in (9)
and (10).

4 The ResNet++ Architecture

The generalization performance of large neural nets trained using optimization depend on stochastic
regularization methods like Dropout [16] and BatchNorm [17]. These methods implicitly add noise
into the model parameters [18, 19] and significantly boost training performance and generalization
for image classifiers. These methods can be interpreted as a coarse approximation of Bayesian In-
ference [18, 19]. But a stochastic gradient sampler like ATMC already adds the necessary amount
of noise and combined with BatchNorm or Dropout it leads to underfitting. We thus define a Batch-
Norm free version of ResNet called ResNet++ that includes SELUs [9], Fixup initialization [10] and
weight normalization [11] (see Fig. 1). We use ATMC to fill the significant gap in performance due
to the absence of BatchNorm in ResNet++.

5

>99.999%99.99%99.9%99%90%0%
confidence

>99.999%

99.99%

99.9%

99%

90%

0%

a
cc

u
ra

cy

SGD

SGD + BatchNorm

iSGNHT posterior predictive

AMC posterior predictive

ideal

Figure 2: Calibration plot for Cifar10

99.999%99.99%99.9%99%90%0%
confidence

99.9%

99%

90%

0%

a
cc

u
ra

cy

SGD

SGD + BatchNorm

iSGNHT posterior predictive

AMC posterior predictive

ideal

Figure 3: Calibration plot for ImageNet

4.1 SELU

We find the SELU activation to work well in BatchNorm free networks. SELU forces the statistics of
the activations towards zero mean and unit variance [9]. The SELU activation function additionally
has a non-zero gradient everywhere which could improve the mixing of the sampler by providing a
more informative gradient.

4.2 Fixup initialization

ResNets are known to scale well with depth [8]. However, the additive effect of the residual branch
causes the magnitudes of the activations to increase with the number of residual connections. Fixup
is a recently proposed initialization method that mitigates the exploding residual branch problem
without using BatchNorm [10]. We use a simplified version of Fixup by initializing the scales of the
final layer in each residual branch to a small constant.

4.3 Weight normalization

We use weight normalization [11] to separate the direction and scale of each linear feature vector

θ(i) = φ(i)s
φ
(i)
d∥∥∥φ(i)d ∥∥∥ , (12)

where φ(i)d is the direction vector and φ(i)s is the magnitude of a feature vector θ(i). Weight normal-
ization does not depend on batch statistics and is compatible with MCMC methods .

The scale of the direction vector does not affect the outputs of the model. It does however affect
the effective step size [20]. Therefore the prior on the direction vector φ(i)d is chosen such that it is
forced to unit length

p(φ
(i)
d) ∝ exp

[
−d

2

(∥∥∥φ(i)d ∥∥∥2 − 1

)2
]
. (13)

The prior on the scales p(φs) is problem specific and can for example be chosen to encode a prefer-
ence for structurally sparse models.

5 Experiments

The experiments presented here aim to demonstrate that the ATMC sampler is competitive with
a well-tuned optimization baseline for large-scale datasets and models. We use the TensorFlow
official implementation of ResNet-56 and ResNet-50 on Cifar10 and ImageNet, respectively. We

6

Table 1: Performance on Cifar10 with ResNet-56 model. The posterior predictive is estimate using
a sample of the posterior parameters at the end of each learning rate cycle.

Setup Top 1 acc. [%] NLL [Nats]

SGD 91.5 0.370
SGD + BatchNorm 94.4 0.243
ATMC (single sample) 92.4 0.303
ATMC (Posterior predictive) 93.9 0.194
SGNHT (single sample) 91.7 0.343
SGNHT (Posterior predictive) 93.5 0.211

compare our ATMC sampler to an optimization baseline with and without BatchNorm. For the
optimization baseline without BatchNorm we use the ResNet++ architecture as described in Sec. 4.
For the baseline with BatchNorm we found standard ResNet with Xavier initialization and the ReLU
non-linearity to work better.

For the ATMC sampler we report both the performance of a single sample and the estimated posterior
predictive based on a finite number of samples. Similar to earlier work [21] we found that many
fewer samples are needed when a cyclic step size ht = h0 ∗ 1

2 [1 + cos(πmod[t, n])] with cycle
length n is used. The final sample in each cycle is used to estimate the posterior predictive.

