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ABSTRACT 

Correcting erroneous input (i.e., correction) and completing 

a word based on partial input (i.e., completion) are two 

important “smart” capabilities of a modern intelligent 

touchscreen keyboard. However little is known whether 

these two capabilities are conflicting or compatible with 

each other in the keyboard parameter tuning. Applying 

computational optimization methods, this work explores the 

optimality issues related to them. The work demonstrates 

that it is possible to simultaneously optimize a keyboard 

algorithm for both correction and completion. The keyboard 

simultaneously optimized for both introduces no 

compromise to correction and only a slight compromise to 

completion when compared to the keyboards exclusively 

optimized for one objective. Our research also demonstrates 

the effectiveness of the proposed optimization method in 

keyboard algorithm design, which is based on the Pareto 

multi-objective optimization and the Metropolis algorithm.  

For the development and test datasets used in our 

experiments, computational optimization improved the 

correction accuracy rate by 8.3% and completion power by 

17.7%.  

Author Keywords 

Smart touch screen keyboard; mobile; intelligent user 

interfaces; keyboard algorithm; optimization; correction; 

completion; text input 

ACM Classification Keywords 

H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous.  

INTRODUCTION 

Text entry is one of the most basic, common and important 

tasks on touchscreen devices (e.g., smartphones and 

tablets). A survey reported by time.com [22] shows that the 

top three most common activities on smartphones are 

texting, emailing, and chatting on social networks: all of 

them involve intensive text input. According a study from 

Nielsen [20], a teenager on average sends over 3,000 

messages per month, or more than six texts per waking 

hour.  

Despite its popularity and importance, touchscreen text 

entry is inherently error-prone and challenging, because of 

the imprecision of finger touch and the small key size. To 

improve the efficiency of text entry, modern “smart” 

keyboards are becoming intelligent: they are able to correct 

user’s erroneous input (i.e., correction) and complete a 

word based on partial input (i.e., completion). For example, 

the Google keyboard on Android corrects “thaml” to 

“thank”, and completes the word “computer” after a user 

types “comput” (Figure 1). 

 

Figure 1. Examples of correction and completion on the 

Google keyboard.  Left: “thaml” is corrected to “thank”. 

Right: “comput” is completed to “computer”. The 

corrected/completed words are displayed in the middle of the 

suggestion bar. A user enters the word by selecting it from the 

suggestion bar, or pressing the space bar.  

Both correction and completion take advantage of the 

information regularities in a language, matching users’ 

input signals against words from a lexicon. However, they 

cast the language regularities for different purposes. 

Correction uses the language regularities for correcting 

errors due to the imprecision of the finger touch or spelling 

errors such as inserting /omitting /substituting /transposing 

letters, while completion uses the language regularities for 

predicting unfinished letters based on partial (either correct 

or erroneous) input to offer keystroke savings.  

Correction and completion are different, although related, 

aspects of modern text input systems. In some cases, these 
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two capabilities might conflict with each other. For 

example, given the input string “knowl”, a strong correction 

algorithm might treat it as a letter substitution error and 

suggest “known”, while a strong completion algorithm 

might be in favor of suggesting “knowledge” to save 4 

more keystrokes. To effectively correct errors and also 

maximize potential keystroke savings, the keyboard 

algorithm needs to strike a balance between correction and 

completion.  

A large amount of research [16, 8, 10] has been conducted 

to improve the qualities of touch screen keyboard 

algorithms. However, most of the previous research focused 

on correction. Completion has received little attention in the 

recent research literature. Furthermore, the relationship 

between these two capabilities remains unknown.  We do 

not even know whether it is possible to design a keyboard 

algorithm performing well for both, given the potential 

conflict between them. 

In this paper, we propose a technique based on the 

Metropolis optimization algorithm and Pareto multi-

objective optimization to simultaneously improve the 

correction and completion capabilities of a keyboard 

algorithm, and investigated their relationship. We 

conceptualize the keyboard algorithm design as a multi-

objective optimization problem, with the two optimization 

objectives 1) correction (measured in word score to be 

defined later) and 2) completion (measured in keystroke 

saving ratio).  

Our investigation shows that correction and completion 

have only a minor conflict in the optimization space. The 

algorithm simultaneously optimized for both performs 

equally well with the algorithm exclusively optimized for 

correction in correcting input, and has only a minor loss in 

the completion capability (1.5% difference in keystroke 

saving ratio) compared with the keyboard exclusively 

optimized for completion. 

