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Abstract

We study stochastic optimization problems when the data is sparse, which is in a sense
dual to the current understanding of high-dimensional statistical learning and optimization.
We highlight both the difficulties—in terms of increased sample complexity that sparse data
necessitates—and the potential benefits, in terms of allowing parallelism and asynchrony in the
design of algorithms. Concretely, we derive matching upper and lower bounds on the minimax
rate for optimization and learning with sparse data, and we exhibit algorithms achieving these
rates. We also show how leveraging sparsity leads to (still minimax optimal) parallel and
asynchronous algorithms, providing experimental evidence complementing our theoretical results
on several medium to large-scale learning tasks.

1 Introduction and problem setting

In this paper, we investigate stochastic optimization problems in which the data is sparse. Formally,
let {F (·; ξ), ξ ∈ Ξ} be a collection of real-valued convex functions, each of whose domains contains
the convex set X ⊂ Rd. For a probability distribution P on Ξ, we consider the following optimization
problem:

minimize
x∈X

f(x) := E[F (x; ξ)] =

∫

Ξ
F (x; ξ)dP (ξ). (1)

By data sparsity, we mean that the sampled data ξ is sparse: samples ξ are assumed to lie in Rd,
and if we define the support supp(x) of a vector x to the set of indices of its non-zero components,
we assume that

supp∇F (x; ξ) ⊂ supp ξ. (2)

The sparsity condition (2) means that F (x; ξ) does not “depend” on the values of xj for indices j
such that ξj = 0.1 This type of data sparsity is prevalent in statistical optimization problems and
machine learning applications, though in spite of its prevalence, study of such problems has been
somewhat limited.

As a motivating example, consider a text classification problem: data ξ ∈ Rd represents words
appearing in a document, and we wish to minimize a logistic loss F (x; ξ) = log(1 + exp(〈ξ, x〉)) on
the data (we encode the label implicitly with the sign of ξ). Such generalized linear models satisfy
the sparsity condition (2), and while instances are of very high dimension, in any given instance,

1Formally, if we define πξ as the coordinate projection that zeros all indices j of its argument where ξj = 0, then
F (πξ(x); ξ) = F (x; ξ) for all x, ξ. This is implied by first order conditions for convexity [6, Chapter VI.2]
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very few entries of ξ are non-zero [8]. From a modelling perspective, it thus makes sense to allow
a dense predictor x: any non-zero entry of ξ is potentially relevant and important. In a sense, this
is dual to the standard approaches to high-dimensional problems; one usually assumes that the
data ξ may be dense, but there are only a few relevant features, and thus a parsimonious model
x is desirous [2]. So while such sparse data problems are prevalent—natural language processing,
information retrieval, and other large data settings all have significant data sparsity—they do not
appear to have attracted as much study as their high-dimensional “duals” of dense data and sparse
predictors.

In this paper, we investigate algorithms and their inherent limitations for solving problem (1)
under natural conditions on the data generating distribution. Recent work in the optimization and
machine learning communities has shown that data sparsity can be leveraged to develop parallel
optimization algorithms [12, 13, 14], but the authors do not study the statistical effects of data
sparsity. In recent work, Duchi et al. [4] and McMahan and Streeter [9] develop “adaptive” stochas-
tic gradient algorithms designed to address problems in sparse data regimes (2). These algorithms
exhibit excellent practical performance and have theoretical guarantees on their convergence, but
it is not clear if they are optimal—in the sense that no algorithm can attain better statistical
performance—or whether they can leverage parallel computing as in the papers [12, 14].

In this paper, we take a two-pronged approach. First, we investigate the fundamental limits
of optimization and learning algorithms in sparse data regimes. In doing so, we derive lower
bounds on the optimization error of any algorithm for problems of the form (1) with sparsity
condition (2). These results have two main implications. They show that in some scenarios,
learning with sparse data is quite difficult, as essentially each coordinate j ∈ [d] can be relevant
and must be optimized for. In spite of this seemingly negative result, we are also able to show that
the AdaGrad algorithms of [4, 9] are optimal, and we show examples in which their dependence
on the dimension d can be made exponentially better than standard gradient methods.

As the second facet of our two-pronged approach, we study how sparsity may be leveraged
in parallel computing frameworks to give substantially faster algorithms that still achieve optimal
sample complexity in terms of the number of samples ξ used. We develop two new algorithms,
asynchronous dual averaging (AsyncDA) and asynchronous AdaGrad (AsyncAdaGrad), which
allow asynchronous parallel solution of the problem (1) for general convex f and X . Combining
insights of Niu et al.’s Hogwild! [12] with a new analysis, we prove our algorithms can achieve
linear speedup in the number of processors while maintaining optimal statistical guarantees. We
also give experiments on text-classification and web-advertising tasks to illustrate the benefits of
the new algorithms.

Notation For a convex function x 7→ f(x), we let ∂f(x) denote its subgradient set at x (if f has
two arguments, we say ∂xf(x, y) is the subgradient w.r.t. x). For a positive semi-definite matrix A,
we let ‖·‖A be the (semi)norm defined by ‖v‖2A := 〈v,Av〉, where 〈·, ·〉 is the standard inner product.
We let 1 {·} be the indicator function, which is 1 when its argument is true and 0 otherwise.

2 Minimax rates for sparse optimization

We begin our study of sparse optimization problems by establishing their fundamental statistical
and optimization-theoretic properties. To do this, we derive bounds on the minimax convergence
rate of any algorithm for such problems. Formally, let x̂ denote any estimator for a minimizer of the
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objective (1). We define the optimality gap ǫN for the estimator x̂ based on N samples ξ1, . . . , ξN

from the distribution P as

ǫN (x̂, F,X , P ) := f(x̂)− inf
x∈X

f(x) = EP [F (x̂; ξ)]− inf
x∈X

EP [F (x; ξ)] .

This quantity is a random variable, since x̂ is a random variable (it is a function of ξ1, . . . , ξN ). To
define the minimax error, we thus take expectations of the quantity ǫN , though we require a bit
more than simply E[ǫN ]. We let P denote a collection of probability distributions, and we consider
a collection of loss functions F specified by a collection F of convex losses F : X × ξ → R. We can
then define the minimax error for the family of losses F and distributions P as

ǫ∗N (X ,P,F) := inf
x̂

sup
P∈P

sup
F∈F

EP [ǫN (x̂, F,X , P )], (3)

where the infimum is taken over all possible estimators (optimization schemes) x̂.

2.1 Minimax lower bounds

Let us now give a more precise characterization of the (natural) set of sparse optimization problems
we consider to provide the lower bound. For the next proposition, we let P consist distributions
supported on Ξ = {−1, 0, 1}d, and we let pj := P (ξj 6= 0) be the marginal probability of appearance
of feature j (j ∈ {1, . . . , d}). For our class of functions, we set F to consist of functions F satisfying
the sparsity condition (2) and with the additional constraint that for g ∈ ∂xF (x; ξ), we have that
the jth coordinate |gj | ≤Mj for a constant Mj <∞. We obtain

Proposition 1. Let the conditions of the preceding paragraph hold. Let R be a constant such that
X ⊃ [−R,R]d. Then

ǫ∗N (X ,P,F) ≥
1

8
R

d∑

j=1

Mj min

{
pj ,

√
pj√

N log 3

}
.

We provide the proof of Proposition 1 in Appendix A.1, providing a few remarks here. We
begin by giving a corollary to Proposition 1 that follows when the data ξ obeys a type of power
law: let p0 ∈ [0, 1], and assume that P (ξj 6= 0) = p0j

−α. We have

Corollary 2. Let α ≥ 0. Let the conditions of Proposition 1 hold with Mj ≡ M for all j, and
assume the power law condition P (ξj 6= 0) = p0j

−α on coordinate appearance probabilities. Then

(1) If d > (p0N)1/α,

ǫ∗N (X ,P,F) ≥
MR

8

[
2

2− α

√
p0
N

(
(p0N)

2−α
2α − 1

)
+

p0
1− α

(
d1−α − (p0N)

1−α
α

)]
.

