
Scalable, Example-Based Refactorings with Refaster

Louis Wasserman
Google, Inc.

lowasser@google.com

Abstract
We discuss Refaster, a tool that uses normal, compilable
before-and-after examples of Java code to specify a Java
refactoring. Refaster has been used successfully by the Java
Core Libraries Team at Google to perform a wide variety
of refactorings across Google’s massive Java codebase. Our
main contribution is that a large class of useful refactorings
can be expressed in pure Java, without a specialized DSL,
while keeping the tool easily accessible to average Java
developers.

Categories and Subject Descriptors D2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques

Keywords global, large-scale, library, Java, Refaster, syn-
tax tree, error-prone, OpenJDK, Guava, refactoring

1. Problem
The Java Core Libraries Team (JCLT) at Google maintains a
variety of basic Java libraries, including collections, caching,
concurrency, and math utilities. Many of these libraries are
open-sourced as the popular Guava project. [1]

A large proportion of these library APIs were written
as better-designed replacements for Google-internal utilities,
but the JCLT is also responsible for deleting the old APIs and
migrating their callers, which can involve changing anything
from a small handful of files scattered across the codebase, to
thousands of files spread across hundreds of projects. These
migrations are an everyday part of the JCLT’s work. In 2012,
the JCLT migrated the callers of, and deleted, 156 APIs.

Notably, most library refactorings are straightforward to
describe and do not require deep analysis of the code, es-
pecially since coding style and use patterns are relatively
consistent across the Google codebase. I use the term refac-
toring (or global refactoring) to refer to large-scale transfor-

Copyright c© ACM, 2013. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in WRT ’13, Workshop on Refactoring Tools,
http://dx.doi.org/10.1145/2541348.2541355.
WRT ’13, Oct 27, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2604-9/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541348.2541355

mations intended to preserve the correctness of the codebase,
whether or not the transformation is semantics-preserving in
the general case.

I present a refactoring tool, which I named Refaster, de-
signed to satisfy three key goals:

1. Scalability: the ability to efficiently perform a refactoring
over the entire Google codebase.

2. Expressiveness: the ability to express a large class of
library refactorings.

3. Usability: should be easily usable, understandable, and
predictable to most Java developers.

1.1 Related Work
Most preexisting refactoring tools the JCLT was aware of fell
into one of three categories, none of which quite satisfied the
team’s needs.

• The “canned” refactoring tools built into most IDEs, such
as renaming, inlining, or extracting methods, are focused
on the most common operations needed for relatively
local edits. These refactoring tools are highly usable, but
could not express some of the more complex transforma-
tions we required. Some of the more complex refactor-
ings needed by the JCLT, such as “change calls to method
A whose argument is the result of method call B into
method call C,” seemed unreasonable to add to an IDE
with constrained menu space. Additionally, none of these
tools could be scaled to the Google codebase.

• Refactoring tools like Jackpot [5] used specialized DSLs
to express code analyses and transformations. These tools
matched our needs much better than the simple canned
refactorings, but had some problems: none of them could
express Java generics constraints, they required users to
learn a specialized and unfamiliar DSL, and none of them
were built to scale.

• A project at Google, named “error-prone,” [2] built an
open-source Java API (built on top of the OpenJDK com-
piler) to perform arbitrary analysis on the fully typed syn-
tax tree of source code, and to output simple text replace-
ments. On top of this API, a tool called JavacFlume was
built to map these transformations over the entire Google
codebase. JavacFlume performs a Map/Reduce (powered

by the FlumeJava pipeline tool [3]) over a daily snapshot
of everything needed to build all Java code at Google:
all source code, and the compiled dependencies of each
target. This Map/Reduce recompiles every Java file at
Google with a modified compiler that runs the custom
AST analysis and outputs simple text replacements for
each file. Most analyses take between 5 and 20 minutes,
which we considered adequately scalable.
error-prone’s API is primarily designed to identify classes
of programmer errors, a task at which it excels, but the
API can be difficult to use for simple refactorings. Many
users found programmatically manipulating the AST to
be disorienting, and to take a long time even for relatively
simple refactorings. Recipients of refactoring changes
found it difficult to understand the logic used by the
refactoring code.

2. Refaster
Based on these experiences, I developed Refaster. Refaster is
a command-line tool that takes as input a normal, compilable
Java class containing a before-and-after example of Java
code, and applies the corresponding transformation across
the Java codebase. Refaster’s primary goal is to be able to
express most library refactorings while being intuitive and
easy to use.

2.1 Example
One recent refactoring migrated users to a new API for
Base64 encoding [4]. The original code might have looked
like, for example,

System.out.println(Base64.encodeWebSafe(

Files.toByteArray(file),

false /* no padding */));

with the new API looking like

System.out.println(

BaseEncoding.base64Url().omitPadding()

.encode(Files.toByteArray(file)));

A Refaster refactoring for this migration looks like:

class BaseEncodingMigration {
@BeforeTemplate public String before(

byte[] bytes) {
return Base64.encodeWebSafe(

bytes, false /* no padding */);

}
@AfterTemplate public String after(

byte[] bytes) {
return BaseEncoding.base64Url()

.omitPadding()

.encode(bytes);

}
}

This refactoring migrates users who pass in a literal false
to Base64.encodeWebSafe to use the BaseEncoding API
instead. Note that bytes is a placeholder for any expression
of type byte[], not just a variable.

