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ABSTRACT
A static analysis design is sufficient if it can prove the property
of interest with an acceptable number of false alarms. Ultimately,
the only way to confirm that an analysis design is sufficient is to
implement it and run it on real-world programs. If the evaluation
shows that the design is insufficient, the designer must return to the
drawing board and repeat the process—wasting expensive imple-
mentation effort over and over again. In this paper, we make the
observation that there is a minimal range of code needed to prove
a property of interest under an ideal static analysis; we call such a
range of code a validation scope. Armed with this observation, we
create a dynamic measurement framework that quantifies validation
scopes and thus enables designers to rule out insufficient designs
at lower cost. A novel attribute of our framework is the ability to
model aspects of static reasoning using dynamic execution measure-
ments. To evaluate the flexibility of our framework, we instantiate
it on an example property—null dereference errors—and measure
validation scopes on real-world programs. We use a broad range
of metrics that capture the difficulty of analyzing programs along
varying dimensions. We also examine how validation scopes evolve
as developers fix null dereference errors and as code matures. We
find that bug fixes shorten validation scopes, that longer validation
scopes are more likely to be buggy, and that overall validation scopes
are remarkably stable as programs evolve.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program analysis

General Terms
Languages, Verification

Keywords
symbolic trace interpretation, validation scope, enforcement win-
dows, static analysis design, dynamic measurement
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1. INTRODUCTION
In the 1990s, a large program had hundreds of thousands of lines

of code. By today’s standards, such a program is tiny! For example,
Windows Vista has a code base of 60 million lines of code created
by ∼3,000 developers [1]. It is clear that no programmer can fully
understand every line of code and how they relate to each other
in such a large system. Rather, programmers rely on “isolation
boundaries” following from modular design to reason about their
code. These isolation boundaries do not always follow explicit
modularization (e.g., methods, classes, and packages) but can be
implicit (e.g., around groups of tightly coupled methods).

Static analysis tools, which help find bugs in software, can take
advantage of isolation boundaries to scale to real-world programs.
Can we find and leverage the implicit isolation boundaries created
by software developers to improve static analysis? To attack this
question, we define the concepts of a validation scope and an en-
forcement window in this paper. We then create a framework for
measuring enforcement windows with dynamic analyses. At a high
level, a validation scope captures a property-based isolation bound-
ary implied by the code itself, and an enforcement window is a
dynamic approximation of a validation scope. We define these
concepts in detail in the remainder of this introduction.

1 o = new O(); . . .
2 if (o != null) { . . . } . . .
3 if (o != null) {
4 . . .
5 x = o.f;
6 . . .
7 }

One of our key insights is that
proving a property about a partic-
ular operation does not always re-
quire the entire program. In partic-
ular, we define a validation scope
as a part of the code where if we
reason operationally (e.g., directly
by analyzing the code precisely),
then we can prove a property of interest without any assumptions
about its context. As an example, consider the inset Java fragment
and what it takes to validate that the read of o.f cannot dereference
null. The highlighted code fragment between the null check on
line 3 and the dereference o.f on line 5 (shaded and marked with
vertical lines) may be a sufficient validation scope to prove that o.f
does not dereference null (depending on what is on line 4).

Intuitively, a validation scope captures an implied isolation bound-
ary with respect to a potential fault based on the enforcements in-
serted in the code. We use the term enforcement to refer generically
to an operation that establishes or checks the property of interest
(e.g., o != null). Validation scopes get at an important aspect of
static analysis design and program reasoning: on one hand, a static
analysis can leverage validation scopes to limit the precision use
outside validation scopes, while on the other hand, a static analysis
must be able to reason precisely enough inside the scope to capture
the property of interest. In this paper, we propose techniques to
identify potential validation scopes and ways to measure their “size”
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or “complexity” before designing a static analysis.
To do so, another key insight is that analyzing well-behaved

executions can provide evidence for validation scopes. In particular,
given a safety property and a non-faulting trace (i.e., one that does
not violate the property of interest), there is an event that establishes
the property, potentially followed by (redundant) checks that confirm
that the property continues to hold, and finally ending with a non-
faulting use as diagrammed below:

establish
property

o = new O()

check
property
o != null

check
property
o != null

non-faulting
use
o.f

For example, a non-faulting object dereference (i.e., does not deref-
erence null) is established by the object allocation and may be
validated by any number of null checks before reaching the deref-
erence site. We call such a sequence of establish, check, and use
events an enforcement window. An enforcement window is a dy-
namic approximation in that we can begin to search for candidate
validation scopes by mapping enforcement events back to source
code locations. Our definition of an enforcement window is property
independent—-all that needs to be defined for each property is what
events count as an "establish," a "check," or a "use."

In this paper, we describe a measurement framework for enforce-
ment windows and then measure enforcement windows for an exam-
ple property—specifically, non-null dereference. One measurement
of interest is the distance between a use (e.g., a dereference) and its
closest enforcement (e.g., a null check or an allocation) for several
different notions of “distance.” Intuitively, such a measure captures
the “complexity” of the candidate validation scope from the closest
enforcement to the use. As a simple example, consider the following
three-line Java fragment where the methods corresponding to the
called methods are shown inline, that is, path projected [13] (in grey
backgrounds):

1 id = new Id(); x = new X();
2 x.setId(id);

void setId(Id id) {
2.1 assert id != null; this.id = id;

}

3 return x.getIdAsInt();

int getIdAsInt() {
3.1 if (this.id == null) { this.id = new Id(); }
3.2 return this.getRawId();

int getRawId() {
3.2.1 return this.id.raw;

}
}

Focusing on the .raw dereference at line 3.2.1, the enforcement
window is as follows: (a) establish with the allocation of an Id

at line 1 in the global context, (b) check at line 2.1 in setId (i.e.,
id != null), (c) check at line 3.1 in getIdAsInt, and (d) use at
line 3.2.1 in getRawId. One interesting distance metric that we
consider is the inlining depth needed to bring the path between the
check and the use into the same method scope. In this case, there
is an inlining depth of 1 between the last null check at line 3.1 in
getIdAsInt and the dereference at line 3.2.1 in getRawId.

From the point of view of static analysis design, these dynamic
measurements are interesting because they rule out insufficient de-
signs. In the Java fragment and successful execution trace above,
an inlining depth of 1 witnesses that a simple, conservative, in-
traprocedural null deference analysis is insufficient and would nec-
essarily result in a false alarm at the dereference site at line 3.2.1.
We mean specifically that this analysis when analyzing getRawId

has no precondition that it can assume about its context. Note that
with these dynamic measurements, we get necessary conditions
but not sufficient ones in that even after inlining getRawId into
getIdAsInt a null dereference analysis may not be able to prove
that the dereference site at line 3.2.1 is safe (perhaps because it is
imprecise on aspects not captured by this particular measurement or
because the dynamic analysis did not measure all program paths).
We discuss why we chose dynamic over static analysis in Section 2.2
and consider this potential insufficiency further in Section 3.3.

From a software engineering perspective, our measurement frame-
work also enables us to empirically support or refute widely-held
intuitions about how programmers use enforcements in their code.