Our research demonstrates that the proposed technique is 

effective in improving a keyboard’s correction and 

completion capabilities. One of the optimized keyboard 

algorithms (     ) improves the performance by 8.3% in 

correction and 17.7% in completion over the keyboard 

before the optimization (         ).  

RELATED WORK 

Improving Correction 

A sizeable amount of research has been conducted to 

improve the keyboard error correction ability. Goodman et 

al. [12] proposed combing a language model with a key 

press model to select the most probable key sequence other 

than the key sequence dictated by strict key boundaries. 

Kristensson and Zhai [16] invented an “elastic” keyboard, 

which viewed the hit points as a geometric pattern. The 

pattern was matched against patterns formed by the letter 

key center positions of legitimate words in a lexicon. The 

evaluation showed that the keyboard was capable of 

correcting words even if the user missed all the intended 

keys, as long as the user’s tapping pattern is close enough to 

the intended word. Findlater and Wobbrock [8] proposed 

improving ten-finger touchscreen typing through 

adaptation. By adapting the underlying key-press 

classification model, the keyboard improved the typing 

speed compared to a control condition with no 

personalization. Kane, Wobbrock, and Harniss et al. [14] 

developed TrueKeys, combining models of word frequency, 

keyboard layout and tying error patterns to correct typing 

mistakes. Goel, Findlater and Wobbrock [10] developed the 

WalkType keyboard which leveraged a mobile device’s 

built-in accelerometer to compensate for extraneous 

movement while walking. Goel, Jansen, and Mandel et al. 

[11] proposed reducing the text entry error rates by 

leveraging information about a user’s hand posture. Yin, 

Ouyang, Partridge, and Zhai  [24] further proposed adapting 

the keyboard underlying spatial model to factors including 

input hand postures, individuals, and target key positions. 

With a hierarchical spatial backoff model, the adaptation 

was capable of reducing the language-model-independent 

error rate by 13.2%.  

Improving Completion 

In contrast to correction, improving the completion 

capability on a touchscreen keyboard has received little 

attention in the recent HCI research literature. Instead, some 

related work can be found in earlier research focused on 

users with motor impairments. Word prediction is a major 

component in computer-based augmentative and alternative 

communication (AAC) systems to help people with 

disabilities communicate in the areas of speech, writing, 

and computer applications. Keystroke savings provided by 

several commercial word prediction systems [13] have been 

measured in the range of 35- 47%. Koester and Levin [15] 

further developed a model to simulate users’ word entry 

time during the word prediction use. 

Although word completion has received limited attention 

from academic research, it has been playing a major role in 

commercial products. The majority of present touchscreen 

keyboards such as Android, iPhone, Windows phone 

keyboards provide completion to various degrees.  

Keyboard Optimization 

Optimization has been widely adopted as an approach to 

improve the keyboard performance, though the previous 

work mostly focuses on optimizing the keyboard layout. 

As early as 1986, Getstow et al [9] used a simple greedy 

algorithm to optimize a keyboard for motor-impaired users. 

MacKenzie and Zhang [19] manually optimized their 

“OPTI” layout. Zhai, Hunter and Smith [25, 26] introduced 

the Metropolis keyboard and later ATOMIK using the 

Metropolis randomized optimization technique. All these 

were layouts optimized to improve the speed of stylus/one 

finger text entry for a single language. Bi, Smith and Zhai 

[5] optimized the touch screen keyboard layout for five 

languages: English, Spanish, French, German, and Chinese 



 

at the same time. The optimized layout has minor 

performance drop compared to the layout exclusively 

optimized for one language. Bi, Smith and Zhai [4] also 

explored optimizing the layout while maintaining a certain 

level of familiarity with Qwerty layout. Their work led to 

the Quasi-Qwerty layout, which minimized the finger/stylus 

travel distance and each key was at most one-key away 

from its original position on the Qwerty layout. Dunlop and 

Levine [6] later introduced the tap interpretation clarity as 

the third measure, conducting multidimensional Pareto 

optimization for speed, familiarity and improved spell 

checking. Their research was the first in the keyboard 

literature to apply Pareto optimization and led to a triple 

optimized keyboard layout. Oulasvirta, Reichel and Li et al. 