(2) If d ≤ (p0N)1/α,

ǫ∗N (X ,P,F) ≥
MR

8

√
p0
N

(
1

1− α/2d
1−α

2 − 1

1− α/2

)
.
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For simplicity assume that the features are not too extraordinarly sparse, say, that α ∈ [0, 2],
and that number of samples is large enough that d ≤ (p0N)1/α. Then we find ourselves in regime (2)
of Corollary 2, so that the lower bound on optimization error is of order

MR

√
p0
N
d1−

α
2 when α < 2, MR

√
p0
N

log d when α→ 2, and MR

√
p0
N

when α > 2. (4)

These results beg the question of tightness: are they improvable? As we see presently, they are
not.

2.2 Algorithms for attaining the minimax rate

The lower bounds specified by Proposition 1 and the subsequent specializations are sharp, meaning
that they are unimprovable by more than constant factors. To show this, we review a few stochastic
gradient algorithms. We first recall stochastic gradient descent, after which we review the dual
averaging methods and an extension of both.

We begin with stochastic gradient descent (SGD): for this algorithm, we repeatedly sample
ξ ∼ P , compute g ∈ ∂xF (x; ξ), then perform the update x ← ΠX (x − ηg), where η is a stepsize
parameter and ΠX denotes Euclidean projection onto X . Then standard analyses of stochastic
gradient descent (e.g. [10]) show that after N samples ξ, in our setting the SGD estimator x̂(N)
satisfies

E[f(x̂(N))]− inf
x∈X

f(x) ≤ O(1)
R2M

√∑d
j=1 pj√

N
, (5)

where R2 denotes the ℓ2-radius of X . Dual averaging, due to Nesterov [11] and referred to as “follow
the regularized leader” in the machine learning literature (see, e.g., the survey article by Hazan
[5]) is somewhat more complex. In dual averaging, one again samples g ∈ ∂xF (x; ξ), but instead of
updating the parameter vector x one updates a dual vector z by z ← z + g, then computes

x← argmin
x∈X

{
〈z, x〉+ 1

η
ψ(x)

}
,

where ψ(x) is a strongly convex function defined over X (often one takes ψ(x) = 1
2 ‖x‖

2
2). The

dual averaging algorithm, as we shall see, is somewhat more natural in asynchronous and parallel
computing environments, and it enjoys the same type of convergence guarantees (5) as SGD.

TheAdaGrad algorithm [4, 9] is a slightly more complicated extension of the preceding stochas-
tic gradient methods. It maintains a diagonal matrix S, where upon receiving a new sample ξ,
AdaGrad performs the following: it computes g ∈ ∂xF (x; ξ), then updates

Sj ← Sj + g2j for j ∈ [d].

Depending on whether the dual averaging or stochastic gradient descent (SGD) variant is being
used, AdaGrad performs one of two updates. In the dual averaging case, it maintains the dual
vector z, which is updated by z ← z + g; in the SGD case, the parameter x is maintained. The
updates for the two cases are then

x← argmin
x′∈X

{〈
g, x′

〉
+

1

2η

〈
x′ − x, S 1

2 (x′ − x)
〉}
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for stochastic gradient descent and

x← argmin
x′∈X

{〈
z, x′

〉
+

1

2η

〈
x′, S

1

2x′
〉}

for dual averaging, where η is a stepsize. Then appropriate choice of η shows that after N samples
ξ, the averaged parameter x̂(N) AdaGrad returns satisfies

E[f(x̂(N))]− inf
x∈X

f(x) ≤ O(1)R∞M√
N

d∑

j=1

√
pj , (6)

where R∞ denotes the ℓ∞-radius of X (e.g. [4, Section 1.3 and Theorem 5], where one takes
η ≈ R∞). By inspection, the AdaGrad rate (6) matches the lower bound in Proposition 1 and
is thus optimal. It is interesting to note, though, that in the power law setting of Corollary 2
(recall the error order (4)), a calculation shows that the multiplier for the SGD guarantee (5)
becomes R∞

√
dmax{d(1−α)/2, 1}, while AdaGrad attains rate at worst R∞max{d1−α/2, log d}

(by evaluation of
∑

j
√
pj). Thus for α > 1, the AdaGrad rate is no worse, and for α ≥ 2, is more

than
√
d/ log d better than SGD—an exponential improvement in the dimension.

3 Parallel and asynchronous optimization with sparsity

As we note in the introduction, recent works [12, 14] have suggested that sparsity can yield benefits
in our ability to parallelize stochastic gradient-type algorithms. Given the optimality of AdaGrad-
type algorithms, it is natural to focus on their parallelization in the hope that we can leverage their
ability to “adapt” to sparsity in the data. To provide the setting for our further algorithms, we
first revisit Niu et al.’s Hogwild!.

The Hogwild! algorithm of Niu et al. [12] is an asynchronous (parallelized) stochastic gradient
algorithm that proceeds as follows. To apply Hogwild!, we must assume the domain X in prob-
lem (1) is a product space, meaning that it decomposes as X = X1 × · · · × Xd, where Xj ⊂ R. Fix
a stepsize η > 0. Then a pool of processors, each running independently, performs the following
updates asynchronously to a centralized vector x:

1. Sample ξ ∼ P

2. Read x and compute g ∈ ∂xF (x; ξ)

3. For each j s.t. gj 6= 0, update xj ← ΠXj
(xj − ηgj)

Here ΠXj
denotes projection onto the jth coordinate of the domain X . The key of Hogwild! is

that in step 2, the parameter x at which g is calculated may be somewhat inconsistent—it may
have received partial gradient updates from many processors—though for appropriate problems,
this inconsistency is negligible. Indeed, Niu et al. [12] show a linear speedup in optimization time as
the number of independent processors grow; they show this empirically in many scenarios, providing
a proof under the somewhat restrictive assumption that there is at most one non-zero entry in any
gradient g.
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3.1 Asynchronous dual averaging

One of the weaknesses of Hogwild! is that, as written it appears to only be applicable to prob-
lems for which the domain X is a product space, and the known analysis assumes that ‖g‖0 = 1
for all gradients g. In effort to alleviate these difficulties, we now develop and present our asyn-
chronous dual averaging algorithm, AsyncDA. In AsyncDA, instead of asynchronously updating
a centralized parameter vector x, we maintain a centralized dual vector z. A pool of processors per-
forms asynchronous additive updates to z, where each processor repeatedly performs the following
updates:

1. Read z and compute x := argminx∈X

{
〈z, x〉+ 1

ηψ(x)
}

// Implicitly increment “time” counter

t and let x(t) = x

2. Sample ξ ∼ P and let g ∈ ∂xF (x; ξ) // Let g(t) = g.

3. For j ∈ [d] such that gj 6= 0, update zj ← zj + gj

Because the actual computation of the vector x in asynchronous dual averaging (AsyncDA)
is performed locally on each processor in step 1 of the algorithm, the algorithm can be executed
with any proximal function ψ and domain X . The only communication point between any of the
processors is the addition operation in step 3. As noted by Niu et al. [12], this operation can often
be performed atomically on modern processors.

In our analysis of AsyncDA, and in our subsequent analysis of the adaptive methods, we
require a measurement of time elapsed. With that in mind, we let t denote a time index that exists
(roughly) behind-the-scenes. We let x(t) denote the vector x ∈ X computed in the tth step 1 of the
AsyncDA algorithm, that is, whichever is the tth x actually computed by any of the processors.
We note that this quantity exists and is recoverable from the algorithm, and that it is possible to
track the running sum

∑t
τ=1 x(τ).

Additionally, we require two assumptions encapsulating the conditions underlying our analysis.

Assumption A. There is an upper bound m on the delay of any processor. In addition, for each
j ∈ [d] there is a constant pj ∈ [0, 1] such that P (ξj 6= 0) ≤ pj.

We also require an assumption about the continuity (Lipschitzian) properties of the loss functions
being minimized; the assumption amounts to a second moment constraint on the sub-gradients of
the instantaneous F along with a rough measure of the sparsity of the gradients.

Assumption B. There exist constants M and (Mj)
d
j=1 such that the following bounds hold for all

x ∈ X : E[‖∂xF (x; ξ)‖22] ≤ M
2 and for each j ∈ [d] we have E[|∂xjF (x; ξ)|] ≤ pjMj.