Overall, this paper makes the following contributions:

• We introduce the notion of enforcement windows that enables
us to rule out insufficient static analysis designs. We system-
atically examine choices in deciding, where, what, and how
to measure enforcement windows, and we describe distance
metrics that capture reasoning about both control and data
(Section 2.2).
• We present a flexible framework for measuring enforcement

windows dynamically (Section 3). A challenging requirement
for these measurements is a way to get at static, source code
notions with dynamic analysis. We address this challenge
by applying symbolic reasoning techniques and propose sym-
bolic trace interpretation, whose essence is an intertwined
concrete-symbolic analysis state (Section 3.1). Taking these
measurements dynamically rather than statically enables us
to measure one aspect of analysis precision (e.g., context sen-
sitivity) while factoring out others, such as imprecise heap
reasoning (Section 2.2).
Measuring enforcement windows in the presence of heap
objects requires careful design and special mechanisms to
scale to even modestly-sized benchmarks. We describe pig-
gybacked garbage collection, which collects a “shadow heap”
by instrumenting the collector of the concrete heap, and we
propose measurement update partitions that capture ways
to update groups of symbolic heap values simultaneously
(Section 3.2).
• We study the extent to which our dynamic measurements of

enforcement windows are sufficient from a static analysis per-
spective by measuring whether the check sites in our observed
enforcement windows are static bottlenecks in the control-flow
graph for their use sites (Section 3.3). We find that a signifi-
cant portion (30% to 80%) of use sites are statically protected
by their observed closest check sites, suggesting that these
measured enforcement window distances are quite likely to
indicate useful validation scopes.
• We apply our trace interpretation framework to study the evo-

lution and distribution of enforcement windows for derefer-
ences using metrics from four broad categories (Section 4). In
particular, we measure how enforcement windows for derefer-
ences change across bug fixes for NullPointerExceptions
in Java. We find that (1) enforcement windows get shorter
after bug fixes and (2) that longer enforcement windows are
more likely to result in bugs. These findings provide empir-
ical evidence supporting the commonly held but difficult to
verify belief that programmers find it easier to reason locally
than non-locally. We also find that (3) enforcement window
sizes are remarkably stable over project lifetimes, even as
code bases nearly double in size, and that (4) while measured
enforcement windows are in general small, in some cases they
are large along certain dimensions.
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2. OVERVIEW AND METRICS
In this section, we give an overview of our enforcement window

measurement framework by following an example symbolic trace
interpretation. Recall that our goal is to measure the “complexity”
of candidate validation scopes that can potentially inform static anal-
ysis design or simply provide insights into how enforcements appear
in code. We argue why symbolic reasoning on dynamic analysis is
needed to get useful information by systematically laying out the
various choices in deciding where, what, and how to measure. This
discussion leads to metrics that we apply to get the measurement
data presented in Section 4.

2.1 Preliminaries: Trace Instructions
Our measurement framework consists of two main components.

The trace collector instruments Java bytecode to obtain a log of in-
teresting events upon execution, a technique that is is fairly standard
in dynamic analysis (e.g., [8]). The trace interpreter performs a
symbolic interpretation of this log to obtain measurements of en-
forcement distance. We define an enforcement distance as some
measurement between two events in an enforcement window (e.g.,
between establish, check, or use events). The log is essentially a se-
quence of instructions that records a “path slice” that we can symbol-
ically reinterpret to obtain enforcement distances and consequently
a view of how enforcements appear in the program. Crucially this
symbolic interpretation enables us to extract a static, source-code
view of enforcement from dynamic traces without introducing im-
precision from a purely static approach (Choice 4 in Section 2.2).

Figure 1b shows the sequence of trace instructions that the trace
collector emits during execution of the example source in Figure 1a.
Ignore the boxed items for now. The purpose of separating the
collector from the interpreter is to handle most of the complexity
of Java’s semantics in the collector. We can write a mostly generic
collector that is customized to filter (and perhaps simplify) instruc-
tions for the properties of interest. Here, we show a trace language
specialized to null-dereference analysis. For exposition, we use an
operand-stack–based language like Java bytecode; that is, the local
store is a stack of activation records where each activation record is
a stack of values. There are no integer or numeric operations here
because they can be filtered out for this example analysis.

Simply to explain the semantics of this trace language, we show
a concrete (re)interpretation of trace instructions that (re)creates the
states of interest that would be observed in the original execution
(shown in the left column of boxed items). Ignore the right column
of boxed items for now, we describe them in Section 2.2. Concrete
states consist of a concrete stack of activation records on the left
side of the q and a concrete heap on the right (i.e., stack q heap). An
activation record (i.e., a value stack) is represented by a sequence of
values separated by commas, while the / symbol is used to separate
activation records. Stacks grow to the right (i.e., the rightmost
element is the top of the stack). For example from point 3 to 4, we
have pushed o′′ onto the top of the current activation after executing
an allocation instruction (alloc), while from point 4 to point 5,
we have pushed a new activation record onto the activation stack
after executing method call and method enter instructions (call and
enter). There are a few basic instructions that manipulate the value
stack: dup duplicates the top value, dupx duplicates the top value
while placing it under the top two values, and swap swaps the top
two values. We write · for an empty state element (stack or heap).
A heap is a map from object-field pairs to objects. For example, at
point 3, we have the mapping (o′,X.c) :o in the heap, which means
“field X.c of object o′ contains the value o.” The other instructions
note a check for null (nullcheck), method exit and return (exit,
returnfrom), and uses of fields (getfield, putfield).

x = new X(); x.c = new C(); d = new D();
c = x.getCIfOk(d); return c.f;

C getCIfOk(C ow) { return this.c != null ? this.c : ow; }

(a) source code

1 · q · · q · q ·

alloc o′X;dup;
†alloc oC;

2 o′,o′,o q · β ,β ,α q · q β :〈1,1〉,α :〈1,1〉

putfield o′X.c;

3 o′ q (o′,X.c) :o β q (o′,X.c) :α q β :〈1,1〉,α :〈1,1〉

alloc o′′D;

4 o′,o′′ q (o′,X.c) :o β ,γ q (o′,X.c) :α q
β :〈1,1〉,α :〈1,1〉,γ :〈1,1〉

call o′X.n;enter o′X.n;swap;dupx;

5 · /o′,o′′,o′ q (o′,X.c) :o · /β ′,γ ′,β ′ q (o′,X.c) :α q
α :〈1,2〉,β ′ :〈2,2〉,γ ′ :〈1,2〉

getfield o′X.c;dup;

6 · /o′,o′′,o,o q (o′,X.c) :o · /β ′,γ ′,α,α q (o′,X.c) :α q
α :〈1,2〉,β ′ :〈2,2〉,γ ′ :〈1,2〉

†nullcheck o;

7 · /o′,o′′,o q (o′,X.c) :o · /β ′,γ ′,α q (o′,X.c) :α q
α :〈2,2〉,β ′ :〈2,2〉,γ ′ :〈1,2〉

exit X.n;returnfrom X.n;

8 o q (o′,X.c) :o α q (o′,X.c) :α q α :〈1,2〉

†getfield oC.f;

(b) trace instructions

Figure 1: Concrete and symbolic trace interpretation of a short
example. The left-hand–side of the figure is explained in Sec-
tion 2.1, the right in Section 2.2.

Some instructions contain elements of the original execution
state when the instruction was generated. For example, alloc o′X

at point 1 has as usual a type X but also an object identifier o′

(e.g., address) of the allocated object. These pieces of the original
concrete state serve to include concrete information for combined
concrete-symbolic reasoning (e.g., somewhat similar to [9, 18]).

2.2 Measuring: Where, What, and How
Recall that an enforcement window is an establish-check-use

sequence. Depending on the property of interest, particular trace in-
structions will correspond to establish, check, and use events. In the
case of dereference reasoning, the establish is an alloc, followed
by some number of nullcheck checks, and finally a getfield,
putfield, or call use on the same object reference. For example,
we have the establish-check-use sequence highlighted and marked
by †s in Figure 1b (i.e., the sequence for the value dereferenced with
c.f at the source-level).