[21] extended the layout optimization to a split keyboard 

for two-thumb typing. The optimized KALQ layout 

minimizes the thumb travel distance and maximizes the 

alternation between thumbs.  

THE KEYBOARD ALGORITHM 

Text entry on touch keyboards can be viewed as an 

encoding and decoding processes: the user encodes the 

intend word    into a series of touch points             ), 

and the keyboard algorithm acts as the decoder, retrieving 

  from the spatial signals.  

At an abstract level, the decoder selects a word    from the 

keyboard's lexicon and calculates its probability of being 

the intended word based on the information from the 

following three sources: 

1) The proximities of letters in    to the touch points 

            ) 

2) The prior probability of    from a language model. 

3) The possibilities of spelling errors (e.g., 

inserting/omitting/transposing/substituting letters). 

Pruning out the improbable ones, a list of the most probable 

words is then ranked and suggested to the user. 

While many modern keyboard algorithms may work 

similarly at this abstract level, the actual implementations 

of industrial modern keyboards may be rather complex and 

vary across products. Since most of the commercial 

keyboard algorithms are not published, it is impossible to 

develop a general model representing all of them. 

Fortunately, we could conduct the present research on open 

source keyboards.   

The Baseline Keyboard 

We developed a keyboard, referred as           hereafter, 

based on the latest version (Android 4.3_r3) of the Android 

Open Source Project (AOSP) Keyboard [1] which is open-

sourced and broadly deployed  in Android mobile devices.  

          shared the similar algorithm as the AOSP 

keyboard which can be read and analyzed by any researcher 

or developer. In brief, it worked as follows. The lexicon 

composed of around 170,000 words was stored in a trie data 

structure. As the algorithm received spatial signals 

            ), it traversed the trie and calculated the 

probabilities for nodes storing words, based on the 

aforementioned three sources.  

A critical part of the algorithm is to calculate the 

probabilities of word candidates by weighting information 

from three sources. Same as the AOSP keyboard, the 

weights of different sources are controlled by 21 parameters 

illustrated and explained in Table 1. These parameters are 

pertinent to the performance of          .  Altering them 

adjust the relative weights of information from different 

sources, leading to different correction and completion 

capabilities. For example, reducing the cost of un-typed 

letters (i.e., lowering COST_LOOKAHEAD) would make 

the keyboard in favor of suggesting long words, but it might 

be detrimental to the correction ability.           is 

implemented based on the AOSP keyboard, and the 

parameters in           shared the same values as those in 

the AOSP keyboard, which serves as the baseline condition 

in the current research. 

MEASURING CORRECTION AND COMPLETION 
Typical laboratory-based studies demand intensive labor 

and time to evaluate keyboards and may still lack the 

necessary sensitivity to reliably detect important differences 

amid large variations in text, tasks, habits, and other 

individual differences. Bi, Azenkot, Partridge and Zhai [3] 

proposed using remulation – replaying previously recorded 

data from the same group from the same experiment in real 

time simulation – as an automatic approach to evaluate 

keyboard algorithms. We adopt a similar approach in the 

present research: we evaluated a keyboard algorithm 

against previously recorded user data to measure its 

performance. Unlike the Octopus tool [3] which evaluated 

keyboards on devices, we simulated the keyboard algorithm 

and ran tests on a workstation.  Octopus evaluates 

keyboards in a “black box” fashion without access to their 

algorithms and source code. The off-device approach in this 

work is limited to the keyboards whose algorithm and 

source code are accessible, but is much faster than Octopus. 

Datasets 

We first ran studies to collect data for optimization and 

testing. The data collection studies were similar to those in 

Azenkot and Zhai [2], and Bi et al. [3]. To avoid data 

collection’s dependencies and limitations on keyboard 

algorithms, a Wizard of Oz keyboard was used in the study 

(Figure 2), which provided users with only asterisks as 

feedback when they were entering text.  