With these definitions, we have the following theorem, which captures the convergence behavior
of AsyncDA under the assumption that X is a Cartesian product, meaning that X = X1×· · ·×Xd,
where Xj ⊂ R, and that ψ(x) = 1

2 ‖x‖
2
2. Note the algorithm itself can still be efficiently parallelized

for more general convex X , even if the theorem does not apply.

Theorem 3. Let Assumptions A and B and the conditions in the preceding paragraph hold. Then

E

[ T∑

t=1

F (x(t); ξt)− F (x∗; ξt)
]
≤ 1

2η
‖x∗‖22 +

η

2
TM2 + ηTm

d∑

j=1

p2jM
2
j .
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We provide the proof of Theorem 3 in Appendix B.
As stated, the theorem is somewhat unwieldy, so we provide a corollary and a few remarks

to explain and simplify the result. Under a more stringent condition that |∂xjF (x; ξ)| ≤ Mj ,

Assumption A implies E[‖∂xF (x; ξ)‖22] ≤
∑d

j=1 pjM
2
j . Thus, without loss of generality for the

remainder of this section we take M
2 =

∑d
j=1 pjM

2
j , which serves as an upper bound on the

Lipschitz continuity constant of the objective function f . We then obtain the following corollary.

Corollary 4. Define x̂(T ) = 1
T

∑T
t=1 x(t), and set η = ‖x∗‖2 /M

√
T . Then

E[f(x̂(T ))− f(x∗)] ≤ M ‖x∗‖2√
T

+m
‖x∗‖2
2M
√
T

d∑

j=1

p2jM
2
j

Corollary 4 is almost immediate. To see the result, note that since ξt is independent of x(t), we
have E[F (x(t); ξt) | x(t)] = f(x(t)); applying Jensen’s inequality to f(x̂(T )) and performing an
algebraic manipulation give the corollary.

If the data is suitably “sparse,” meaning that pj ≤ 1/m (which may also occur if the data is of
relatively high variance in Assumption B) the bound in Corollary 4 simplifies to

E[f(x̂(T ))− f(x∗)] ≤ 3

2

M ‖x∗‖2√
T

=
3

2

√∑d
j=1 pjM

2
j ‖x∗‖2√

T
(7)

which is the convergence rate of stochastic gradient descent (and dual averaging) even in non-
asynchronous situations (5). In non-sparse cases, setting η ∝ ‖x∗‖2 /

√
mM2T in Theorem 3 recovers

the bound

E[f(x̂(T ))− f(x∗)] ≤ O(1)√m · M ‖x
∗‖2√
T

.

The convergence guarantee (7) shows that after T timesteps, we have error scaling 1/
√
T ; however,

if we have k processors, then updates can occur roughly k times as quickly, as all updates are
asynchronous. Thus in time scaling as n/k, we can evaluate n gradient samples: a linear speedup.

3.2 Asynchronous AdaGrad

We now turn to extendingAdaGrad to asynchronous settings, developingAsyncAdaGrad (asyn-
chronous AdaGrad). As in the AsyncDA algorithm, AsyncAdaGrad maintains a shared dual
vector z among the processors, which is the sum of gradients observed; AsyncAdaGrad also main-
tains the matrix S, which is the diagonal sum of squares of gradient entries (recall Section 2.2). The
matrix S is initialized as diag(δ2), where δj ≥ 0 is an initial value. Each processor asynchronously
performs the following iterations:

1. Read S and z and set G = S
1

2 . Compute x := argminx∈X

{
〈z, x〉+ 1

2η 〈x,Gx〉
}

// Implicitly

increment “time” counter t and let x(t) = x, S(t) = S

2. Sample ξ ∼ P and let g ∈ ∂F (x; ξ)

3. For j ∈ [d] such that gj 6= 0, update Sj ← Sj + g2j and zj ← zj + gj
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As in the description of AsyncDA, we note that x(t) is the vector x ∈ X computed in the tth
“step” of the algorithm (step 1), and similarly associate ξt with x(t).

To analyze AsyncAdaGrad, we make a somewhat stronger assumption on the sparsity prop-
erties of the losses F than Assumption B.

Assumption C. There exist constants (Mj)
d
j=1 such that for any x ∈ X and ξ ∈ Ξ, we have

E[(∂xjF (x; ξ))
2 | ξj 6= 0] ≤M2

j .

Indeed, taking M
2 =

∑
j pjM

2
j shows that Assumption C implies Assumption B with specific con-

stants. We then have the following convergence result, whose proof we provide defer to Appendix C.

Theorem 5. In addition to the conditions of Theorem 3, let Assumption C hold. Assume that
δ2 ≥M2

jm for all j and that X ⊂ [−R∞, R∞]d. Then

T∑

t=1

E
[
F (x(t); ξt)− F (x∗; ξt)

]

≤
d∑

j=1

min

{
1

η
R2

∞E

[(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

]
+ ηE

[( T∑

t=1

gj(t)
2

) 1

2

]
(1 + pjm),MjR∞pjT

}
.

We can also relax the condition on the initial constant diagonal term δ slightly, which gives a
qualitatively similar result (see Appendix C.3).

Corollary 6. Under the conditions of Theorem 5, assume that δ2 ≥M2
j min{m, 6max{log T,mpj}}

for all j. Then

T∑

t=1

E
[
F (x(t); ξt)− F (x∗; ξt)

]

≤
d∑

j=1

min

{
1

η
R2

∞E

[(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

]
+

3

2
ηE

[ T∑

t=1

gj(t)
2

] 1

2

(1 + pjm),MjR∞pjT

}
.

It is natural to ask in which situations the bound Theorem 5 and Corollary 6 provides is optimal.
We note that, as in the case with Theorem 3, we may take an expectation with respect to ξt and
obtain a convergence rate for f(x̂(T ))− f(x∗), where x̂(T ) = 1

T

∑T
t=1 x(t). By Jensen’s inequality,

we have for any δ that

E

[(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

]
≤
(
δ2 +

T∑

t=1

E[gj(t)
2]

) 1

2

≤
√
δ2 + TpjM2

j .

For interpretation, let us now make a few assumptions on the probabilities pj . If we assume that
pj ≤ c/m for a universal (numerical) constant c, then Theorem 5 guarantees that

E[f(x̂(T ))− f(x∗)] ≤ O(1)
[
1

η
R2

∞ + η

] d∑

j=1

Mj min

{√
log(T )/T + pj√

T
, pj

}
, (8)
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which is the convergence rate of AdaGrad except for a small factor of min{√log T/T, pj} in
addition to the usual

√
pj/T rate. In particular, optimizing by choosing η = R∞, and assuming

pj &
1
T log T , we have convergence guarantee

E[f(x̂(T ))− f(x∗)] ≤ O(1)R∞

d∑

j=1

Mj min

{√
pj√
T
, pj

}
,

which is minimax-optimal by Proposition 1. In fact, however, the bounds of Theorem 5 and Corol-
lary 6 are somewhat stronger: they provide bounds using the expectation of the squared gradients
gj(t) rather than the maximal valueMj , though the bounds are perhaps clearer in the form (8). We
note also that our analysis applies to more adversarial settings than stochastic optimization (e.g.
to online convex optimization [5]). Specifically, an adversary may choose an arbitrary sequence of
functions subject to the random data sparsity constraint (2), and our results provide an expected
regret bound, which is strictly stronger than the stochastic convergence guarantees provided (and
guarantees high-probability convergence in stochastic settings [3]). Moreover, our comments in Sec-
tion 2 about the relative optimality of AdaGrad versus standard gradient methods apply. When
the data is sparse, we indeed should use asynchronous algorithms, but using adaptive methods
yields even more improvement than simple gradient-based methods.

4 Experiments

In this section, we give experimental validation of our theoretical results on AsyncAdaGrad and
AsyncDA, giving results on two datasets selected for their high-dimensional sparsity.2

4.1 Malicious URL detection

For our first set of experiments, we consider the speedup attainable by applying AsyncAdaGrad

and AsyncDA, investigating the performance of each algorithm on a malicious URL prediction
task [7]. The dataset in this case consists of an anonymized collection of URLs labeled as malicious
(e.g. spam, phishing, etc.) or benign over a span of 120 days. The data in this case consists of
2.4 · 106 examples with dimension d = 3.2 · 106 (sparse) features. We perform several experiments,
randomly dividing the dataset into 1.2 · 106 training and test samples for each experiment.

