
12	 IEEE Software | published by the IEEE computer society � 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Editor: Diomidis Spinellis
Google, dspin@google.com

Bespoke Infrastructures
Diomidis Spinellis

In the 1920s, the Ford Motor
Company embarked on an ill-fated
attempt to establish an industrial
town in an Amazon rainforest as a
way to secure a cultivated rubber
supply for its cars’ wheels. At the
time, it already owned ore mines,
forests, and a steel foundry to pro-
duce the raw materials for its cars;
today, it buys from external suppli-
ers, even its cars’ electronic control
units. How do these two phases of
the automotive industry’s history re-
late to the way we currently develop
and adopt infrastructure in our
profession?

Infrastructure developed within
your organization for its own in-

ternal use can take many forms:
operating systems, compilers, pro-
gramming languages, version con-
trol systems, platforms for building,
testing, and continuous integration,
database management systems, ap-
plication development frameworks,
game engines, or utility libraries.
Bespoke infrastructures can also
extend to methods for doing work,
such as the development process,
code reviews, workflows, code style
rules, and testing and integration
practices.

The Case For
The obvious reason for creating a
bespoke solution is that it can be

tailored to fit your organization’s
unique needs. For example, you can
optimize the design of a bespoke da-
tabase management system or cache
server to fit exactly your organiza-
tion’s load and query profile. Ag-
gressively tailored solutions can run
circles around offerings that try to
please everyone, plus bespoke solu-
tions can support features particular
to your organization’s unique needs:
a programming language construct,
a database column type, or a game
engine interaction style.

Then there’s the flexibility: as the
owner of the infrastructure, you de-
cide where it’s going. If you want to
add a new feature or fix a bug, you

Tools of the Trade

Tools of the Trade

	 January/February 2014 | IEEE Software � 13

devote the required resources, and,
presto, your wish is fulfilled. In con-
trast, if you adopt a commercial of-
fering, you can only hope that the
vendor moves in the direction you
want; if you work with an open
source solution, you have to coordi-
nate with its developers (and some-
times jump through multiple hoops)
to integrate your changes upstream.

Put simply, bespoke infrastruc-
tures allow your organization to
innovate and keep the fruits of any
findings to itself, which can provide
it with tactical or even strategic ad-
vantages over the competition. As
examples, consider the bespoke da-
tabase and caching solutions that
allow big social networking compa-
nies to drink data from a fire hose
and the awesome proprietary data-
center infrastructures developed by
the largest cloud service providers.
Even if the benefits of a bespoke in-
frastructure are dubious, its mere ex-
istence can serve as a selling point or
a differentiator in the market.

The Case Against
Proprietary infrastructure is only
known within the organization that
hosts it. Consequently, new employ-
ees face a significant hurdle before
they can become productive and
stop inundating their colleagues
with questions. Contrast this with
the case of a widely used offering
that lets newcomers add value to the
organization from day one by fold-
ing in their relevant knowledge, ex-
perience, and improved practices.
The use of a bespoke infrastructure
imposes its own vocabulary, hinder-
ing the informal communication of
developers with colleagues in other
organizations. Along the same lines,
users of a bespoke solution won’t be
able to reach out to the global online
community for answers and sup-

port, a convenience that we take for
granted today.

Maintenance is another issue.
Let’s assume that, at the time you
set up your bespoke infrastructure,
it suited your organization better

than any alternative. However, to
paraphrase Robert Anton Wilson, it
takes just two years for some bril-
liant software to turn into a night-
mare without changing a single line
of code. Unless aggressively main-
tained and developed, bespoke in-
frastructures can easily fall behind
the state of the art. What was once
a nimble trailblazer opening new di-
rections for your organization can
quickly become a dinosaur that holds
progress back. I’ve heard developers
complaining that their organization’s
bespoke development tools, probably
once a source of pride, are in such
a state of disrepair that they spend
more time waiting for their environ-
ment to work than the time they in-
vest in actually writing code.

Then come the development and
support costs, which will include not
only the (typically highly paid) engi-
neering time needed to bring the in-
frastructure to life, but, just as im-
portantly, management distraction
during both its early days and its,
inevitably capricious, ending ones.
Add to this the opportunity cost of
depriving other profitable projects of
engineering resources, and the price
can really go up.

But the problems don’t stop here.
Given that infrastructure is critical
to operations, the owners of bespoke
solutions can (often unintentionally)
hold the organization ransom to se-
cure cozy working arrangements.

This drives down morale and en-
courages empire-building by piling
new layers of bespoke stuff on top of
existing ones. As you might expect,
such vested interests in an organiza-
tion stand in the way of looking at
better alternatives, and the organiza-
tion misses out on the benefits of the
latest and greatest technology.

Finally, consider developer mobil-
ity. On one hand, developers who,
for years, have been writing code
in your organization’s obscure pro-
gramming language that no one else
uses will find it difficult to get an of-
fer that will lure them away. On the
other, the smart people who work
with your niche infrastructure will
quickly realize that it negatively af-
fects their career prospects and will
start looking for alternatives. Thus
you’ll end up working only with
those unfortunate souls who have
nowhere better to go.

A Balancing Act
Maintain a healthy amount of skep-
ticism regarding homebrew solu-
tions: the cards are stacked against
the adoption of infrastructure that’s
“not invented here.” By definition,
bringing in such infrastructure

It takes just two years for some brilliant
software to turn into a nightmare without
changing a single line of code.

Tools of the Trade

14	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

means change, and this triggers peo-
ples’ conservative instincts. Devel-
opers who have learned to use the
bespoke tool or library will have to
learn the new one, and, worse, those
who developed it will have to find
other ways to contribute.

It’s impossible to break new
ground with established solutions,
so the need to come up with a never-
ending stream of bespoke solutions
might just be the cost of doing busi-
ness at the frontier. Yet, the prob-
lem may not be in creating and us-
ing these infrastructures, but in not
letting them go when they’ve served
their purpose.

You might hear arguments about
the investment put into a bespoke
infrastructure’s development. Given
that this is a sunk cost, it shouldn’t
influence your decision either way.
Rather, you should simply consider
the relative merits of the two solu-
tions, the cost of the alternatives,
and any switching costs. Sadly, mis-
placed loss aversion regarding a
sunk cost often taints an organiza-
tion’s judgment.

If universally available tools don’t
quite fit the bill, consider custom-
izing a general-purpose solution to
your needs. Thankfully, modern
technologies are often easily cus-
tomizable via myriad configuration
options, plugins, and modules. (Of-
ten to the point of absurdity; con-
sider the 12,000 theme downloads
available on eclipsecolorthemes.org.)
Look for existing customizations be-
fore launching your own.

Another approach is to adopt
an open source tool and improve it
to address your organization’s re-
quirements. Then, cooperate with
the tool’s developers to contribute
your changes back to the commu-
nity. This isn’t just out of altruism;
feeding your changes back upstream
ensures that they remain part of the
tool in the future.

Finally, when called to make a
choice, consider that the trend is to-
ward a transition from bespoke in-
frastructures to widely used, general-
purpose technologies. I’ve seen this
transition happening in many orga-
nizations, often with pain and regret

for the earlier decision to follow the
bespoke solution sirens. When you
design infrastructures, train your in-
stinct to go with the flow: adopt and
build on the best and greatest tech-
nologies used by your community.

Diomidis Spinellis works at Google as a
site reliability engineering software engineer.
Contact him at dspin@google.com.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