The central question is given such a dynamic trace, where, what,
and how can we measure to find candidate validation scopes with
a static, source code notion of complexity. We devote the rest of
this section to this question. Finding candidate validation scopes
corresponds closely to where we measure (Choice 1). The measure
of complexity is determined primarily by what we measure. We
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measurement: set of fields

distance: |set of fields|

increment: on flow to field 

(o, C.f),

add C.f to set of fields.

Field Set Flow Count

Method Set Inlining Depth

measurement: count of flows

distance: count of flows

increment: on flow to field

(o, C.f),

increment count by 1.

measurement: set of methods

distance: |set of methods|

increment: on exposure to

C.m(),

add C.m() to set of methods.

measurement: (hmin, hmax)

distance:  hmax - hmin
increment: on exposure to

stack height h, update to

(min(hmin,h), max(hmax,h))

Figure 2: Distance metrics capturing combinations of control
versus data reasoning and static versus dynamic reasoning.
consider complexity in different dimensions (Choice 2) and what
makes something more or less complex (Choice 3). One particularly
interesting distance metric that we define is inlining depth alluded
to in Section 1. A static, source code view is one that considers (all)
other possible executions than the one observed, which typically
requires some over-approximation of possible behavior. A key ob-
servation in this paper is that by controlling how we measure, we can
model “loss of information” due to over approximation (Choices 5,
6, and 7). Such modeling necessitates intertwined concrete-symbolic
reasoning and motivates symbolic trace interpretation.

WHERE TO MEASURE: Defining the measurement points in an
enforcement window.

CHOICE 1 (MEASUREMENT POINTS): In an enforcement win-
dow, which pairs of points are of interest?

There are several potentially interesting points, any of which can be
measured with our framework. In Section 4, we focus on uses and
their closest check (or establish if there is no check). This distance
captures the smallest validation scope needed to show that the use
in this trace is non-faulting.

WHAT TO MEASURE: Defining the metric.

CHOICE 2 (MEASUREMENT DIMENSIONS): What kinds of events
contribute to the complexity of a validation scope?

We consider two orthogonal dimensions that we hypothesize affect
validation complexity: control versus data reasoning. First, control
reasoning is what code or statements would a developer have to
reason about to make sure that a dereferenced value is not null. The
events that we record for control reasoning are the methods that a
value is exposed to as it travels from an enforcement to a use (i.e.,
an enforcement and a use in the same method has the minimum
measurement). We use the term expose to refer generically to ob-
serving an event that updates a measurement. We chose methods as
our atomic unit of distance because they capture a source code view
of the program that is always preserved by compilation to bytecode,
unlike control structures or statements. Second, data reasoning is
the memory locations that the programmer must reason about to en-
sure that a dereference will not fault. For this dimension, we record
the fields that a value flows through between an enforcement and a
use. Discovering validation scopes with respect to data reasoning
might help determine where coarse heap abstractions are sufficient
and where they need to be more precise.

CHOICE 3 (INCREMENTS OF MEASURE): How do interesting
events (e.g. calls or field writes) increase measured distance?

For the data and control reasoning dimensions identified in Choice 2,
what events capture an increase in complexity?

In Section 4, we take measurements using four different distance
metrics: Field Set, Flow Count, Method Set, and Inlining Depth.
Inlining Depth is particularly interesting from a static analysis de-
sign perspective because it captures needed context-sensitivity—a
standard concept. Thus, in Figure 1b, we use Inlining Depth as the
example distance metric to illustrate symbolic trace interpretation.

To describe what is Inlining Depth and why we measure it, con-
sider the source code of our running example in Figure 1a. The
last enforcement for the use of c.f is the null check in the call
to x.getCIfOk(d). Thus, a validation scope for c.f must also
include getCIfOk. We want to capture the additional power needed
to reason across a method call. In particular, we want to measure the
inlining depth that is needed to bring the path that the value takes
from the enforcement to the use all into the same method (i.e., into
the unit scope). Note that this measurement is different and more
nuanced than simply counting the number of method calls in the dy-
namic trace between the enforcement and the use. Consider the frag-
ment: assert this.o != null; this.m1().m2(); this.o.f = 0; where
m1 and m2 are leaf methods (i.e., they do not make further calls),
then the needed level of context is to check that o is not null is 1,
not 2. In contrast to counting method calls in a trace, measuring
Inlining Depth requires symbolic trace interpretation.

m0

m1 m4

m2 m3

To see what needs to be measured for
the inlining depth metric, consider the call
tree shown inset. Each node represents a
method, and each edge indicates a call from
the source to the target node. The simple
case is when the use is downwards along a
call path (e.g., the enforcement is in m0 and the use is in m2), then
the inlining depth is the length of the path between them (e.g., 2).
The general case is that an enforcement happens in a previously
called and returned method (e.g., the enforcement is in m2 while the
use is in m4). The inlining depth is then the difference between the
height of the shallowest method that the value has traveled through
and that of the deepest method (e.g., m0 and m2, respectively, lead-
ing to a depth of 2). Thus, we measure a pair of integers 〈hmin,hmax〉
summarizing the lowest and highest activation stack height to which
a value has been exposed since its last enforcement.

In Figure 1b, the right column of boxed items shows a symbolic
interpretation with Inlining Depth. Consider the symbolic state at
point 3. The state consists of three components, separated by q. On
the left is the symbolic stack. We use letters α,β , . . . for symbolic
values (i.e., symbolic object identities), which represent concrete
values (i.e., concrete object identities). For the moment, however,
we can view β and α as simply the names of o′ and o, respectively,
in the symbolic world. In the middle, we have the symbolic heap;
ignore this component for now, as we detail it under Choice 6.
Finally, the rightmost component of the symbolic state associates
measurements with symbolic object identities (e.g., β :〈1,1〉); that
is, it tracks an event history summary with each value individually
and independently. The domain of measurements is what would
vary from metric to metric.

At point 2 in Figure 1b, both objects β and α have just been
established as non-null (by an allocation), so we have that both
β : 〈1,1〉 and α : 〈1,1〉 since the height of the current activation
stack is 1. At points 3 and 4, these facts do not change. The
putfield o′X.c instruction pops arguments from the value stack
and writes to the heap, and alloc o′′D creates a new symbolic value
γ with fact 〈1,1〉. On a call, we set hmax to the new height if that
height is greater than hmax, as the value has now been exposed to a
height one more call step away. So, for example, at point 5, hmax is
incremented for α (i.e., α :〈1,2〉).
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The measurements for β ′ and γ ′ are discussed in the next choice
(Choice 5). The measurement for α is the same until encountering
the nullcheck o instruction, which is a null-check on α , and thus
resets its measurement to the current stack height (i.e., α :〈2,2〉 at
point 7). The action for a return is analogous to the call, except that
hmin is updated, as from point 7 to point 8 for α . The inlining depth
(i.e., the distance measure of interest) is then given by hmax−hmin.
If, for example, α were to be dereferenced at point 5 where α :〈1,2〉,
then the check-use distance for this inlining depth metric would be
1, as expected; if it were dereferenced at point 7 after the check, the
distance would be 0.

The symbolic interpretation for our other metrics is analogous,
but uses a different domain of measurements. We summarize these
in Figure 2 where we classify the metrics along the data versus
control dimension and also along a spectrum from more static to
more dynamic. For example, the Flow Count metric is a rather
dynamic, execution-based view that counts the number of copies
from field to field from the check until the use. This metric counts all
copies, even those between the same fields of different objects (e.g.,
between o1.f and o2.f). The Field Set metric instead counts only
the number of distinct fields through which a value flows. Method
Set is the control reasoning analogue that counts the number of
distinct methods to which a value is exposed.

HOW TO MEASURE: Defining measurements so that they relate to
source code views.