In Figure 1 and we compare the performance of AsyncAdaGrad and AsyncDA after doing
after single pass through the training dataset. (For each algorithm, we choose the stepsize η
for optimal training set performance.) We perform the experiments on a single machine running
Ubuntu Linux with 6 cores (with two-way hyperthreading) and 32Gb of RAM. From the left-most
plot in Fig. 1, we see that up to 6 processors, both AsyncDA and AsyncAdaGrad enjoy the
expected linear speedup, and from 6 to 12, they continue to enjoy a speedup that is linear in the
number of processors though at a lesser slope (this is the effect of hyperthreading). For more than
12 processors, there is no further benefit to parallelism on this machine.

The two right plots in Figure 1 plot performance of the different methods (with standard
errors) versus the number of worker threads used. Both are essentially flat; increasing the amount
of parallelism does nothing to the average training loss or the test error rate for either method. It is
clear, however, that for this dataset, the adaptive AsyncAdaGrad algorithm provides substantial
performance benefits over AsyncDA.

2We also performed experiments using Hogwild! instead of AsyncDA; the results are similar.
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Figure 1. Experiments with URL data. Left: speedup relative to 1 processor. Middle: training
dataset loss versus number of processors. Right: test set error rate versus number of processors.
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Figure 2. Relative accuracy for various stepsize choices on an click-through rate prediction dataset.

4.2 Click-through-rate prediction experiments

We also experimented on a proprietary datasets consisting of search ad impressions. Each example
corresponds to showing a search-engine user a particular text ad in response to a query string.
From this, we construct a very sparse feature vector based on the text of the ad displayed and the
query string (no user-specific data was used). The target label is 1 if the user clicked the ad, and -1
otherwise. We fit logistic regression models using both AsyncDA and AsyncAdaGrad. Rather
than running few experiments on a large dataset, we ran extensive experiments on a moderate-
sized dataset (about 107 examples, split evenly between training and testing). This allowed us
to thoroughly investigate the impact of the stepsize η, the number of training passes,3 and L2

regularization on accuracy. Section 4.1 shows that AsyncAdaGrad achieves a similar speedup to
AsyncDA, so for these experiments we used 32 threads on 16 core machines for each run.

On this dataset, AsyncAdaGrad typically achieves an effective additional speedup overAsyncDA

of 4× or more. That is, to reach a given level of accuracy, AsyncDA generally needs four times

3Here “number of passes” more precisely means the expected number of times each example in the dataset is
trained on. That is, each worker thread randomly selects a training example from the dataset for each update, and
we continued making updates until (dataset size) × (number of passes) updates have been processed.
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Figure 3. (A) Relative test-set log-loss for AsyncDA and AsyncAdaGrad, choosing the best
stepsize (within a factor of about 1.4×) individually for each number of passes. (B) Effective speedup
for AsyncAdaGrad. (C) The best stepsize η, expressed as a scaling factor on the stepsize used for
one pass. (D) Five runs with different random seeds for each algorithm (with L2 = 80).

as many effective passes over the dataset. We measure accuracy with log-loss (the logistic loss)
averaged over 5 runs using different random seeds (which control the order in which the algorithms
sample examples during training). We report relative values in Figures 2 and 3, that is, the ratio of
the mean loss for the given datapoint to the lowest (best) mean loss obtained. Our results are not
particularly sensitive to the choice of relative log-loss as the metric of interest; we also considered
AUC (the area under the ROC curve) and observed similar results.

Figure 2 (A–B) shows relative log-loss as a function of the number of training passes for various
stepsizes. Without regularization, we see that AsyncAdaGrad is prone to overfitting: it achieves
significantly higher accuracy on the training data 2(A), but unless the step-size is tuned carefully to
the number of passes, it will overfit and predict poorly on test data 2(B). Fortunately, the addition
of L2 regularization largely solves this problem. Figure 2(C) shows that adding an L2 penalty of 80
has very little impact on Hogwild!, but effectively prevents the overfitting of AsyncAdaGrad.4

Fixing L2 = 80, for each number of passes and for each algorithm, we varied the stepsize η over
a multiplicative grid with resolution

√
2. Figure 3 reports the results obtained by selecting the best

stepsize in terms of test set log-loss for each number of passes. Figure 3(A) shows relative log-loss
of the best stepsize for each algorithm; 3(B) is based on the same data, but considers on the x-axis
relative losses between the 256-pass AsyncDA loss (about 1.001) and the 1-pass AsyncAdaGrad

loss (about 1.008). For these values, we can take the linear interpolation shown in 3(A), and look
at the ratio of the number of passes the two algorithms needed to achieve a fixed relative log-loss.
This gives an estimate of the relative speedup obtained by using AsyncAdaGrad over a range
of different target accuracies; speedups range from 3.6× to 12×. Figure 3(C) shows the optimal
stepsizes as a function of the best setting for one pass. The optimal stepsize decreases moderately
for AsyncAdaGrad, but are somewhat noisy for Hogwild!.

It is interesting to note that AsyncAdaGrad’s accuracy is largely independent of the ordering
of the training data, while Hogwild! shows significant variability. This can be seen both in the

4For both algorithms, this is accomplished by adding the term η80 ‖x‖2
2
to the ψ function. We could have achieved

slightly better results for AsyncAdaGrad by varying the L2 penalty with the number of passes (with more passes
benefiting from more regularization).
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error bars on Figure 3(A), and explicitly in Figure 3(D), where we plot one line for each of the 5
random seeds used. Thus, while on the one hand Hogwild! requires somewhat less tuning of the
stepsize and L2 parameter to control overfitting, tuning AsyncAdaGrad is much easier because
of the predictable response.
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A Proof of Proposition 1 and related results

In this section we provide the proofs of Proposition 1 and its subsequent corollaries.
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A.1 Proof of Proposition 1

Our proof proceeds in a few steps: we first define our family of loss functions, after which we
perform an essentially standard reduction of the estimation (optimization) problem to testing.
Following this step, we carefully lower bound the probabilities of error in our multiple hypothesis
testing problem (in a manner similar to Assouad’s lemma) to obtain the desired statement of the
proposition.

Defining the loss functions We begin by describing the family of loss functions we use to prove
the result. Given ξ ∈ {−1, 0, 1}d, let

F (x; ξ) :=M
d∑

j=1

|ξj ||xj −Rξj |.

By inspection F satisfies the conditions of the proposition. Letting pj = P (ξj 6= 0), p+j = P (ξj = 1),

and p−j = P (ξj = 1), we thus find that

f(x) =M
d∑

j=1

(
p+j |xj −R|+ p−j |xj +R|

)
,

so the objective f behaves like a weighted 1-norm type of quantity and its minimizer is a multi-
dimensional median.

From estimation to testing Now we proceed through a reduction of estimation to testing. Fix
δj > 0 for j ∈ {1, . . . , d} (we optimize these choices later). Let V = {−1, 1}d, and for a fixed v ∈ V
let Pv be the distribution specified by

Pv(ξj 6= 0) = pj , Pv(ξj = 1 | ξj 6= 0) =
1 + δjvj

2
, Pv(ξj = −1 | ξj 6= 0) =

1− δjvj
2

. (9)

With this choice of distribution, we claim that for any estimator x̂,

sup
P∈P

EP [ǫN (x̂, F,X , P )] ≥ max
v∈V

EPv [ǫN (x̂, F,X , Pv)] ≥MRmax
v∈V

d∑

j=1

pjδjPv(sign(x̂j(ξ
1:N ) 6= vj),

(10)

where the last probability distribution is the product PNv over the samples ξ1:N . Indeed, define

x∗v = argmin
x∈X

EPv [F (x; ξ)] = Rv,

the last inequality following by inspection of the loss. We then have

ǫN (x̂, F,X , Pv)

=M

N∑

j=1

pj

[
1 + δj

2
|x̂j −Rvj | −

1− δj
2
|x̂j +Rvj |

1 + δj
2

∣∣x∗v,j −Rvj
∣∣− 1− δj

2

∣∣x∗v,j +Rvj
∣∣
]
.

By inspecting the cases for the possible values of sign(x̂j), we have

1 + δj
2
|x̂j −Rvj |−

1− δj
2
|x̂j +Rvj |+

1 + δj
2

∣∣x∗v,j −Rvj
∣∣−1− δj

2

∣∣x∗v,j +Rvj
∣∣ ≥ Rδj1 {sign(x̂j) 6= vj} .