Each participant entered the same set of 50 phrases 

randomly chosen from the MacKenzie and Soukoreff’s 

phrase set [10]. All touch events were logged. Participants 

were asked to enter text “as naturally and as fast as 

possible.” The first 10 phrases for each user were 

considered a warm-up and excluded in the dataset. A 

Galaxy Nexus phone was used throughout the study, and 



 

Parameter Current Value Description 

DISTANCE_WEIGHT_LENGTH 0.132 Weight for the length of a word 
PROXIMITY_COST 0.086 Weights for the distances between touch points and 

the corresponding letters in a word 
FIRST_PROXIMITY_COST 0.104 
OMISSION_COST 0.458 Weights for omission errors 
OMISSION_COST_SAME_CHAR 0.491 
OMISSION_COST_FIRST_CHAR 0.582 
INSERTION_COST 0.730 Weights for insertion errors 
INSERTION_COST_SAME_CHAR 0.586 
INSERTION_COST_FIRST_CHAR 0.623 
TRANSPOSITION_COST 0.516 Weights for transposition errors 
SPACE_SUBSTITUTION_COST 0.319 Weights for space substitution errors  
ADDITIONAL_PROXIMITY_COST 0.380 Weights for the distances between touch points and 

the corresponding letters in a word 
SUBSTITUTION_COST 0.403 Weights for substitution errors 
COST_NEW_WORD 0.042 Weights for starting a new word 
COST_SECOND_OR_LATER_WORD_FIRST_C

HAR_UPPERCASE 
0.25 Weights for capitalized words  

DISTANCE_WEIGHT_LANGUAGE 1.123 Weight for language model  
COST_FIRST_LOOKAHEAD 0.545  

Weight for un-typed letters in a word 
COST_LOOKAHEAD 0.073 
HAS_PROXIMITY_TERMINAL_COST 0.105 Weights for terminal nodes 
HAS_EDIT_CORRECTION_TERMINAL_COST 0.038 

HAS_MULTI_WORD_TERMINAL_COST 0.444 

Table 1. Parameters for calculating the probability of a word candidate in the       and AOSP keyboard algorithms. They control 

the weight of information from different sources.  These values were from “scoring_params.cpp” in the AOSP source tree [1] 

(Android 4.3 on Sep. 16, 2013).

 

Figure 2. The WOZ keyboard for data collection, which was 

designed to capture fundamental text entry behaviors. 

the keyboard was equal to the stock Android keyboard in 

dimensions.  We conducted two studies. The first one was 

to collect data for the algorithm parameter optimization 

(referred as the development dataset), and the second one 

was for testing (referred as the test dataset). In the first 

study, we recruited 40 participants. The average age was 32 

(the youngest was 18 and the oldest was 59).  Five were 

left-handed. They were allowed to freely choose text entry 

hand postures. Twenty-four users entered text with two 

thumbs, 4 with one thumb, and 12 with the index finger. It 

included 1,597 phrases in total. 

In the second study, we recruited 24 participants, with ages 

between 20 and 30.  All were right handed. They all entered 

text with index fingers. This data set included 960 phrases 

in total. 

The keyboard algorithm’s correction and completion 

capabilities were evaluated using the collected data. Current 

touchscreen keyboards perform word-level correction: they 

correct or complete a word after a word terminator such as 

a space or punctuation is entered. Therefore, the collected 



 

data was segmented into words in evaluation. After the 

segmentation, the development dataset included 7,106 

words, and the test dataset had 6,323 words. 

Correction 

Correction is measured in word score, which reflects the 

percentage of correctly recognized words out of the total 

test words. The word score     is defined as:    

  
                                        

                           
  × 100%     Eq. 1 

Completion 

Completion is measured in keystroke saving ratio    . 

Given a data set with   test words,   is defined as: 

                     (  
∑         
 
   

∑         
 
   

) × 100%                 Eq.2 

         is the maximum number of keystrokes for 

entering a word   . In the worst scenario where the 

keyboard fails to complete   , the user needs to enter all the 

letters of     and presses the space bar to enter it. Therefore,  

                               = length of    + 1              Eq. 3   

         is the minimum number of keystrokes needed to 

enter   . Assuming that users fully take advantage of the 

completion capability,    will be picked as soon as it is 

suggested on the suggestion bar. Therefore,           is the 

least number of keystrokes needed to bring    on the 

suggestion bar plus one more keystroke for selection. The 

number of the slots on the suggestion bar may vary across 

keyboards. The keyboard used in this work provides three 

suggestion slots, the same as the AOSP keyboard. 

Note that the measure defined above is the maximum 

savings offered to a user by the keyboard algorithm. If and 

how often the user takes them depends on the UI design, the 

user’s preference and bias in motor, visual and cognitive 

effort trade-offs which are separate research topics. 