CHOICE 4 (STATIC VS. DYNAMIC ANALYSIS): Should we
measure enforcements windows with a static or a dynamic analysis?

We use dynamic analysis to measure enforcement windows. An
initially attractive alternative would be to do so statically because
validation scopes are inherently a static, source code notion. But
upon further inspection, we see that this approach is quite problem-
atic. For one, a “fully precise” pointer analysis, which remains a
difficult problem [11], is required to statically tie together establish-
check-use sequences on an object. In particular, any imprecision in
the static analysis could cloud what we find—which is especially
problematic when the goal was to find validation scopes to rule out
insufficient static analysis designs.

Dynamic analysis is attractive because, fundamentally, it is easier
to lose precision than to get it in the first place. In Choices 5 and
6, we show how we use symbolic trace interpretation to selectively
forget concrete information from a dynamic trace in order to selec-
tively emulate how a static analysis would reason about a program.
However, a potential disadvantage of any dynamic analysis is that
its quality depends on how well the collected traces generalize to
cover all possible executions (we evaluate this in Section 3.3).

CHOICE 5 (APPLYING MEASUREMENTS TO OBJECTS): How
do we connect measurements to the object that they measure?

The two most obvious choices seem wrong. Just keeping a mea-
surement map from concrete object identities o to measurements
corresponds to the questionable assumption that perfect aliasing
information is available statically. Alternatively, keeping an abstract
stack and heap of measurements like in a standard type system cor-
responds to assuming the static analysis is incapable of resolving
any aliasing.

Instead, we measure over symbolic object identities that allow
us to “lose” or “forget” aliasing information known dynamically
in a controlled and selective manner. Specifically, two different
symbolic object identities may represent the same concrete object
(modeling lost aliasing information). At point 5 in Figure 1b, we use
a fresh symbolic object β ′ for the receiver in the callee as opposed to
reusing the value β from the caller. While both β ′ and β correspond

to same concrete object o′, we have chosen to forget this information
in the symbolic state. In this case, we make this split to capture: (1)
in any method, the receiver object this is known to be non-null, so
from the prospective of the callee, the call instruction is a check
on the receiver; but (2) from the prospective of the caller, the call
is simply a use/dereference of the receiver. Thus, in our example,
β ′, the receiver in the callee after the call, is summarized by 〈2,2〉
(i.e., checked in the callee). The parameter in the callee, γ ′, is also
a fresh symbolic object identity where both γ and γ ′ correspond
to the concrete object o′′. The measurement on γ ′ (i.e., 〈1,2〉) is
derived from γ’s, but the cloning means any check in the callee on
o′′ is not seen by the caller, unless it is passed back in the return
value or through the heap. This approach respects the implicit
modularization implied by function boundaries—checks on a value
escape a function only if the value itself does.

CHOICE 6 (MEMORY MODEL): How is the memory modeled
symbolically?

In symbolic interpretation, the symbolic state is a model of the
concrete state. In Figure 1b, we use an exact model of the activation
stack except that the values are symbolic rather than concrete: that
is, the identity of a called method is exactly known, but the receiver
and parameters are interpreted symbolically. Similarly, each cell in
our symbolic heap is identified exactly (by a concrete object identity
and a field) but the contents of those cells are symbolic values.
So, for example, at point 3 the symbolic heap maps field X.c of
object o′ to symbolic value α . Heap accessing instructions operate
on combined symbolic and concrete values; the symbolic values
come from the symbolic value stack, while the concrete values are
explicitly incorporated into select trace instructions.

The symbolic interpretation of getfield o′X.c from point 5 to 6
pops the symbolic value β ′ for the field owner from the value stack
but then uses the concrete annotation o′ to look up the symbolic
value stored in the symbolic heap at field X.c of o′, which is α , that
is then pushed onto the stack. The interpretation of putfield is
similar. Analogous to the modeling of copying actuals to formals
discussed above under Choice 5, there is a choice in whether (a)
to copy the the symbolic value α from the heap to the stack or (b)
to create a fresh symbolic value with a copy of the measurement.
The former means a measurement update via the stack is reflected
in the heap value and vice versa, while the latter “forgets” this
aliasing relationship. In this case, we have chosen (a) to capture
that enforcements on stack values obtained from instance variables
(i.e., fields of this) (or vice versa) should seemingly apply in both
places. Another reasonable option could choose (a) in some cases
(e.g., only dereferences of fields of this) and (b) in other cases.
There is no clear best choice regarding aliasing “remembering” and
“forgetting,” so importantly, our framework supports experimenting
with different modeling decisions by switching between (a) and (b).

In essence, we record measurements on symbolic values but use
concrete values to determine storage locations on the heap. Without
the latter use of concrete values, the symbolic trace interpretation
would itself need a precise static points-to analysis. Critically, this
intertwining of concrete and symbolic modeling enables us to model
source code reasoning in some respects while avoiding unrealistic
static analysis imprecisions in other ways.

A significant implementation challenge is updating measurements
for all heap-stored values (see Section 3.2). With Inlining Depth,
for example, on every entry to and return from a method, we need
to expose every value on the heap to the new activation stack height
using the scheme laid out in Choice 3. So, for example, the mea-
surements for α for the call between point 2 and point 5 change to
reflect α’s exposure to an activation stack with height 2. Similarly,
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the return from point 7 to point 8 exposes α to height 1.

CHOICE 7 (MEASURING THE UNKNOWN): How do values from
uninstrumented library code contribute to check-use measurements?

Some values will necessarily come from uninstrumentable code
(e.g., libraries). We assign these values the measurement lib. In
interpreting our measurements, we take the conservative viewpoint
that a value returned from unknown code adds an unknown distance
that must be viewed over-approximately as “infinite.” Informally
stated, unvalidated assumptions are made about the code outside of
the validation scope, but unbounded inlining would be sufficient to
validate those assumptions once the code is brought in. An alter-
native, optimistic approach would assign library values 0 distance
indicating that libraries are understood through documentation of
invariants and thus do not require reasoning about code at all.

3. MEASUREMENT FRAMEWORK
In this section, we describe our symbolic trace interpretation

framework (Section 3.1), discuss techniques for scaling our imple-
mentation of the symbolic heap (Section 3.2), and investigate the
extent to which our dynamic measurements of enforcement windows
are sufficient from a static analysis perspective (Section 3.3).

3.1 Symbolic Trace Interpretation
The key challenges addressed by this framework are (1) how to

extract a more static view of an execution by forgetting run-time
information in a principled way (see Section 2.2, Choice 5) and (2)
how to meaningfully interact with uninstrumented library code. We
accomplish (1) by using an intertwined concrete and symbolic state,
associating information with symbolic values, and instantiating
new symbolic values when we want to forget. With this approach,
a single concrete value can be represented by multiple symbolic
values. We address (2) by splitting method call and returns into
separate instructions that captures the call or return event from the
caller’s and the callee’s perspectives individually.

We first focus on describing our generic framework instanti-
ated for measuring control reasoning using the inline depth met-
ric as an example. An activation record A ::= · | A,α consists
of an operand stack with symbolic object identities; the symbol
· indicates an empty stack. Then, we have a stack of activations
S ::= · | S / A | S /unins, which consist of normal activations A but
also uninstrumented activations unins. Informally, unins models
some number of activations for uninstrumented methods. A heap
H ::= · | H,(o, f ) : α is a finite map from a concrete object, field
pair to the symbolic value stored in the field for that object. Observe
that the heap is a mixed concrete-symbolic entity. A measurement
map Γ ::= · | Γ,α : t is a finite map from symbolic identities to the
recorded measurement for that symbolic value, and a symbolic state
Σ ::= S q H q Γ is a triple of a stack of activations, a heap, and a mea-
surement map. A measurement t ::= 〈hmin,hmax〉 | lib can be either
a known measurement or lib, indicating that the value came from
uninstrumented code. When instantiated for the inlining depth met-
ric, known measurements consist of a pair of integers 〈hmin,hmax〉
representing the minimum and maximum stack height to which the
value has been exposed. The measurements are the only portion
of the symbolic state that change from metric to metric. We write
Γ(α) for looking up the measurement associated with symbolic
object α in Γ and Γ,α : t for a map that either extends Γ with a
binding for α or updates the binding of α to t if it exists. Similarly,
H(o,C. f ) looks up a value at field C. f of concrete object o in H
and H,(o,C. f ) :α extends it.