Taking expectations of this quantity gives the result (10).
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Bounding the test error Now we transform our testing problem to a randomized testing prob-
lem, averaging over v ∈ V , which allows us to give a lower bound by controlling the error probability
of d distinct simple hypothesis tests. From inequality (10) we have that

max
v∈V

d∑

j=1

pjδjPv(sign(x̂j(ξ
1:N )) 6= vj) ≥

d∑

j=1

pjδj
1

|V|
∑

v∈V

Pv(sign(x̂j(ξ
1:N )) 6= vj) (11)

=
d∑

j=1

pjδj
1

|V|

( ∑

v:vj=1

Pv(sign(x̂j(ξ
1:N )) 6= vj) +

∑

v:vj=−1

Pv(sign(x̂j(ξ
1:N )) 6= vj)

)
.

Recall that for any distributions P,Q, the variational representations of total variation distance
imply that

‖P −Q‖TV =
1

2
sup

f :‖f‖
∞
≤1

∫
f(dP − dQ) = 1− inf

{∫
fdP +

∫
gdQ, f ≥ 0, g ≥ 0, f + g ≥ 1

}
.

Now, let Pv,j be the distribution (9), except that we fix vj = 1 (and let Pv,−j similarly have vj = −1
fixed). With this notation, we have

Pv,j(sign(x̂j) 6= vj) + Pv,−j(sign(x̂j) 6= vj) = EPv,j
[1 {sign(x̂j) 6= 1}] + EPv,−j

[1 {sign(x̂j) 6= −1}] .

Since 1 {sign(x̂j) 6= 1}+ 1 {sign(x̂j) 6= −1} ≥ 1, we find that

Pv,j(sign(x̂j(ξ
1:N )) 6= vj) + Pv,−j(sign(x̂j(ξ

1:N )) 6= vj) ≥ 1−
∥∥PNv,j − PNv,−j

∥∥
TV

,

where we recall that PNv,j denotes the n-fold product of Pv,j . Thus, our lower bound (11) becomes
the following (essentially a variant of Assouad’s lemma):

max
v∈V

d∑

j=1

pjδjPv(sign(x̂j(ξ
1:N )) 6= vj) ≥

d∑

j=1

pjδj
1

2|V|
∑

v∈V

(
1−

∥∥PNv,j − PNv,−j
∥∥
TV

)
. (12)

Simple hypothesis tests For the majority of the remainder of the proof, we derive bounds on
‖PNv,j − PNv,−j‖TV to apply inequality (12). Using Pinsker’s inequality, we have

∥∥PNv,j − PNv,−j
∥∥2
TV
≤ 1

2
Dkl

(
PNv,j ||PNv,−j

)
≤ N

2
Dkl (Pv,j ||Pv,−j) .

Noting that Pv is a product distribution over the coordinates of the samples ξ (recall the construc-
tion (9)), we have the equality

Dkl (Pv,j ||Pv,−j) = pj

[
1 + δj

2
log

1 + δj
1− δj

+
1− δj

2
log

1− δj
1 + δj

]
= pj

[
δj log

1 + δj
1− δj

]
.

Now we use the fact that δ log 1+δ
1−δ ≤ 2 log(3)δ2 for δ ≤ 1/2, so

∥∥PNv,j − PNv,−j
∥∥2
TV
≤ Npjδ2j log(3) for δj ∈ [0, 1/2]. (13)

15



Combining inequalities (10), (12) and (13), we find

1

MR
sup
P∈P

EP [ǫN (x̂, F,X , P )] ≥
1

2

d∑

j=1

pjδj
1

|V|
∑

v∈V

[
1− δj

√
Npj log(3)

]

=
1

2

d∑

j=1

pjδj

[
1− δj

√
Npj log(3)

]
. (14)

Inequality (14) holds for all δj ∈ [0, 1/2], so we may maximize over such δj . By setting

δj = min

{
1

2
,

1

2
√
Npj log(3)

}
,

we have

pjδj

[
1− δj

√
Npj log(3)

]
≥ pj min

{
1

4
,

1

4
√
log 3

1√
Npj

}
.

In particular, our simplified Assouad analogue (14) implies

sup
P∈P

EP [ǫN (x̂, F,X , P )] ≥
MR

8

d∑

j=1

min

{
pj ,

√
pj√

N log 3

}
,

which is the desired statement of the proposition.

A.2 Proof of Corollary 2

The proof follows by a simple integration argument.

B Proof of Theorem 3

Our proof proceeds in a series of lemmas, which we present shortly. To connect the result to more
standard analyses of dual averaging, and because the lemmas we present form the basis of our
subsequent analysis for AsyncAdaGrad, we prove our results in somewhat more generality than
that presented in the main text. In full generality, we allow {ψt}t be a sequence of functions, each
strongly convex with respect to the norm ‖·‖ψt

. Then dual averaging [11, 4] can be viewed as
repeatedly computing

x(t) := argmin
x∈X

{〈z(t), x〉+ ψt(x)} , (15)

where the proximal function ψt may or may not vary with time. For the theoretical development,
we define the conjugate to ψt and associated dual norm

ψ∗
t (z) := sup

x∈X
{〈z, x〉 − ψt(x)} and ‖z‖ψ∗

t
:= sup

x

{
〈z, x〉 | ‖x‖ψt

≤ 1
}
.

We have the following standard lemma (see, e.g. the book of Hiriart-Urruty and Lemaréchal [6,
Chapter X]), which is essential to the analysis of the dual averaging method (15). The result says
that since ψt is strongly convex with respect to the norm ‖·‖ψt

, its dual is smoothly differentiable
and, more strongly, has Lipschitz derivative with respect to the dual norm ‖·‖ψ∗

t
.
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Lemma 7. The function ψ∗
t is 1-strongly smooth with respect to ‖·‖ψ∗ , meaning that

∥∥∇ψ∗
t (z)−∇ψ∗

t (z
′)
∥∥
ψt
≤
∥∥z − z′

∥∥
ψ∗

t
,

and moreover ∇ψ∗
t (−z(t)) = x(t).

We also recall the standard fact [e.g. 6] that if a function h has Lipschitz continuous derivative with
respect to a norm ‖·‖, then h(y) ≤ h(x) + 〈∇h(x), y − x〉+ (1/2) ‖x− y‖2 for all x, y ∈ domh.

With Lemma 7 in place, we can provide a general result on the convergence of asynchronous
dual averaging-type algorithms. In this lemma, we use the time indexing established in Section 3.1.
In particular, we have that x(t) is computed using the proximal function ψt, that is, as in the
update (15). This result shows that the performance of AsyncDA, and other algorithms like it, is
essentially identical to that of the correct dual averaging algorithm, plus a correction penalty that
relates the performance of the correct algorithm to what is actually executed.

Lemma 8. Define the “corrected” point sequence

x̃(t) := ∇ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
= argmin

x∈X

{ t−1∑

τ=1

〈g(τ), x〉+ ψt(x)

}
.

For any sequence of samples ξt,

T∑

t=1

[
F (x(t); ξt)− F (x∗; ξt)

]
≤

T∑

t=1

[
ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
− ψ∗

t−1

(
−

t−1∑

τ=1

g(τ)

)]
+

1

2

T∑

t=1

‖g(t)‖2ψ∗

t

+

T∑

t=1

〈g(t), x(t)− x̃(t)〉+ ψT (x
∗)

We remark that in the non-asynchronous case, one has ψ∗
t ≤ ψ∗

t−1 (either in adaptive settings such
as AdaGrad [4] or in standard dual averaging) and x(t) = x̃(t), so Lemma 8 reduces to the bound
(1/2)

∑T
t=1 ‖g(t)‖2ψ∗

t
+ ψT (x

∗), which is standard [11].
Deferring the proof of Lemma 8 to Section B.1, we note that in the context of Theorem 3, it

has immediate implications. Since ψt(x) =
1
2η ‖x‖

2
2 in this case, Lemma 8 immediately implies

T∑

t=1

[
F (x(t); ξt)− F (x∗; ξt)

]
≤ 1

2η
‖x∗‖22 +

η

2

T∑

t=1

‖g(t)‖22 +
T∑

t=1

〈g(t), x(t)− x̃(t)〉 (16)

since ψ∗
t = ψ∗

t−1 and ψ∗(0) ≤ 0, and for any v

‖v‖2ψ =
1

η
‖v‖22 and ‖v‖2ψ∗ = η ‖v‖22 .