OPTIMIZING KEYBOARD ALGORITHM FOR 
CORRECTION AND COMPLETION 
In this section, we introduce a method for optimizing a 

keyboard algorithm for correction and completion, and 

apply it to           . In brief, we conceptualize the 

keyboard algorithm design as a multi-objective 

optimization problem with two objectives 1) correction and 

2) completion. For           particularly, it is equivalent to 

optimizing the 21 parameters in Table 1 for these two 

objectives. 

To solve a multi-objective optimization problem, a simple 

approach is to convert the multiple objectives into one 

objective function, where each objective is a component in 

a weighted sum. However, the challenge of this approach is 

choosing an appropriate weight for each objective. Also, 

this method returns only one solution, which might not be 

the most desirable solution. 

Instead of returning a single solution, we performed a 

Pareto optimization [7], which returns a set of Pareto 

optimal solutions. A solution is called Pareto optimal or 

non-dominated, if neither of the objective functions can be 

improved in value without degrading the other. A solution 

that is not Pareto optimal is dominated: there is a Pareto 

optimal solution which is better than it in at least one of the 

criteria and no worse in the other. Analyzing the Pareto 

optimal solutions reveals the trade-off between multiple 

objectives. Additionally, the Pareto set provided a range of 

optimal solutions, allowing keyboard designers and 

developers to pick the desirable one according to their 

preferences.   

We adopted the Metropolis optimization algorithm [25] to 

search for the Pareto set. The process was composed of 

multiple sub processes. Each sub process started from a 

random set of the 21 parameters in the range [0, 5], the 

estimated range of the parameter values based on the 

analysis of the algorithm. The sub process then optimized 

the 21 parameters for the objective function (Eq. 4) based 

on the collected development dataset: 

                                                       Eq. 4 

which is a sum of word score     and keystroke saving 

ratio   ) with a weight            .   was randomized 

at the beginning of each sub process and remained 

unchanged during the sub process.   changed across sub 

processes. Our purpose was to ensure that the Pareto set 

covered a broad range of Pareto optimal solutions. 

In each iteration of a sub process, the 21 parameters moved 

in a random direction with a fixed step length (0.01). We 

then evaluated the keyboard algorithm with the new 

parameters against the development dataset according to the 

objective function (Eq. 4). Whether the new set of 

parameters and search direction were kept was determined 

by the Metropolis function: 

                        {
 

  

          

             

                  Eq. 5 

        was the probability of changing from the 

parameter set O (old) to the parameter set N (new); 

             , where     , and      were values of 

objective functions (Eq. 4) for the new and old set of 

parameters respectively;  was a coefficient;  was 

“temperature”, which can be interactively adjusted. 

This optimization algorithm used a simulated annealing 

method. The search did not always move toward a higher 

value of objective function. It occasionally allowed moves 

with negative objective function value changes to be able to 

climb out of a local minimum.  

After each iteration, the new solution was compared with 

the solutions in the Pareto set. If the new solution 

dominated at least one solution in the Pareto set, it would be 

added to the set and the solutions dominated by the new 

solution would be discarded.  



 

After 1000 iterations, the sub process restarted with another 

random set of parameters and a random   for the objective 

function Eq. 4. We ensured that there was at least one sub 

process for each of the following three weights:     , 0.5, 

and 1. The optimization led to a Pareto set of 101 Pareto 

optimal solutions after 100 sub processes with 100,000 

iterations in total, which constituted a Pareto frontier 

illustrated in Figure 3. 

 

Figure 3. The Pareto frontier of the multi-objective 

optimization. The three red dots were solutions with the most 

word score (  ), the most keystroke savings (  ), and the 

highest            (    ) respectively. 

The Pareto frontier shows that the Pareto optimal solutions 

distribute in a small region, with keystroke saving ratio 

ranging from 30% to 38% and word score ranging from 81% 

to 88%. As shown in Figure 3, the Pareto frontier forms a 

short, convex, L-shaped curve, indicating that correction 

and completion have little conflict with each other and the 

algorithm can be simultaneously optimized for both with 

minor loss to each. Among the 101 Pareto optimal solutions, 

we are particularly interested in three solutions, illustrated 

in red dots in Figure 3:  

1) The solution with the highest word score ( ), denoted 

by   . It is the solution exclusively optimized for 

correction.   