We define an interpretation judgment Σ ` I ⇓ Σ′ in Figure 3
that states, “In state Σ, instruction I symbolically evaluates to Σ′.”

ALLOC
α /∈ dom(Γ) t = enf(S /A q H q Γ)

S /A q H q Γ ` alloc oC ⇓ S /A,α q H q Γ,α : t

CALL-INS
β ′,α ′ /∈ dom(Γ) S′ = S /A /β ′,α ′ Σ = S′ q H q Γ

Γ′ = Γ, expose(Γ|rng(H),Σ), β ′ : enf(Σ), expose(α ′ :Γ(α),Σ)
S /A,β ,α q H q Γ ` callins oC.m ⇓ S′ q H q Γ′

RETURNFROM-INS
S′ = S /A1,α Γ′ = Γ, expose(Γ|rng(H)∪{α},S

′ q H q Γ)
S /A1 /A2,α q H q Γ ` returnfromins C.m ⇓ S′ q H q Γ′

GETFIELD-INS
(o,C. f ) ∈ dom(H) β = H(o,C. f )

S /A,α q H q Γ ` getfield oC. f ⇓ S /A,β q H q Γ

Figure 3: Symbolic trace interpretation for inlining depth.

The trace instruction language is the same as in the example from
Figure 1, except that we explicitly annotate call and returnfrom

instructions with whether the called or returned-from method is
instrumented (ins) or uninstrumented library code (unins). For
completeness, we give the full trace language supplementally [4].

For non-null dereference analysis, an allocation is an establish
event. Rule ALLOC pushes a fresh value α onto the stack with a
measurement for an enforcement event (i.e., an establish or a check)
in the current state. Under the inlining depth metric, this measure-
ment has both hmin and hmax set to the current stack height. That
is, we define enf(Σ) def

= 〈heightof(S(Σ)),heightof(S(Σ))〉 where the
function heightof(S) gives the number of activations in stack S and
S(Σ) gives the stack component of the symbolic state Σ. Recall that
the inlining depth for a measured exposure is given by hmax−hmin,
so a use right after the allocation yields a 0 distance as intended. A
nullcheck is essentially the same except that it updates the mea-
surement for the object on the top of the stack (NULLCHECK rule
elided here), as it is just another enforcement. For other properties,
other instruction kinds may be identified as the enforcement events,
but they have the same form: interpreting the semantics of the in-
struction along with asserting an enforcement in the measurements.

At a call to an instrumented method (rule CALL-INS), we create a
fresh symbolic value to represent the receiver β ′ and assign it the
enforcement measurement in current state. This constraint captures
that the receiver is null-checked at this point from the callee’s per-
spective (since this cannot be null) but it is not from the caller’s
viewpoint. Contrast this modeling with that for the parameter value
α . It is assigned a new symbolic value in the callee α ′ so that checks
in the callee do not automatically count in the caller. The measure-
ments for that value are copied between the caller and the callee
before exposing it to the new state in the callee. The expose(α :t,Σ)
function updates the measurement for object α to reflect exposure
to a state Σ. Under the inlining depth metric, we define this as:
expose(α : 〈hmin,hmax〉,Σ) def

= α : 〈min(hmin,h),max(hmax,h)〉 and
expose(α : lib,Σ) def

= α : lib where h = heightof(S(Σ)). We lift expose
to also apply to maps (i.e., expose(Γ,Σ)). For control reasoning
metrics, all measurements for values on the heap are also updated
to reflect their exposure to a state on each call and return (i.e.,
expose(Γ|rng(H),Σ)). We write Γ|rng(H) for the restriction of map
Γ to mappings from symbolic values in the range of the heap H.
Observe that this operation is prohibitively expensive to implement
directly and motivates techniques described Section 3.2. On return
(rule RETURNFROM-INS), the top activation is popped and the return
value and the heap are exposed to the state.
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The complexity of handling uninstrumented methods lies in tran-
sitions between instrumented and uninstrumented code. To detect
transitions, we split a method call into two events: a call instruc-
tion, which is the event from the caller’s perspective, and an enter,
which is the event from the callee’s perspective. When an instru-
mented method calls another instrumented method, then we see a
call immediately followed by an enter as in Figure 1b. However,
critically, this redundancy allows us to detect transitions between
instrumented and uninstrumented code robustly. Specifically, we
mark a call from instrumented code to an uninstrumented method by
pushing an unins marker on to the stack. A call from uninstrumented
code to an instrumented method is detected by an enter instruction
while an unins marker is active. The interpretation of enter in
this situation is to compensate for the lack of a call instruction
right before it (and thus is analogous to rule CALL-INS). Method
returns are similarly split into exit from the callee’s perspective
and returnfrom from the caller’s perspective. The interpretation of
returnfrom must make a similar compensation when it observes a
return from uninstrumented code.

For control reasoning, getting and putting a field simply need to
reflect the concrete semantics symbolically. Getting a field from
an object pops the symbolic field owner off the stack and uses the
concrete object identifier to look up the symbolic value stored for in
that object’s field in the heap (if it exists) and pushes it on the stack
(GETFIELD-INS). Using concrete heap lookups enables us to factor
out a potential source of unrealistic static analysis imprecisions. If
the field has not been initialized, it pushes lib instead (as the assump-
tion is that it was initialized in uninstrumented code). A putfield

updates the symbolic heap to store a symbolic value from the stack in
the field for the concrete object (rules are straightforward). For data
reasoning, we would update measurements (i.e., apply exposures) on
getfields and putfields instead of on calls and returnfroms.

In this section, we have instantiated our measurement framework
using the Inlining Depth metric. Using our Method Set metric is
similar, except that the measurements are sets of method identities
and exposing a value to a new state adds the method on the top of
the stack to a measurement. How specifically our four metrics are
instantiated in this framework is summarized in Figure 2.

3.2 The Symbolic Heap
Two key challenges hide in the description of symbolic trace inter-

pretation above. First, in defining the symbolic trace interpretation
judgment (Figure 3), heaps H and measurement maps Γ only grow.
In essence, we assume that garbage is automatically collected from
the symbolic heap (i.e., that objects on the heap disappear when
they are no longer needed) and the measurement map. However,
since the symbolic heap has no knowledge of heap operations in
uninstrumented library code, there is no way the interpreter could
ever safely garbage collect mappings in the symbolic heap. In our
framework, we instrument the garbage collector running in the ob-
served program to “piggyback” collecting an object in the symbolic
heap when the object in the concrete heap is collected. Whenever
the garbage collector frees a concrete object, the trace collector is
signaled to emit a trace instruction telling the trace interpreter to
remove that object from the symbolic heap. This “piggybacking”
efficiently ensures that objects are only collected from the symbolic
heap after they can no longer be used.