Now we return to the proof of Theorem 3. Each of the terms present in Theorem 3 is present
in Eq. (16) except for the last, since

E[‖g(t)‖22] ≤ M
2.
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For the final term in the bound in the theorem, we note that by assumption that X is a product
domain,

〈g(t), x(t)− x̃(t)〉 ≤
d∑

j=1

|gj(t)||xj(t)− x̃j(t)| ≤
d∑

j=1

η|gj(t)|
∣∣∣∣
t−1∑

τ=1

gj(τ)− zj(t)
∣∣∣∣.

For the final inequality we have used that by the definition of the x update (recall Lemma 7),

|x̃j(t)− xj(t)| =
∣∣∣∣∇jψ∗

(
−

t−1∑

τ=1

g(τ)

)
−∇jψ∗(−z(t))

∣∣∣∣ ≤ η
∣∣∣∣
t−1∑

τ=1

gj(τ)− zj(τ)
∣∣∣∣.

Conditioned on the σ-field Ft−1 of {ξτ}t−1
τ=1, we have E[|gj(t)| | Ft−1] ≤ pjMj by assumption

(since ξt is independent of ξτ for τ < t). Moreover, we have E[|∑t−1
τ=1 gj(τ) − zj(t)|] ≤ mpjMj

because the delay in each processor is assumed to be at most m and E[|gj(τ)|] ≤ pjMj . Thus we
find

E[〈g(t), x(t)− x̃(t)〉] ≤ η
d∑

j=1

E

[
E[|gj(t)| | Ft−1]

∣∣∣∣
t−1∑

τ=1

gj(τ)− zj(t)
∣∣∣∣

]
≤ η

d∑

j=1

p2jM
2
jm.

This completes the proof.

B.1 Proof of Lemma 8

The proof is similar to other analyses of dual averaging (e.g. [11, 4]), but we track the changing
time indices. For shorthand throughout this proof, we define the running sum g(1:t) :=

∑t
τ=1 g(τ).

First, we note by convexity and the definition of g(t) ∈ ∂F (x; ξt) that
T∑

t=1

[
F (x(t); ξt)− F (x∗; ξt)

]
≤

T∑

t=1

〈g(t), x(t)− x∗〉 . (17)

By definition of ψT and the conjugate ψ∗
T , we find that

T∑

t=1

〈g(t), x(t)− x∗〉 =
T∑

t=1

〈g(t), x(t)〉+
T∑

t=1

〈−g(t), x∗〉+ ψT (x
∗)− ψT (x∗)

≤ ψT (x∗) + ψ∗
T (−g(1:T )) +

T∑

t=1

〈g(t), x(t)〉 . (18)

Now, by applying Lemma 7 and the definition of 1-strongly-smooth, we have that

ψ∗
t (−g(1:t)) ≤ ψ∗

t (−g(1:t− 1)) + 〈−g(t),∇ψ∗
t (−g(1:t− 1))〉+ 1

2
‖g(t)‖2ψ∗

t
.

By construction of x and x̃, we have x(t) = ∇ψ∗
t (−z(t)) and x̃(t) = ∇ψ∗

t (−g(1: t − 1)). Thus,
rearranging the preceding display, we have

0 ≤ 〈−g(t), x̃(t)〉 − ψ∗
t (−g(1:t))) + ψ∗

t (−g(1:t− 1)) +
1

2
‖g(t)‖2ψ∗

t
,

18



and adding 〈g(t), x(t)〉 to both sides of the above expression gives

〈g(t), x(t)〉 ≤ 〈g(t), x(t)− x̃(t)〉 − ψ∗
t (−g(1:t)) + ψ∗

t (−g(1:t− 1)) +
1

2
‖g(t)‖2ψ∗

t
. (19)

Thus we obtain the inequalities

T∑

t=1

〈g(t), x(t)− x∗〉

(i)

≤ ψT (x
∗) + ψ∗

T (−g(1:T ))) +
T∑

t=1

〈g(t), x(t)〉

(ii)

≤ ψT (x
∗) + ψ∗

T (−g(1:T )) +
T∑

t=1

[
〈g(t), x(t)− x̃(t)〉 − ψ∗

t (−g(1:t)) + ψ∗
t (−g(1:t− 1)) +

1

2
‖g(t)‖2ψ∗

t

]

= ψT (x
∗) +

T∑

t=1

[
〈g(t), x(t)− x̃(t)〉+ ψ∗

t (−g(1:t− 1))− ψ∗
t−1(−g(1:t− 1)) +

1

2
‖g(t)‖2ψ∗

t

]
,

where for step (i) we have applied inequality (18), step (ii) follows from the bound (19), and the
last equality follows by re-indexing terms in the sum. Combining the above sum with the first-order
convexity inequality (17) proves the lemma.

C Proof of Theorem 5

Before proving the theorem proper, we recall a now standard lemma that is essential to proving
rates of convergence for adaptive algorithms.

Lemma 9 (Auer and Gentile [1], Duchi et al. [4] Lemma 4, McMahan and Streeter [9]). For any
non-negative sequence {at}t, where we define 0/

√
0 = 0, we have

T∑

t=1

at√∑t
τ=1 aτ

≤ 2

( T∑

t=1

at

) 1

2

.

The proof of this theorem follows from the general bound of Lemma 8 applied with a particular
choice of the proximal functions ψt. To apply the lemma, we require a few definitions that apply
throughout the proof. We recall the definitions of z(t) and S(t) to be the values read in the
computation of step 1 to construct the vector x(t) in the definition of AsyncAdaGrad. In
addition, we define the two temporal inequalities ≺Sj

and ≺zj to capture the order in which the
updates are applied in the AsyncAdaGrad algorithm. We say that τ ≺Sj

t if the gradient term
gj(τ)

2 has been incorporated into the matrix coordinate Sj at the instant Sj is read in step (1) of
the AsyncAdaGrad algorithm to compute x(t), and similarly, we say τ ≺zj t if the gradient term
gj(τ) has been incorporated in the dual vector coordinate zj .

Before actually applying the general bound of Lemma 8, we note that by convexity,

T∑

t=1

[
F (x(t); ξt)− F (x∗; ξt)

]
≤

T∑

t=1

〈g(t), x(t)− x∗〉 .

19



Considering a particular coordinate j, we have

T∑

t=1

E
[
gj(t)(xj(t)− x∗j )

]
≤ R∞

T∑

t=1

E[|gj(t)|] ≤ R∞TMjpj (20)

where we have used the compactness assumption on X . The remainder of our proof bounds the
regret-like term

∑T
t=1 〈g(t), x(t)− x∗〉 in a per-coordinate way, and thus for each coordinate we

always have the bound (20), giving the min{·, pj} terms in the theorem statement. It remains to
show the bound that applies when pj is large.

We now re-state the general bound of Lemma 8 with some minor modifications in notation.
AsyncAdaGrad is dual averaging with the choice ψt(x) :=

1
2η 〈x,G(t)x〉 for the proximal function.

With this choice, the norm and dual norm ‖·‖ψt
and ‖·‖ψ∗

t
defined for vectors v ∈ Rd are

‖v‖2ψt
:=

1

η
‖v‖2G(t) and ‖v‖2ψ∗

t
:= η ‖v‖2G(t)−1 .

Rewriting Lemma 8, we thus have

T∑

t=1

[
F (x(t); ξt)− F (x∗; ξt)

]
≤

T∑

t=1

[
ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
− ψ∗

t−1

(
−

t−1∑

τ=1

g(τ)

)]
+
η

2

T∑

t=1

‖g(t)‖2G(t)−1

+
T∑

t=1

〈g(t), x(t)− x̃(t)〉+ 1

2η
‖x∗‖2G(T ) (21)

for any sequence ξt; as in Lemma 8 we define the “corrected” sequences x̃(t) = ∇ψ∗
t (−g(1: t− 1))

where g(1: t) =
∑t−1

τ=1 g(τ). Note that the corrected sequences still use the proximal functions ψ∗
t

from the actual run of the algorithm.
We focus on bounding each of the terms in the sums (21) in turn, beginning with the summed

conjugate differences.