2) The solution with the highest keystroke saving ratio ( ), 

denoted by   . It is the solution exclusively optimized 

for completion. 

3) The solution with highest           , denoted by 

    . It is the solution optimized for both correction 

and completion, with 50% weight for each objective. 

   and    reveal the highest correction and completion 

capabilities a keyboard can reach, while      is the most 

balanced solution with equal weights for correction and 

completion. The parameter sets, correction and completion 

capabilities for   ,    and      are reported in Table 2.  

The optimization results showed the default parameter set 

taken from the AOSP keyboard in Android 4.3 (Sep. 16, 

2013) was sub-optimal in both correction and completion 

according to the criteria and the development dataset used 

in this study   ,   , and      all improve the word score 

and keystroke saving ratio by at least 10% over          .  

It is more illuminating to compare the three Pareto optimal 

solutions   ,   ,         , since they are all optimized 

under identical conditions with the same dataset. Table 2 

shows that      is close to    in keystroke saving ratio, 

and close to    in word score. It indicates simultaneously 

optimizing for both objectives causes only minor 

performance degradation for each objective. These results 

were later verified with the separate test dataset.  

Parameters moved in various directions after the 

optimization. For such a complex optimization problem 

with 21 free parameters, it was difficult to precisely explain 

why each parameter moved in such a direction after the 

optimization. However, we observed some distinct patterns 

of parameter value changes, which partially explain the 

performance differences across keyboards.  

For examples, the parameters pertinent to the cost of  

proximity of touch points to letters  (i.e., 

PROXIMITY_COST, FIRST_PROXIMITY_COST) 

decreased substantially from          to   ,   , and     , 

indicating that the optimized algorithms tend to be more 

tolerant to errors in spatial signals.  The cost of untyped 

letters in a word (i.e., COST_FIRST_LOOKAHEAD) also 

decreased, indicating that the optimized algorithms were 

more likely to predict untyped letters as the user’s intention, 

especially after typing the first letter, to save keystrokes.  

EVALUTING KEYBOARD ALGORITHMS 

To test the external validity of the optimization results, we 

evaluate the keyboard algorithms before and after the 

optimization using the test dataset, which was collected 

from 24 users not participating in the development dataset 

collection. 

Correction 

Word Score. We first analyzed the word scores for different 

keyboards. An ANOVA showed that the keyboard 

algorithm had a significant main effect on word score (F3, 69 

= 58.379, p < 0.001). The mean (SD) scores were 82.7% 

(9.1%) for          , 91.0% (4.9%) for     , and   86.9% 

(7.9%) for   , and 91.2%(4.6%) for   . Pairwise mean 

comparison showed the differences were significant for 

each pair ( p < 0.001) except for    vs.     . (p = 0.509). 

Figure 4 also shows the mean (SD) word score per word 

length. As shown,   , and      performed almost equally 

well across all word lengths. The biggest gap between these 

 



 

                      