The second challenge to scalable symbolic trace interpretation
involves updating the measurements for heap values on method calls
and returns. In the CALL-INS and RETURNFROM-INS rules, we
update every symbolic value on the heap to reflect exposure to a
new control scope (i.e., expose(Γ|rng(H),Σ)). Naïvely iterating over
the entire symbolic heap on each call and return is far too slow to

Table 1: Framework Sufficiency for Analysis Design.
“Full” “Recommended”

Program Interesting False Dead Bottle- False Dead Bottle-
necked necked

antlr 1812 0 36% 330 35%
bloat 4424 0 32% 0 32%
chart 1219 34 48% 88 50%
fop 10164 0 78% 10044 43%
luindex 873 0 40% 290 51%
lusearch 661 0 56% 0 56%
pmd 830 0 66% 63 69%

be practical, even for relatively short programs.
To address this problem, we divide the symbolic values on the

heap into measurement update partitions that help us update heap
exposures more efficiently. We have two partition strategies: one
that leverages a property of particular kinds of measurement metrics
and one that is metric agnostic but more expensive.

For the Inlining Depth metric, we partition the symbolic values
based on their hmin and hmax measurements. Then, on a method
call, we only need to update those values whose hmax is the stack
height before the call. Similarly, on a return, we need only update
those symbolic values whose hmin measurements match the stack
height before the return. These partitions are prescriptive in that
using the measurements tells us exactly which symbolic values need
to be updated, and fortunately, they are small enough to speed up
interpretation of calls and returns drastically.

We also have a more general, heuristic approach to partition sym-
bolic values on the heap based on how recently they were used
(added to the heap, read from the heap, or dereferenced). For ex-
ample, in our implementation of the Method Set metric we keep
a collection of up to 1000 “hot” symbolic values and update their
measurements individually whenever they are exposed to a new
state. The remainder of symbolic values on the heap are not updated
individually on every call and return. Instead, we keep a single
set summarizing the recent methods that all of these cold values
have been exposed to. The key invariant that we maintain is that
(1) the measurements (i.e., method exposure sets) for hot values are
exactly what they would have been if we had traversed the entire
heap on calls and returns and (2) the measurements for the cold
values, unioned with the current summary set, are what they would
have been in the naïve system. With this approach, if the program
dereferences a hot value, it can record the measurement directly
associated with the value. If it is cold, however, we have to first
apply a lazy fixup and expose the value to each of the methods in
the summarized sets. The direct measurements for that value now
completely reflect what its measurements should be, so we safely
move it to the hot collection. If the hot collection is full, we apply
the summary set to all non-hot values in the heap (so that their
measurements are now complete), reset the cold summary to be the
empty method set, and mark all values as cold. At this point, again,
the invariant holds. The essence is that we keep a fixup transformer
that can be applied when a cold value gets used.

Both of these approaches make field accesses more expensive,
but the savings from avoiding traversing the entire heap on calls and
returns more than makes up for them.

3.3 Sufficiency for Static Analysis Design
One intended use of our enforcement window measurement frame-

work is to help determine necessary conditions for static analysis
design and, in particular, help designers decide at least how much
scope their analysis needs to prove a property of interest. Our com-
bined concrete-symbolic approach is well-suited to this task because
it permits us to tease apart required scope from over-approximation
in any abstract analysis domain. In essence it allows us to measure,
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for example, the window of code an analysis would need to examine
if it was using exactly the right analysis abstraction. Even assuming
such perfect reasoning, this measurement is an under-approximation
for the validation scope that the hypothetical analysis would need
because, as a dynamic analysis, our approach cannot measure the
required scope for all possible paths in a given program. In this sec-
tion, we investigate whether this under-approximation is sufficient
in this sense: that is, to what extent a single execution discovers
enough enforcement sites to determine a useful validation scope.

To do this, we first instantiated our measurement framework for
the non-null dereference property to record the location of the clos-
est enforcement (i.e., allocation or comparison to null) for each
dereference. A dereference may have multiple such closest en-
forcements if it is called from different contexts. We then used
the WALA framework (http://wala.sf.net/) to run an inter-
procedural static analysis that examines each dynamically observed
dereference site and verifies that all static paths in the control-flow
graph to that site pass through at least one of the closest dynamically
observed enforcements: if so, our approach is sufficient for that site.

The results of these experiments for a subset of the DaCapo
benchmarks are shown in Table 1. Here we consider a dereference
site “Interesting” if (1) it is executed in our dynamically observed
run, (2) it does not dereference values from uninstrumented library
code (i.e., a static analysis looking at only application code would
have some hope of proving the dereference safe), and (3) it is not
a dereference of this (which in Java cannot be null). WALA has
some unsoundness in its handling of reflection, leading it to claim
that some executed dereferences are not reachable. We ran WALA
with two different reflection policies. “Full” makes a best effort to
determine reflective method targets while “Recommended” (which
was recommended to us by a WALA developer) optimistically as-
sumes programmers’ casts after reflective instantiations are correct
and uses these casts to determine the type of allocated objects. Be-
cause these policies are heuristic, they may falsely claim that some
dynamically observed dereference sites are dead code. We give the
number of these sites in the “False Dead” column.

The “Bottlenecked” column gives the percentage of interesting,
statically reachable dereference sites for which all static paths to
that site pass through a dynamically observed closest enforcement;
that is, the closest enforcements are a bottleneck to reaching the
use. The observation that a large percentage (30%–70%) of deref-
erence sites are statically shown to flow through the dynamically
observed enforcement sites gives us evidence that our approach
finds candidate validation scopes that are likely to be useful: that
is, that inferences gleaned from these these enforcement sites in
one run (e.g., their typical enforcement distances) are likely to be
representative for all possible runs of the program. Note that the
non-minuscule bottlenecked percentages in Table 1 are significant:
even under the very pessimistic assumptions that (1) we are allowed
only one dynamic execution, and (2) we count only the last en-
forcement along that execution, our dynamic analysis frequently
finds useful validation scopes. Our benchmarks range in size from
∼3,000 (antlr) to∼25,000 (fop) methods. The bottlenecked percent-
age does not change much between the “Full” and “Recommended”
configurations (except for fop), perhaps indicating an invariance
property about enforcements across dereference sites.

4. MEASUREMENTS
In this section, we apply our measurement framework to gain

insights into how enforcements actually appear in code. We have
two sets of experiments that both measure the distance between a use
and its closest enforcement. The first evaluates distance metrics from
Sections 2 and 3 with a case study of null pointer exception bugs that

Table 2: Distances get shorter after bug fixes.
Data Metric Control Metric

Issue Flow Field Inlining Method
Count Set Depth Set

Lucene-825 lib→ 0 lib→ 0 lib→ 0 lib→ 1
Lucene-449 lib→ 0 lib→ 0 lib→ 0 lib→ 1
Lucene-174 lib→ 0 lib→ 0 lib→ 0 lib→ 1
Lucene-317 1→ 0 1→ 0 16→ 0 lib→ lib
PMD-1425772 0→ 0 0→ 0 1→ 1 2→ 2
PMD-1529805 0→ 0 0→ 0 1→ 0 2→ 1
PMD-1552820 lib→ 0 lib→ 0 lib→ 0 lib→ 1
PMD-1728716 lib→ lib lib→ lib lib→ lib lib→ lib

tests three hypotheses: (1) that programmers find it easier to reason
across short enforcement distances than long ones, (2) that fixing
bugs shortens these distances, and (3) that as code bases mature,
programmers respond to increasing complexity with more defensive
programming. The main challenge here was the laborious process of
sifting through project issue queues and software repositories to find
suitable bugs and then generating inputs that both exercise the buggy
sites and remain valid across multiple versions of the projects. Our
second set of experiments measures the distribution of enforcement
distances over the DaCapo benchmark suite to characterize the size
of potential validation scopes in typical programs.