Lemma 10. Define the matrix G(T+) to be diagonal with jth diagonal entry (δ2 +
∑T

t=1 gj(t)
2)

1

2 .
For any sequence ξt

T∑

t=1

[
ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
− ψ∗

t−1

(
−

t−1∑

τ=1

g(τ)

)]
≤ R2

∞

2η
tr(G(T+)).

We defer the proof of Lemma 10 to Section C.1, noting that the proof follows by carefully considering
the conditions under which ψ∗

t ≥ ψ∗
t−1, which may only occur when updates to S (and hence G)

are out of order, a rearrangement of the sum to put the updates to S in the correct order, and an
application of the AdaGrad Lemma 9.

To complete the proof of the theorem, we must bound the two summed gradient quantities in
expression (21). For shorthand, let us define

T1 :=
T∑

t=1

‖g(t)‖2G(t)−1 and T2 :=
T∑

t=1

〈g(t), x(t)− x̃(t)〉 (22)

We provide the proof under the assumption that δ2 ≥ mM2
j for all j. At the end of the proof, we

show how to weaken this assumption while retaining the main conclusions of the theorem.
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Recalling the temporal ordering notation ≺Sj
, we see that

T1 =
d∑

j=1

T∑

t=1

gj(t)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2
.

Now, by our assumption that processors are at most m steps out of date and δ2 ≥ mM2
j , we have

gj(t)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2
≤ gj(t)

2

√∑t
τ=1 gj(τ)

2
,

and thus the standard AdaGrad result Lemma 9 implies

T1 ≤
d∑

j=1

T∑

t=1

gj(t)
2

√∑t
τ=1 gj(τ)

2
≤

d∑

j=1

2

( T∑

t=1

gj(t)
2

) 1

2

. (23)

Thus we turn to T2 as defined in expression (22). We focus on a per-coordinate version of T2,
stating the following lemma:

Lemma 11. Under the conditions of Theorem 5,

1

η

T∑

t=1

E[gj(t)(xj(t)− x̃j(t))] ≤ 2pjmE

[( T∑

t=1

gj(t)
2

) 1

2

]
≤ 2pjmMj

√
pjT .

The proof of the lemma is technical, so we defer it to Section C.2.
Applying the result of Lemma 11, we obtain the following bound on T2:

E[T2] ≤ 2η

d∑

j=1

pjmE

[( T∑

t=1

gj(t)
2

) 1

2

]
.

Combining Lemma 10 with our bounds (23) on T1 and the preceding bound on T2, the basic
inequality (21) implies

E

[ T∑

t=1

(
F (x(t); ξt)− F (x∗; ξt)

) ]

≤ 1

2η
E
[
‖x∗‖2G(T ) +R2

∞ tr(G(T+))
]
+ η

d∑

j=1

E

[( T∑

t=1

gj(t)
2

) 1

2

]
(1 + 2pjm) .

Noting that

‖x∗‖2G(T ) ≤ R2
∞ tr(G(T )) ≤ R2

∞

d∑

j=1

(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

completes the proof of Theorem 5 under the assumption that δ2 ≥ mM2
j for all j.
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C.1 Proof of Lemma 10

Since the domain X = X1 × . . . × Xd is assumed Cartesian and the matrices S and G = S
1

2 are
diagonal, we focus on the individual coordinate terms of ψ∗

t . With that in mind, consider the
difference

sup
xj∈Xj

{
−

t−1∑

τ=1

gj(τ)xj −
1

2η
xjGj(t)xj

}
− sup
xj∈Xj

{
−

t−1∑

τ=1

gj(τ)xj −
1

2η
xjGj(t− 1)xj

}
. (24)

To understand the difference of the terms (24), we recall the temporal ordering ≺Sj
defined in

the beginning of the proof of Theorem 5 (we say τ �Sj
t if and only if τ 6≺Sj

t). Though throughout
the algorithm, the matrix S (and the matrix G) is always increasing—only positive updates are
applied to S—when indexed by update time, we may have Gj(t − 1) ≶ Gj(t). The term (24),
however, may be positive only when Gj(t) < Gj(t− 1), and this is possible only if

{
τ ∈ N | τ ≺Sj

t− 1
}
)
{
τ ∈ N | τ ≺Sj

t
}
.

Finally, we note that for any matrices A,B and vector z, that if we define

x(A) := argmax
x∈X

{〈z, x〉 − 〈x,Ax〉}

then

sup
x∈X
{〈z, x〉 − 〈x,Ax〉} − sup

x∈X
{〈z, x〉 − 〈x,Bx〉}

≤ 〈z, x(A)〉 − 〈x(A), Ax(A)〉 − 〈z, x(A)〉+ 〈x(A), Bx(A)〉 ≤ sup
x∈X
{〈x, (B −A)x〉} .

By considering expression (24), we have

ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
− ψ∗

t−1

(
−

t−1∑

τ=1

g(τ)

)
≤ 1

2η

d∑

j=1

sup
xj∈Xj

{
x2j (Gj(t− 1)−Gj(t))

}

≤ R2
∞

2η

d∑

j=1

|Gj(t)−Gj(t− 1)|1
{
{τ ≺Sj

t− 1} ) {τ ≺Sj
t}
}
.

(25)

It thus remains to bound the sum, over all t, of the terms (25). To that end, we note by
concavity of

√· that for any a, b ≥ 0, we have
√
a+ b−√a ≤ b/2√a. Thus we find that

|Gj(t)−Gj(t− 1)|1
{
{τ ≺Sj

t− 1} ) {τ ≺Sj
t}
}

=

∣∣∣∣
(
δ2 +

∑

τ≺Sj
t

gj(τ)
2

) 1

2

−
(
δ2 +

∑

τ≺Sj
t−1

gj(τ)
2

) 1

2

∣∣∣∣1
{
{τ ≺Sj

t− 1} ) {τ ≺Sj
t}
}

≤
∑

τ≺Sj
t−1,τ�Sj

t gj(τ)
2

2
√
δ2 +

∑
τ≺Sj

t gj(τ)
2
.
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We note the following: the sequence of update sets ∆t := {τ ∈ N : τ ≺Sj
t − 1, τ �Sj

t} satisfies
∪Tt=1∆t ⊂ [T ], and since the incremental updates to S occur only once, we have ∆t ∩∆t′ = ∅ for
all t 6= t′. That is, if τ ∈ ∆t for some t, then τ 6∈ ∆t′ for any t′ 6= t. Using the assumption that
updates may be off by at most m time steps, we thus see that there must exist some permutation
{ut}Tt=1 of [T ] such that

T∑

t=1

∑
τ∈∆t

gj(τ)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2
≤

T∑

t=1

gj(ut)
2

√
δ2 +

∑
τ≤t−m gj(uτ )

2
. (26)

For our last step, we use our assumption that δ2 ≥ mM2
j and the standard AdaGrad result

(Lemma 9) to obtain

T∑

t=1

∑
τ≺Sj

t−1,τ�Sj
t gj(τ)

2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2
≤

T∑

t=1

gj(ut)
2

√∑t
τ=1 gj(uτ )

2
≤ 2

√√√√
T∑

t=1

gj(t)2.

Recalling inequality (25), we have

T∑

t=1

[
ψ∗
t

(
−

t−1∑

τ=1

g(τ)

)
− ψ∗

t−1

(
−

t−1∑

τ=1

g(τ)

)]
≤ R2

∞

2η

d∑

j=1

√√√√
T∑

t=1

gj(t)2,

which gives the statement of the lemma.

C.2 Proof of Lemma 11

Let us provide a bit of notation before proving the lemma. We define the batch of “outstanding”
updates for coordinate j at time t as Bj(t) := {τ : t− 1 ≥ τ �zj t}, and we define the quantity that
we wish to bound in expectation in Lemma 11 as

T j := 1

η

T∑

t=1

gj(t)(xj(t)− x̃j(t)).

Turning to the proof of the lemma proper, we first note that z(t) does not include any gradient
terms g(τ) for any τ ≥ t by the definition of the AsyncAdaGrad algorithm. Thus

t−1∑

τ=1

gj(τ)− zj(t) =
∑

τ∈Bj(t)

gj(τ).