Word Score 77.5% 88.4% 81.7% 88.0% 

Keystroke Saving Ratio 20% 30.9% 38.3% 37.3% 

Parameters     

DISTANCE_WEIGHT_LENGTH 0.132 0.052 0.412 0.172 

PROXIMITY_COST 0.086 0 0 0 

FIRST_PROXIMITY_COST 0.104 0.01 0.08 0.05 

OMISSION_COST 0.458 0.048 0.458 0.108 

OMISSION_COST_SAME_CHAR 0.491 1.371 0.991 0.951 

OMISSION_COST_FIRST_CHAR 0.582 0.092 0.582 0.382 

INSERTION_COST 0.730 1.17 1.13 0.740 

INSERTION_COST_SAME_CHAR 0.586 0.01 0.08 0 

INSERTION_COST_FIRST_CHAR 0.623 0.753 0.613 0.583 

TRANSPOSITION_COST 0.516 0.576 0.436 0.436 

SPACE_SUBSTITUTION_COST 0.319 0.22 0.210 0.06 

ADDITIONAL_PROXIMITY_COST 0.380 1.20 1.08 1.06 

SUBSTITUTION_COST 0.403 1.603 1.143 1.143 

COST_NEW_WORD 0.042 0.12 0.02 0.332 

COST_SECOND_OR_LATER_WORD_FIRST_C

HAR_UPPERCASE 

0.25 0.69 0.370 0.09 

DISTANCE_WEIGHT_LANGUAGE 1.123 1.783 1.463 1.573 

COST_FIRST_LOOKAHEAD 0.545 0.053 0 0.095 

COST_LOOKAHEAD 0.073 0.08 0 0 

HAS_PROXIMITY_TERMINAL_COST 0.105 0.20 0.11 0.04 

HAS_EDIT_CORRECTION_TERMINAL_COST 0.038 1.098 1.418 0.998 

HAS_MULTI_WORD_TERMINAL_COST 0.444 1.434 0.994 1.224 

Table 2. Word Scores, Keystroke Saving Ratios and Parameters for the algorithm before (         ), and after (           ) the 

optimization. The blue indicates the parameters decreased and red means the values increased after the optimization. 

two keyboards was for words with 7+ characters: the word 

score of    was 1.5% higher. Both   , and      performed 

better than           and    across all word lengths, 

especially for words with 5 or more letters. The word scores 

for    , and      were at least 14% (absolute) higher than 

          and 6% higher than   . 

Ratio of Error Reduction. In addition to word score, we also 

examined the keyboard’s capability of correcting users’ 

erroneous input strings, which is measured in Ratio of Error 

Reduction (RER) [3]. RER is defined as:  

                 
                       

        
                Eq. 6  

         is the error rate of the literal text, which reflects a 

user’s uncorrected keyboard output. The literal text is 

generated from the closest key labels on the keyboard to 

users’ actual touch points. This is a naïve key-detection 

algorithm that offers no error correction, and literally 

transcribes the user’s touch points. Since the test data set 

was segmented into words,          is measured as: 

         
                                             

                     
     Eq. 7 

 

 



 

 

Figure 4. Mean (SD) word scores across 24 participants for          ,               . The striped bars show overall results and 

solid bars show results per word length.

             is the error rate of the transcribed text, the 

output of a keyboard. It is defined as: 

                                                         Eq. 8 

Note that RER is applicable only when               

The analysis showed that          is 28.8%. The RERs were 

40.9% for          , 70.0% for     , 54.5% for    and 70.4% 

for   .      was close to    in correcting users’ input 

errors. Both of them corrected 30% more errors than 

         , and 15% more than   . 

Table 3 shows examples of correction for different 

keyboards. 

Literal  Intended                 and      

agsim again agsim agsim again 

popilariry popularity popular popularity popularity 

quivj quick quivj quivj quick 

Table 3. Correction examples for keyboards. Words in red are 

erroneous literal text or incorrect corrections. 

Completion 

We examined the keystroke saving ratio for different 

keyboards. An ANOVA showed a significant main effect of 

keyboard on keystroke saving ratio (F3, 69 = 7531, p < 0.001). 

The mean (SD) keystroke saving ratios were 18.5% (1.0%) 

for          , 36.2% (9.8%) for     , and 37.7% (1.2%) for 

  , and 30.3%(1.2%) for   . Pairwise mean comparison 

showed that the differences were significant between every 

two conditions (p < 0.005). 

Figure 5 also shows the mean(SD) keystroke saving ratio 

per word length. The keystroke saving ratio for    was 

slightly higher than       , but the difference between them 

was small. The biggest difference was for words with 7 

characters, where the keystroke saving ratio of    was 3% 

higher than that of     . Both      and    saved more 

keystrokes than           and   , especially for words with 

5 or more characters:       and    saved more than 20%  

keystrokes than          , and 7% more than    for these 

words. Table 4 showed examples of keystroke savings for 

these keyboards. 

                     

provide provide provide provide 

favorite favorite favorite favorite 

watch watch watch watch 

Table 4. Examples of completion for different keyboards 

Letters predicted by a keyboard are illustrated in gray and 

typed letters are in bold black.  

Dataset-Independent Keystroke Saving Ratio. The 

keystroke saving ratios illustrated in Figure 5 were 

calculated based on the test dataset collected from a prior 

user study. In addition, we estimated keystroke saving 

ratios based on an assumption of perfect input: each touch 

point was placed on the center of the intended key. This 

method separated the effect of a particular data set, and also 

simulated the behaviors of one type of users who type 

extremely carefully and accurately. Such results were 

complementary to the results in Figure 5, which simulated 

the behavior of experts who usually typed ahead and always 

trusted keyboards’ correction and completion capabilities. 