4.1 Case Study: Bugs and Program Evolution
This case study covers two programs in depth: PMD, a “pro-

gramming mistake detector” that analyzes source code to find style
violations, and Lucene, a document indexing and search tool. We
perform three experiments to test a hypothesis that programmers
find it easier to reason across short distances than long ones. First,
we investigate how enforcement distances change after programmers
fix bugs. We hypothesize that fixed bugs are likely to exhibit shorter
distances since the programmer must convince herself that the bug
is, in fact, fixed. Second, we look at how buggy dereference sites
differ from normal sites—if longer distances are harder to reason
about, we would expect to see more bugs at longer sites. Finally, we
hypothesize that as programs mature and grow more complicated,
programmers will need to adopt more defensive strategies and thus
enforce shorter distances, so we examine how these distances change
over the lifetime of projects.

Benchmark Selection. To find buggy dereference benchmarks,
we were constrained by the following requirements: (1) Projects
must have source repositories to get versions of the code before
and after a bug fix. (2) They must have a bug database with at
least 20 reported NullPointerException bugs so that we had
a reasonable chance of triggering a buggy dereference site. (3)
We limited our search for benchmarks to non-GUI programs since
instrumentation slows down execution enough to make analysis
of interactive programs impractical. (4) We require representative
inputs over which to run our benchmarks. These constraints led
us to the DaCapo suite, though we looked broadly at several open
source repositories. Based on the DaCapo small inputs, for PMD
our inputs check a file from its own source base for a variety of style
violations, while for Lucene we index short portions of Shakespeare
poems and then search them for the term “death.”

Bug Selection. We searched each project’s bug report database
for instances of the word “NullPointerException.” After filtering
out unfixed bugs, we examined the reports to determine if they truly
represented null pointer errors. For these candidates, we used the
backtrace, patch date, patch author, mailing list comments, and
repository logs to find the failing dereference and the source control
revision numbers immediately before and after the fix. If the fix
was applied across multiple commits, we used the latest revision.
If the bug report spurred discovery of multiple related bugs, we
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(a) All buggy sites have non-local control metric distances, but may not involve flow
through the heap. Lucene exercised 2062 total sites, and PMD exercised 2522.

0 1 2 3 lib

PMD Dereference Distance Distribution

Change Over Time

Field Set Distance

D
e

re
fe

re
n

c
e

 S
it
e

s
 (

fr
a

c
ti
o

n
)

0
.0

0
.4

0
.8 r4235

r7192

(b) Distances change little over time, even as
the number of sites grows from 1882 to 3205.

Figure 4: Studying reported buggy dereference sites and the code evolution using enforcement distances.

only considered the original site. We removed the bugs where either
revision did not exercise the buggy dereference site on the repre-
sentative input. Although the site is exercised in all the remaining
revisions, the bugs themselves do not manifest on the representative
inputs and in some cases not all of the added code in the fixes is
exercised. Overall, we obtained eight bug reports with before and
after revisions on which to measure check-use distances.

Do Enforcement Distances Get Shorter After Bug Fixes? To
determine whether enforcement distances get shorter after bug fixes,
we annotated the buggy dereference sites for each of the bugs col-
lected and interpreted them to collect the maximum distance at those
sites before and after the fix. Table 2 shows how these distances
changed after the programmer fixed the bug. Treating unknown
values (e.g., from library code) as “infinite” distances, we make the
following observations: (1) None of the distances get longer after
a bug is fixed. The majority (five) get shorter, while three stay the
same. (2) Of the distances that get shorter, most (four out of five) are
“infinite” before the fix. (3) All of the distances that do get shorter
go to the minimum possible distance under each metric; that is, the
use and check are in the same method. For these buggy sites, the
Flow Set and Flow Count distances are identical, although, as we
show in Section 4.2, this is not always the case.

File dir = ...;
String[] fs = dir.list();
for (i = 0; i < fs.length; i++) {}

The nature of the bugs
themselves are also quite
interesting. Three of the
Lucene bugs (825, 449,
and 174) arise from related misuses of the java.io.File API
to iterate through a directory (as shown inset). The developer fails to
realize that dir.list() can return a null array if the program lacks
privileges to read the directory, leading the dereference fs.length
to raise a null pointer exception (similar to Figure 1a but with a
mistaken assumption). The fixes for the three different bugs caused
by this misunderstanding were also similar: the developer checks
files for null and throws a more meaningful exception. In the
fourth Lucene bug (317), a lock instance variable is set to null when
threading is disabled, but the code calls lock.unlock() without
checking to see if it is non-null.

For PMD, two of the bugs result from misuse of a utility function
to query a node in the abstract syntax tree about its first ancestor of
a given class (1425772, 1529805). In both cases, the programmer

ClassOrInterface p =
node.getFirstParentOfType(
ClassOrInterface.class);

if (p.isInterface()) {}

did not realize that such a par-
ent may not exist and that the
returned ancestor might be null
(shown inset). Here the intro-
duction of enum types in Java
5.0 broke the programmer’s assumption that all nodes must have
a containing class or interface. When the query returns null, the

call to p.isInterface() throws a null pointer exception. A third
PMD bug (1552820) arose from a similar query about a potentially
missing child of a node. The final PMD bug (1728716) involved
erroneously passing null to a string escape utility method. Although
the bug was fixed, our analysis does not see any shortened distance
because our inputs do not exercise the new check in the fix.

Overall in our case study we found that enforcement distances
tend to get smaller after bug fixes. This shortening helps to validate
our choice of distance metrics, since we would expect a high-quality
metric to show shorter enforcement windows after a bug fix. Further,
the fact that most bugs involve reasoning about larger (greater than
minimum) distances and most bug fixes reduce the distance to the
minimum indicates that programmers are comfortable reasoning
locally (within a method) but are less capable of reasoning about
non-local computation. Again, this is what we would expect, but
now we have empirical evidence supporting this belief, gathered by
examination of software artifacts.

Do Bugs Tend to Have Long Enforcement Distances? We
investigate whether buggy dereferences have longer enforcement
distances by comparing the distribution of distances for all derefer-
ence sites to that for buggy sites. Figure 4a shows the distribution
of all dereference sites for Lucene under the Inlining Depth control
metric and for PMD under the Flow Count data metric. Buggy sites
are marked with stars. For these graphs the “all sites” distribution
comes from the latest before-fix revision that we analyzed—since
the “all sites” distribution does not change much over time (dis-
cussed below), these graphs are representative of how buggy sites
compare to all sites. We give plots of the other metrics for both
benchmarks supplementally [4]—they are visibly consistent with
these representative graphs.

For the control-based metrics (Inlining Depth and Method Set),
the fraction of of all dereference sites that require only local reason-
ing (i.e., minimum distance) is significant and remarkably consistent
across benchmarks—about 40% of the total 4821 dereference sites
measured. Yet none of the buggy dereference sites involve only local
reasoning. This observation further contributes empirical evidence
that programmers are more comfortable reasoning locally than non-
locally. The situation is not as clear-cut for data reasoning—half of
the buggy sites for PMD involve a flow distance of 0 (that is, they do
not involve the heap at all). These buggy sites have non-minimum
measurements for both control-based metrics, possibly suggesting
that these particular bugs resulted from faulty control reasoning
alone. The key message from this study is that while a significant
fraction of all dereference sites require only local control reasoning,
buggy sites appear to be drawn from a different distribution tending
towards non-local control reasoning.
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Figure 5: Distribution of dereference site measurements for DaCapo. Data enforcement distances are overwhelming short. Control
distances can get very long for heap locations, suggesting non-operational heap reasoning (e.g., by encapsulation or invariants).