For ResNet++ we further use a group Laplace prior p(θi) ∝ exp(−‖θi‖ /b) with b = 5 to regularize
the scales of each linear feature in ResNet++. The momentum noise is chosen asD = − log(0.9)/h0
such that the friction applied to the momentum is at least 0.9.

5.1 Cifar 10

For Cifar10 we choose the step size h0 = 0.001 and the cycle length is set to 50 epochs. The
momentum hyper-parameters are m = (0.0003/h0)−2 and c = 0.001/h0 such that the average
speed and maximum speed per step are 0.0003 and 0.001, respectively. The number of convolution
filters is doubled to 32 compared to the original ResNet-56 implementation. We use a single V100
GPU with a batch size of 128. The sampler runs for 1000 epochs and we start collecting samples for
the posterior predictive after 150 epochs. The optimization baseline converges in 180 epochs. We
also report the results of sampling with a sampler based Nosé-Hoover thermostats (SGNHT) [7, 14]
applied to the ResNet++ architecture.

Table 1 lists the test set performance for Cifar10. A single sample from the posterior already out-
performs the baseline without BatchNorm by a significant margin in both test accuracy and log-
likelihood. Using BatchNorm significantly improves the generalization of the optimization baseline.
It outperforms the estimate of the posterior predictive in accuracy yet it does not have a better test
log-likelihood.

To further analyze the quality of the uncertainty estimates, we group each model’s prediction in
8 equally sized bins based on the confidence p(ω̂i|xi) where ω̂i is the maximum probability class
for example xi. If the probabilities are well-calibrated, the average confidence should be close to
the average accuracy. Figure 2 shows the calibration of the uncertainty estimates for the posterior
predictive and optimization baselines. The posterior predictive is calibrated for the least confident
predictions p(ω̂i|xi) < 0.9 and shows less bias towards overconfidence compared to the models
trained with SGD.

5.2 ImageNet

For the ImageNet experiments we use an initial step size h0 = 0.0005 and a cycle length of 20
epochs. The other hyper-parameters for the sampler are the same as for the Cifar10 experiments.
We use a a single Google Cloud TPUv3 with a batch size of 1024. We did not observe a significant
difference in wall clock time per epoch for SGD and ATMC. BatchNorm did result in an overhead
of roughly 20% compared to the ResNet++ model. Samples for the posterior predictive are collected
after 150 epochs and the sampler runs for 1000 epochs. The optimization baseline converges in 90
epochs.

7

Table 2: Performance on ImageNet with ResNet-50 model. The posterior predictive is estimate
using a sample of the posterior parameters at the end of each learning rate cycle.

Setup Top 1 acc. [%] NLL [Nats]

SGD 70.9 1.24
SGD + BatchNorm 76.2 0.947
ATMC (single sample) 74.2 1.08
ATMC (Posterior predictive) 77.5 0.883
SGNHT (single sample) 73.1 1.15
SGNHT (Posterior predictive) 76.4 0.941

Table 2 lists the results for ImageNet classification. A single sample from the posterior outperforms
the optimization baseline without BatchNorm. The posterior predictive based on ATMC outperforms
the optimizer with BatchNorm by a wide margin in both accuracy and test log-likelihood. We note
that the sampler runs significantly longer (10x) compared to the optimization baseline because it
takes a long time for the posterior predictive estimate to converge. However, the posterior predictive
of ATMC matches the accuracy of the optimization baseline with BatchNorm (76.2%) after 240
epochs.

Figure 3 shows the quality of the uncertainty for various levels of confidence. Again, the ATMC
based posterior predictive produces much better calibrated predictions and is almost perfectly cal-
ibrated for low confidence predictions p(ω̂i|xi) < 0.9 and shows less bias towards overconfidence
compared to the optimization baseline.

6 Discussion

The empirical results show it is possible to sample the posterior distribution of neural networks on
large scale image classification problems like ImageNet. A major obstacle for sampling the posterior
of ResNets in particular is the lack of compatibility with BatchNorm. Using recent advances in
initialization and the SELU activation function we are able to stabilize and speed up training of
ResNets without resorting to BatchNorm. Nonetheless, we observe that BatchNorm still offers a
unique advantage in terms of generalization performance. We hope that future work will allow the
implicit inductive bias that BatchNorm has to be transferred into an explicit prior that is compatible
with sampling methods.