Assuming perfect input, the keystroke saving ratios were 

20.9% for          , 37.9% for     , 39.9% for   ,  and 

32.5% for   , based on the same set of words in the test 

data set. They were approximately 2% higher than the 

corresponding values estimated from the test data set. The 

results also echoed the finding shown in Figure 5:      and 

   were close in keystroke saving, and both of them were 

considerably better than            and   . 

Discussion 

Correction and completion have only a minor conflict. The 

algorithm simultaneously optimized for two objectives (i.e., 

    ) performs almost equally well with the algorithms 

optimized for one objective only (i.e.,   and   ), in the 

corresponding measure. The word score of      has no 

significant difference from that of   : both of them are able  
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Figure 5. Mean (SD) keystroke saving ratios across 24participnts for          ,           and   .  The striped bars show overall 

results and solid bars show results per word length.

to correctly recognize around 91% of the words.    is 

slightly better than      in completion (1.5% higher), but 

at the cost of having a significantly lower word score (4.1% 

lower).  

This finding suggests that it is possible to simultaneously 

optimize a keyboard algorithm for both correction and 

completion at the same time, with little compromise 

compared to the specialized models that are optimized for 

only one objective. 

Pareto optimization improves a keyboard’s correction and 

completion capabilities. The results (Figure 4) shows that 

     improves the word score by 8.3%, and keystroke 

saving ratio by 17.7% over           based on the test 

dataset, echoing the findings from the development dataset 

(Figure 5). These results indicate that the proposed method 

based on the Pareto optimization and the Metropolis 

algorithm is an effective approach of improving keyboard 

algorithm quality.  

The improvements are more pronounced for long words.  

     improves the word score by 14% and the keystroke 

saving by 20% for words with 5 or more letters, over 

         .      is also more effective than           in 

correcting users’ input errors: it reduces users’ input error 

by 70% while           only reduces input error by 40.9%. 

LIMITATIONS AND FUTURE WORK 

The datasets used this paper were collected in a Wizard of 

Oz setting, and covered a vocabulary of common English 

words. As a result, the optimal values for the parameters 

may change as the usage environment and/or vocabulary 

become more diverse We plan to further expand this work 

to larger and more diverse data sets, both from lab studies 

and long-term longitudinal studies.  

We employed a remulation-based approach [3] to evaluate 

keyboard algorithms, which measured the correction and 

completion power a keyboard algorithm can offer, but did 

not evaluate the entire user experience of a touchscreen 

keyboard. How and to what degree a user can take 

advantage of a keyboard’s correction and completion power 

depends on the UI design, users’ preferences and bias in 

motor, visual and cognitive effort trade-offs, However, 

based on the success of popular mobile and for example 

CJK (Chinese, Japanese, Korean) text input methods, it is 

safe to say both correction and completion are desirable 

features. One question was whether completion be done 

without significant loss of correction power for the user, 

which this work is focused on. 

The same proposed Pareto optimization process may be 

applicable for various keyboard algorithms. Due to the 

limited scope one paper can cover and the accessibility of 

the keyboard algorithms, we only applied it to a variant of 

the AOSP keyboard. It would be interesting to apply it to 

other keyboards, to examine the shape of the Pareto 

frontiers, and to investigate the improvements it can bring. 

CONCLUSIONS 

Although correction and completion are featured in almost 

all modern touchscreen keyboards, their relationship has not 

been studied in the research literature. The present work 

explores the optimality issues of them, resulting in the 

following contributions. 

First, the work suggests that correction and completion 

have only a minor conflict with each other. It is possible to 

optimize a keyboard algorithm for both at the same time, 

with no compromise to correction, and only a minor 

compromise to completion. Before this investigation, it was 

unknown whether this would be possible because one could 

imagine that optimizing for one objective would come at a 

large cost for the other. 

Second, we demonstrated the effectiveness of applying a 

Pareto optimization method based on the Metropolis 

algorithm to improve the correction and completion of a 

keyboard algorithm. Our investigation based on an variant 

of AOSP keyboard showed that a keyboard after the 

optimization (i.e.,      ) improved the word score by 8.3% 

and keystroke saving ratio by 17.7% over the keyboard 

before the optimization (i.e.,           . The methods 

developed in this work can be applied to other keyboards 

with minor modifications. 
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