How Do Enforcement Distances Change Over Time? To ex-
plore how enforcement distances change over time, we compare
the distribution of distances for the first revision we analyzed to a
more recent one, spanning five years for PMD and 18 months for
Lucene. Figure 4b shows the fraction of dereference sites with a
given maximum distance for PMD under the Field Set metric at
the beginning and end of the span. The distribution barely shifts
to slightly longer distances. This finding is quite surprising, as the
sheer increase in code size (going from 1882 to 3205 executed deref-
erence sites and from 361 to 693 executed methods) should bias
towards longer distances. The results for Lucene, and for our other
metrics, are exceedingly similar. For reference, they are available
supplementally [4]. For Lucene, the growth in number of measured
dereferences is even larger (going from 1389 to 4176). Perhaps our
metrics are capturing properties not of programs but of programmers
and we should expect to see similar results for more benchmarks.

4.2 Distribution of Enforcement Distances
To understand the distribution of enforcement distances across a

set of real programs, we interpreted traces over the DaCapo bench-
mark suite’s small inputs. We omit jython, hysqldb, and xalan
because of limitations in how our instrumentation handles excep-
tions caught in uninstrumented code and eclipse because our instru-
mentation causes it to deadlock. Figure 5 shows the cumulative
distribution of maximum dereference distances for the Flow Count,
Field Set, and Inlining Depth metrics. The y-axis shows the fraction
of dereference sites with a distance less than or equal to the value
on the x-axis, so for example, for luindex under the Field Set met-
ric, 60% of sites have a maximum dereference distance of 0, while
around 97% have maximum distances of 2 or less. We omit the sites
with unknown distances (i.e., from library code). Interestingly for
antlr on the Flow Count metric, the cumulative fraction for antlr
does not reach 1.0 until a distance of 97 (so the x-axis has been cut
off prematurely to elide this outlier and expose the behavior at small
distances). The graphs for Flow Count (i.e., dynamic data distance)
and Field Set (i.e., static data distance) are identical for distance
0, reflecting the fact that that between 55% and 85% of sites do
not require reasoning about the heap. Both go to nearly 100% by a
distance of 4, although the dynamic metric, as we have seen, has a
very long tail. This indicates that the number of data locations about
which a programmer needs to reason to ensure that a dereference
will succeed is generally small but may in rare cases be large.

The small (5) number of sites in antlr that have extremely long

saveField = o.field;
. . . // complicated recursive code
. . . // that may modify o.field
o.field = saveField;

Flow Count (97) are very interest-
ing. The values at these sites arise
from repeated execution of the pat-
tern shown inset. These sites also ex-
hibit the highest Inlining Depth dis-
tance observed (153) over all of our benchmarks. It appears that

the developer has made a deliberate decision to trade off extra data
distance in order to avoid having to consider a large amount of
control distance.

The situation for dynamic control (Inlining Depth metric) dis-
tances is markedly different than that for dynamic data. Although a
large fraction of sites (70% to 95%) involve distances of less than
10, a significant fraction of sites show much higher distances. In the
antlr benchmark, for example, around 12% of sites have distances
greater than 45 and 8% have distances greater than 150. It is hard to
imagine that programmers could reason operationally over such an
inline depth. Recall that inlining depth speaks about an observed en-
forcement and its use along a call path; specifically an enforcement
and a use in the same method separated by a long execution tree
would still have distance 0. Instead, these large distances perhaps
reflect the modeling in this metric that methods can modify any heap
location. To examine this hypothesis further, we ran this inlining
depth experiment except with heap modeling turned off (i.e., all
reads from the heap are treated as unknowns and all writes to the
heap are ignored), which in essence focuses the measurement to
control distances of parameters. The result was that 95% of all sites
had a distance of 3 or less, although both antlr and bloat had sites
with maximum distances of 24 and 82 respectively. This provides
some evidence for the somewhat unrealistic heap modeling hypoth-
esis. For completeness, this plot is given supplementally [4]. In
languages such as Java, type safety and encapsulation severely limit
the heap locations that a given class or package can modify. An
improved metric would perhaps take these features into account.

4.3 Threats to Validity
We have identified three principle threats to the validity to our

conclusions: (1) Benchmark selection: We have chosen benchmarks
that are easy to run under instrumentation and that have relatively
stable interfaces (so as to allow us to use the same input over differ-
ent versions of the program). This choice has led to a bias towards
text processing tools. (2) Bug selection: We examine bugs reported
in project databases, biasing our analysis towards bugs that are eas-
ier to report, which may have shorter enforcement distances. (3)
Metrics: We have examined four of many possible different dis-
tance metrics. We discuss our reasons for choosing these metrics in
Section 2, and the insights that we have obtained from the results
discussed in this section has perhaps lessened this concern.

5. RELATED WORK
The closest related work is perhaps Liang et al. [16], which mea-

sures dynamically whether particular heap abstractions would have
been sufficient for race and deadlock detection analyses. They focus
on evaluating the abstraction function and do not perform symbolic
interpretation (i.e., they instead associate facts with concrete object
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identities). In contrast, our approach is abstraction-agnostic and is
instead concerned with creating a framework to (a) rule out static
analysis designs and (b) guess a scope (e.g., a code fragment) that
may be sufficient to prove a property of interest. Livshits et al. [17]
assume that bottlenecks in code enforce taint sanitization—in our
work, we look to show that enforcements are bottlenecks. In contrast
to work on augmenting symbolic execution with concrete informa-
tion to perform directed testing or test case generation [3, 9, 18],
we perform a symbolic analysis to understand source properties
on a given concrete trace with an intertwined concrete-symbolic
state. Dynamic invariant inference [7, 10] generalizes over observed
dynamic executions to produce invariants and has been enriched
with symbolic execution in DySy [5].

D’Ambros et al. [6] provide a comprehensive survey of artifact-
based bug prediction metrics. Our work differs from these ap-
proaches in that we are not focused on predicting bugs per se but
in understanding how enforcements are inserted to guard against
faults. A large area of research studies programmers directly to see
how they reason about programs (e.g., [14, 15]). With our mea-
surements, we are not studying programmers but rather explaining
empirical observations about enforcements with hypotheses about
possible programmer behavior. These behaviors may be interesting
to validate ethnographically.

Many have worked on null pointer error detection, both statically
and dynamically. We are not specifically concerned in null pointer
detection but see it as a property that naturally lends itself to the
study of enforcement windows. Here, we mention a few pieces of
work that make some relevant observations. Hovemeyer et al. [12]
report that many null dereference bugs do not rely on heap invariants,
but instead can be discovered with straightforward static data-flow
analyses. Bond et al. [2] present origin tracking, an efficient run-
time mechanism for tracing a null dereference back to the place
where the null value was created.

6. CONCLUSION
We have identified two related concepts: validation scopes that

are the code fragments needed to prove the absence of a fault and
enforcement windows that are observed as establish-check-use se-
quences in non-faulting executions. The focus of this paper has been
on creating a framework and implementation for measuring enforce-
ment windows that enable us to inform static analysis design and to
gain insights into how enforcements appear in code. A novel aspect
of this framework is the application of symbolic trace interpretation
to selectively model limitations of static reasoning in a dynamic
analysis. We have given an indication that finding enforcement
windows can lead to useful validation scopes. Furthermore, we have
provided empirical evidence to support some widely-held beliefs
about software engineering.

We chose non-null dereference enforcement windows for a case
study because (a) null dereferences faults are widely-known with
many techniques targeted at eliminating them, and (b) there are clear
syntactic constructs that indicate establish-check-use sequences
for dereferences. Our framework and techniques should be more
broadly applicable to other enforcements, for example, downcasts,
where allocation is establish, instanceof is check and the down-
cast itself is use. We believe our approach holds promise to help
analysis designers chose effective validation scopes for a variety of
interesting safety properties.
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