Multiple posterior samples provide a much more accurate estimate of the posterior predictive, and
consequently much better accuracy and uncertainty estimates. For inference, making predictions
using a large ensemble of models sampled from the posterior can be costly. Variational Inference
methods can be used to quickly characterize a local mode of the posterior [22]. More recent work
shows that a running estimate of the mean and variance of the parameters during training can also
be used to approximate a mode of the posterior [23]. Methods like distillation could potentially be
used to compress a high-quality ensemble into a single network with a limited computational budget
[24].

Although the form in (4) is very general, alternative methods for dealing with stochastic gradients
have been proposed in the literature. One approach is to estimate the covariance of the stochastic
gradient noise B explicitly and use it correct and pre-condition the sampling dynamics [6, 25].

Other sampling methods are not based on an SDE that converges to the target distribution. Un-
der some conditions stochastic optimization methods can be interpreted as such a biased sampling
method [26]. Predictions based on multiple samples from the trajectory of SGD have been used
successfully for obtaining uncertainty estimates in large scale Deep Learning [23]. However, these
methods rely on tuning hyper-parameters in such a way that just the right amount of noise is inserted.

7 Conclusion

This work introduces the ATMC sampler, a robust posterior sampling method that scales to large
deep learning problems. To the best of our knowledge, we are the first to successfully train neural

8

networks using MCMC on ImageNet. In a BatchNorm free setting, a single sample from the pos-
terior generated by ATMC outperforms the optimization baseline. A posterior predictive estimate
outperforms the optimization baseline with BatchNorm on ImageNet. Based on these empirical
results we hope the ATMC sampler will enable new applications of Bayesian inference in deep
learning.

Acknowledgments

We would like to thank Jascha Sohl-dickstein and Sebastian Nowozin for helpful feedback. In
particular we wish to thank Tim Salimans for his feedback and insightful discussions on MCMC
methods.

References

[1] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in neural information processing systems, pages 5574–5584,
2017.

[2] Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling
and stochastic gradient monte carlo. In International Conference on Machine Learning, pages
2493–2502, 2015.

[3] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2701–2710. JMLR. org, 2017.

[4] Bala Rajaratnam and Doug Sparks. Mcmc-based inference in the era of big data: A funda-
mental analysis of the convergence complexity of high-dimensional chains. arXiv preprint
arXiv:1508.00947, 2015.

[5] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[6] Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via stochastic
gradient fisher scoring. arXiv preprint arXiv:1206.6380, 2012.

[7] Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut Neven.
Bayesian sampling using stochastic gradient thermostats. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 3203–3211. Curran Associates, Inc., 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[9] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in neural information processing systems, pages
971–980, 2017.

[10] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

[11] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[12] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient mcmc. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 2917–2925. Curran Associates, Inc., 2015.

[13] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pages 1683–1691, 2014.

[14] Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, and Sebastian J Vollmer.
Relativistic monte carlo. arXiv preprint arXiv:1609.04388, 2016.

9

[15] Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient
mcmc algorithms with high-order integrators. In Advances in Neural Information Processing
Systems, 2015.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[18] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparam-
eterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583,
2015.

[19] Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for batch
normalized deep networks. arXiv preprint arXiv:1802.06455, 2018.

[20] Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad: learn the learning rate in gradient
descent. arXiv preprint arXiv:1803.02865, 2018.

[21] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cycli-
cal stochastic gradient mcmc for bayesian deep learning. arXiv preprint arXiv:1902.03932,
2019.

[22] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In International Conference on Machine Learning, pages 1613–1622,
2015.

[23] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. arXiv preprint arXiv:1902.02476,
2019.

[24] Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark
knowledge. In Advances in Neural Information Processing Systems, pages 3438–3446, 2015.

[25] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochas-
tic gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[26] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as ap-
proximate bayesian inference. The Journal of Machine Learning Research, 18(1):4873–4907,
2017.

10

	1 Introduction
	2 ATMC Sampler
	2.1 General form of the SDE
	2.2 Energy Function
	2.3 Noise robust dynamics
	2.4 Adaptive Noise Thermostat
	2.5 Momentum energy function

	3 Improved numerical integrator for MCMC samplers
	4 The ResNet++ Architecture
	4.1 SELU
	4.2 Fixup initialization
	4.3 Weight normalization

	5 Experiments
	5.1 Cifar 10
	5.2 ImageNet

	6 Discussion
	7 Conclusion