Notably, Refaster includes no dataflow analysis; it re-
quires a syntactic match. For example, this code would not
be refactored:

doPadding = false;

System.out.println(Base64.encodeWebSafe(

Files.toByteArray(file), doPadding));

2.2 Transformation Structure
A Refaster transformation consists of a class with one
or more methods annotated @BeforeTemplate, and one
method annotated @AfterTemplate. Each template method
may have arguments, called expression variables, corre-
sponding to expressions of the appropriate type appearing in
user code, such as bytes in the Base64 example. The body
of the template method is a single return on an expression;
this is necessary to make sure the template compiles as
normal Java code, with the return type corresponding to
the type of the expression. Refaster currently only supports
refactoring expressions, not multi-statement constructs. The
transformation should be read as replacing any expression
which matches one of the @BeforeTemplate expressions
with the corresponding expression in the @AfterTemplate.
Refaster evaluates a match of a @BeforeTemplate method
T against an expression in user code E as follows:

1. Verify that the syntax tree of E matches the syntax tree
of T , binding expression variables to the corresponding
expressions from E.

2. Verify that any method overloads called in E match the
method overloads called in T .

3. Invoke the compiler’s type checker on an attempt to in-
voke T with the actual expressions from E substituted for
the expression variables. (This notably allows Refaster
to automatically benefit from generics, autoboxing, and
the other features of the Java type system, while using
typechecking rules already familiar to Java developers.)

If each of these steps is successful, Refaster generates a
text substitution replacing E with the expression from the
@AfterTemplate, with the actual expressions from E sub-
stituted for the appropriate expression variables.

Refaster was built on top of the JavacFlume infrastruc-
ture, and runs across the Google codebase as fast as any
other JavacFlume refactoring, between 5 and 20 minutes.
This cost is small enough to be dominated by testing and
code reviewing time, and is not a major bottleneck. No-
tably, the time to assemble and prepare the resources for
the Map/Reduce dominates the time to perform the actual
analysis, so it was not critical to heavily optimize Refaster’s
analysis pass. Notably, due to Google’s approach of a single
repository with all development done at head, changes that

modify the entire codebase are not significantly different
from local changes, and do not necessarily need to be split
up.

2.3 Results
Refaster has proven itself adequately scalable and usable
enough for the JCLT’s refactoring needs. Refaster has been
used for over 30 refactorings committed to the Google code-
base, including both local and global refactorings, and refac-
torings performed inside and outside the JCLT. Users so far
have reported that expressing a transformation with a before-
and-after example of normal Java is natural and straight-
forward. Additionally, once a user understands the basic
structure of a Refaster template, the meaning of any other
Refaster template is almost instantly apparent, compared to
code that has to decompose an AST. The Base64 migra-
tion example above is in many ways typical of the JCLT’s
API migration needs: the API to be migrated is simple and
stateless, and the migration has essentially no preconditions
beyond what can be expressed with a syntactic match and
with the type system. Support for complex refactorings was
deliberately set aside in favor of keeping the tool as simple
to use as possible. Despite these simplifications, Refaster can
express several useful constraints:

• refactoring invocations where an argument is a particular
literal, as in the Base64 example

• refactoring a particular chain of method invocations:

// this refactoring was actually performed

class UseHashBytesShortcutRefactoring {
@BeforeTemplate public HashCode before(

HashFunction hashFn, byte[] bytes) {
return hashFn.newHasher()

.putBytes(bytes)

.hash();

}
@AfterTemplate public HashCode after(

HashFunction hashFn, byte[] bytes) {
return hashFn.hashBytes(bytes);

}
}

• constraining arguments to be the result of a particular
method call:

// this refactoring was actually performed

class HashStringRefactoring {
@BeforeTemplate public HashCode before(

HashFunction hashFn, String string,

Charset charset) {
return hashFn.hashBytes(

string.getBytes(charset));

}
@AfterTemplate public HashCode after(

HashFunction hashFn, String string,

Charset charset) {

return hashFn.hashString(

string, charset);

}
}
In some more complex cases, Refaster has been useful in

performing intermediate steps in a more involved migration
process. For example, the following API

interface InputSupplier {
InputStream openStream();

}
class ByteStreams {
...

static HashCode hash(InputSupplier supplier,

HashFunction function) {..}
}
was migrated to a new, fluent replacement API:

abstract class ByteSource {
abstract InputStream openStream();

HashCode hash(HashFunction function) {...}
}
To accomplish this migration, the JCLT made ByteSource

temporarily implement InputSupplier, and began migrat-
ing all the sources of InputSupplier instances to return
ByteSource instances. At the same time, Refaster was used
with the following template:

class ByteStreamHashMigration {
@BeforeTemplate HashCode hashByteSource(

ByteSource src, HashFunction fn) {
return ByteStreams.hash(src, fn);

}
@AfterTemplate HashCode fluentHash(

ByteSource src, HashFunction fn) {
return src.hash(fn);

}
}
This Refaster refactoring was safe even though new uses
of InputSupplier crept into the codebase while we were
still trying to migrate existing users. Follow-up migra-
tions replaced more InputSupplier occurrences with
ByteSource, allowing the migration to progress incremen-
tally.