For brief notational convenience define κt = η(δ2+
∑

τ≺Sj
t gj(τ)

2)
1

2 . Applying the definition of the

AsyncAdaGrad updates and Young’s inequality, we see that

gj(t) · (xj(t)− x̃j(t)) ≤ κt|gj(t)| |gj(1:t− 1)− zj(t)|

= κt|gj(t)|
∣∣∣∣
∑

τ∈Bj(t)

gj(τ)

∣∣∣∣ ≤
1

2
κt|gj(t)|21

{
ξtj 6= 0

}
+

1

2
κt1

{
ξtj 6= 0

}( ∑

τ∈Bj(t)

gj(τ)

)2

.
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As a consequence, we find that

2E[T j ] ≤
T∑

t=1

E


card({τ ∈ Bj(t) : ξ

τ
j 6= 0})gj(t)2√

δ2 +
∑

τ≺Sj
t gj(τ)

2
+

1
{
ξtj 6= 0

}∑
τ∈Bj(t)

gj(τ)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2


 . (27)

Looking at the first term in the bound (27), we note that Bj(t) consists of time indices t �zj τ ≤ t−1,
which consequently have not been incorporated into any vectors used in the computation of gj(t).
Thus, if we let Ft,j denote the σ-field containing ξtj and ξ

τ
j for τ ≺zj t, we have gj(τ) ∈ Ft,j for any

τ ≺Sj
t, gj(t) ∈ Ft,j , and we also have that ξτj is independent of Ft,j for τ ∈ Bj(t). Thus, iterating

expectations, we find

E


card({τ ∈ Bj(t) : ξ

τ
j 6= 0})gj(t)2√

δ2 +
∑

τ≺Sj
t gj(τ)

2


 = E


E[card({τ ∈ Bj(t) : ξ

τ
j 6= 0})gj(t)2 | Ft,j ]√

δ2 +
∑

τ≺Sj
t gj(τ)

2




≤ pjmE


 gj(t)

2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2


 ,

since E[card({τ ∈ Bj(t) : ξτj 6= 0})] ≤ pjm because |Bj(t)| ≤ m by assumption. A similar iteration
of expectation—since ξtj is independent of any gj(τ) for τ ∈ Bj(t)—yields

E

[
1
{
ξtj 6= 0

} ∑

τ∈Bj(t)

gj(τ)
2

]
≤ pjE

[ ∑

τ∈Bj(t)

gj(τ)
2

]
.

We replace the relevant terms in the expectation (27) with the preceding bounds to obtain

2E[T j ] ≤ pjm
T∑

t=1

E


 gj(t)

2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2


+ pj

T∑

t=1

E




∑
τ∈Bj(t)

gj(τ)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2


 .

For the second term, note each gj(τ) can occur in at most m of the sets Bj(t), and the maximum
delay is also at most m. Thus, following the same argument as (26), there must exist a permutation
{ut} of the indices [T ] such that

T∑

t=1

∑
τ∈Bj(t)

gj(τ)
2

√
δ2 +

∑
τ≺Sj

t gj(τ)
2
≤

T∑

t=1

mgj(ut)
2

√
δ2 +

∑t−m
τ=1 gj(uτ )

2

≤
T∑

t=1

mgj(ut)
2

√∑t
τ=1 gj(uτ )

2
≤ 2m

( T∑

t=1

gj(t)
2

) 1

2

,

where we have used the fact that δ2 ≥ mM2
j and Lemma 9. With this, we immediately find that

2E[T j ] ≤ pjm
T∑

t=1

E


 gj(t)

2

√∑t
τ=1 gj(τ)

2


+ pj

T∑

t=1

E



∑t−1

τ=t−m gj(τ)
2

√∑t
τ=1 gj(τ)

2


 ≤ 4pjmE

[( T∑

t=1

gj(t)
2

) 1

2

]
.

By inspection, this completes the proof of the lemma.
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C.3 Sharpening the analysis (proof of Corollary 6)

We now demonstrate how to sharpen the analysis in the proof of Theorem 5 to allow the initial
matrix δ2 to be smaller than mM2

j . Roughly, we argue that for a smaller setting of δ2, we can have

δ2 ≥∑t
τ=t−m+1 gj(τ)

2 for all t with high probability, in which case all the previous arguments go
through verbatim. In particular, we show how the terms T1 and T2, defined in expression (22), may
be bounded under the weaker assumptions on δ2 specified in Corollary 6.

For this argument, we focus on T1, as the argument for T2 is identical. We begin by defining
the event E to occur if δ2 ≥∑t

τ=t−m+1 gj(τ)
2 for all t. We then have

1 {E}
T∑

t=1

gj(t)
2

√
δ2 +

∑
τ≺Sjt

gj(τ)2
≤ 1 {E}

T∑

t=1

gj(t)
2

∑t
τ=1 gj(τ)

2
≤ 2

( T∑

t=1

gj(t)
2

) 1

2

by Lemma 9. On the other hand, on Ec, we have by our assumption that δ2 ≥M2
j that

1 {Ec}
T∑

t=1

gj(t)
2

√
δ2 +

∑
τ≺Sjt

gj(τ)2
≤ 1 {Ec}

T∑

t=1

|gj(t)|,

so if we can show that Ec has sufficiently low probability, then we still obtain our desired results.
Indeed, by Hölder’s inequality we have

E

[ T∑

t=1

gj(t)
2

√
δ2 +

∑
τ≺Sjt

gj(τ)2

]
≤ 2E

[( T∑

t=1

gj(t)
2

) 1

2

]
+ E

[
1 {Ec}

T∑

t=1

gj(t)
2

√
δ2 +

∑
τ≺Sjt

gj(τ)2

]

≤ 2E

[( T∑

t=1

gj(t)
2

) 1

2

]
+ E[1 {Ec}] 12E

[( T∑

t=1

|gj(t)|
)2
] 1

2

. (28)

It thus remains to argue that P(Ec) is very small, since

E

[( T∑

t=1

|gj(t)|
)2
]
≤ TE

[
T∑

t=1

gj(t)
2

]

by Jensen’s inequality. Now, we note that gj(t)
2 ≤ M2

j and that the ξtj are i.i.d., so we can define

the sequence Xt = 1
{
ξtj 6= 0

}
and we have

P(Ec) = P

(
∃ t ∈ [T ] :

t+m−1∑

τ=t

gj(τ)
2 > δ2

)
≤ P

(
∃ t ∈ [T ] :

t+m−1∑

τ=t

Xt > δ2/M2
j

)
.

Definine γ = δ2/M2
j , and let p = pj for shorthand. Since Xt ≤ 1, E[Xt] ≤ p, and Var(Xt) ≤ p(1−p),

Bernstein’s inequality implies that for any fixed t and any ǫ ≥ 0

P

( t+m−1∑

τ=t

Xt ≥ pm+ ǫ

)
≤ exp

(
− ǫ2

2mp(1− p) + 2ǫ/3

)
. (29)
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By solving a quadratic, we find that if

ǫ ≥ 1

3
log

1

δ
+

√
1

9
log2

1

δ
+ 2mp(1− p) log 1

δ

then the quantity (29) is bounded by δ. By a union bound (and minor simplification), we find

ǫ ≥ 2

3
log

1

δ
+

√
2mp(1− p) log 1

δ
implies P(Ec) ≤ Tδ.

Setting δ = T−2 means that P(Ec) ≤ 1/T , which in turn implies that

E[1 {Ec}] 12E
[( T∑

t=1

|gj(t)|
)2
] 1

2

≤ 1√
T

√
TE

[
T∑

t=1

gj(t)
2

] 1

2

.

Combining the preceding display with inequality (28), we find that the term T1 from expres-
sion (22) is bounded by

E[T1] ≤
d∑

j=1

(
2E

[( T∑

t=1

gj(t)
2

) 1

2

]
+ E

[ T∑

t=1

gj(t)
2

] 1

2

)

whenever δ2 ≥ 4
3 log T + 2

√
mpj(1− pj) log T for all j ∈ [d]. This completes the sharper proof

for the bound on T1. To provide a similar bound for T2 in analogy to Lemma 11, we recall the
bound (27). Then following the above steps, mutatis mutandis, gives the desired result.
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