2.4 Limitations
Users have encountered two main failure modes in Refaster:
first, the false negatives discussed above, where Refaster
fails to migrate a method invocation because of a syntactic
mismatch, where dataflow analysis might have produced a
positive result. False positives take a variety of forms: in
some cases, side-effecting expressions can cause problems
if Refaster rearranges them. Additionally, Refaster some-
times attempts to rewrite the implementation of the new
API. For example, if BaseEncoding.base64Url() above

used Base64.encodeWebSafe in its implementation, Re-
faster might create an infinite loop by trying to reimple-
ment BaseEncoding.base64Url() in terms of itself. Re-
faster also requires special logic to ensure that it does not
refactor its own input templates, as the @BeforeTemplate

methods, by definition, invoke the method to be replaced.
None of these failure modes have been insurmountable prob-
lems; a small handful of manual migrations or additional
@BeforeTemplate rules have sufficed to address false neg-
atives, and unit tests have sufficed to identify false positives
in all observed cases.

The team have so far encountered only a handful of JCLT
refactorings where Refaster was not useful at all. For exam-
ple, some refactorings have required whole-class analysis,
or adding or removing a thrown exception type from user
methods, which Refaster cannot do. In many ways, it is
unsurprising that most JCLT refactorings require at most
small variations on traditional common transformations such
as renaming and inlining. Renaming and inlining make up a
large percentage of smaller-scale refactorings [6]; I suspect
the variations required by the JCLT are largely due to the
unusually large differences between the old and new APIs.

One unfortunate limitation has been that Refaster gains
all of the limitations of the Java compiler’s type inference,
along with the benefits: most notably, it fails to match
in cases where the Java compiler would require an ex-
plicit type argument, i.e. where the compiler would require
Foo.<String>bar(). Additionally, Refaster cannot cur-
rently recognize cases where the @AfterTemplate would
require an explicit type argument. Even if the original user
code used an explicit type argument, Refaster cannot assume
that method invocations in the @BeforeTemplate are in
one-to-one correspondence with the method invocations
in the @AfterTemplate. This issue could conceivably be
addressed by recompiling the user code with the appropriate
substitution, but this would require significant changes to
Refaster’s implementation.

3. Future Work
Refaster does not include any dataflow analysis for two main
reasons: the additional effort required to add dataflow analy-
sis, and the difficulty of supporting dataflow analysis without
introducing a DSL, while at the same time keeping Refaster
simple and predictable even for beginner users. This would
be an interesting direction to explore further, as dataflow
analysis would make possible some of the refactorings we
have not yet been able to apply with Refaster.

In the future, we hope to open-source Refaster. The pri-
mary obstacle is integrating Refaster with an open-source
build system like Maven, as Refaster requires compilations
to be augmented with a side input (the refactoring template)
and to output modified source code.

Acknowledgments
Refaster builds on the work of many people, but espe-
cially the error-prone creators, Eddie Aftandilian, Caitlin
Sadowski, and Alex Eagle, and the team behind the static
analysis infrastructure at Google, led by Jeffrey van Gogh.
Kevin Bourrillion and Toby Smith were instrumental in their
support for the Refaster project.

References
[1] Guava project on Google Code, 2013. URL

https://code.google.com/p/guava-libraries/.

[2] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan. Building
Useful Program Analysis Tools Using an Extensible Java
Compiler. In 2012 IEEE 12th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages
14–23. IEEE, 2012.

[3] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In Proceedings of the 2010 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 363–375, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0019-3. . URL
http://doi.acm.org/10.1145/1806596.1806638.

[4] S. Josefsson. The Base16, Base32, and Base64 Data
Encodings. RFC 4648 (Proposed Standard), Oct. 2006. URL
http://www.ietf.org/rfc/rfc4648.txt.

[5] J. Lahoda, J. Bečička, and R. B. Ruijs. Custom
declarative refactoring in NetBeans: tool demonstration.
In Proceedings of the Fifth Workshop on Refactoring
Tools, WRT ’12, pages 63–64, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1500-5. . URL
http://doi.acm.org/10.1145/2328876.2328886.

[6] E. Murphy-Hill, C. Parnin, and A. Black. How We Refactor,
and How We Know It. IEEE Transactions on Software
Engineering, 38(1):5–18, 2012. ISSN 0098-5589. .

