

Both Complete and Correct?

Multi-Objective Optimization of Touchscreen Keyboard

Xiaojun Bi Tom Ouyang Shumin Zhai

 Google Inc.

 Mountain View, CA, USA

xjunbi@gmail.com ouyang@google.com zhai@acm.org

ABSTRACT

Correcting erroneous input (i.e., correction) and completing

a word based on partial input (i.e., completion) are two

important “smart” capabilities of a modern intelligent

touchscreen keyboard. However little is known whether

these two capabilities are conflicting or compatible with

each other in the keyboard parameter tuning. Applying

computational optimization methods, this work explores the

optimality issues related to them. The work demonstrates

that it is possible to simultaneously optimize a keyboard

algorithm for both correction and completion. The keyboard

simultaneously optimized for both introduces no

compromise to correction and only a slight compromise to

completion when compared to the keyboards exclusively

optimized for one objective. Our research also demonstrates

the effectiveness of the proposed optimization method in

keyboard algorithm design, which is based on the Pareto

multi-objective optimization and the Metropolis algorithm.

For the development and test datasets used in our

experiments, computational optimization improved the

correction accuracy rate by 8.3% and completion power by

17.7%.

Author Keywords

Smart touch screen keyboard; mobile; intelligent user

interfaces; keyboard algorithm; optimization; correction;

completion; text input

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

Text entry is one of the most basic, common and important

tasks on touchscreen devices (e.g., smartphones and

tablets). A survey reported by time.com [22] shows that the

top three most common activities on smartphones are

texting, emailing, and chatting on social networks: all of

them involve intensive text input. According a study from

Nielsen [20], a teenager on average sends over 3,000

messages per month, or more than six texts per waking

hour.

Despite its popularity and importance, touchscreen text

entry is inherently error-prone and challenging, because of

the imprecision of finger touch and the small key size. To

improve the efficiency of text entry, modern “smart”

keyboards are becoming intelligent: they are able to correct

user’s erroneous input (i.e., correction) and complete a

word based on partial input (i.e., completion). For example,

the Google keyboard on Android corrects “thaml” to

“thank”, and completes the word “computer” after a user

types “comput” (Figure 1).

Figure 1. Examples of correction and completion on the

Google keyboard. Left: “thaml” is corrected to “thank”.

Right: “comput” is completed to “computer”. The

corrected/completed words are displayed in the middle of the

suggestion bar. A user enters the word by selecting it from the

suggestion bar, or pressing the space bar.

Both correction and completion take advantage of the

information regularities in a language, matching users’

input signals against words from a lexicon. However, they

cast the language regularities for different purposes.

Correction uses the language regularities for correcting

errors due to the imprecision of the finger touch or spelling

errors such as inserting /omitting /substituting /transposing

letters, while completion uses the language regularities for

predicting unfinished letters based on partial (either correct

or erroneous) input to offer keystroke savings.

Correction and completion are different, although related,

aspects of modern text input systems. In some cases, these

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s). Copyright

is held by the author/owner(s).

CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.

ACM 978-1-4503-2473-1/14/04.

http://dx.doi.org/10.1145/2556288.2557414

http://dx.doi.org/10.1145/2556288.2557414

two capabilities might conflict with each other. For

example, given the input string “knowl”, a strong correction

algorithm might treat it as a letter substitution error and

suggest “known”, while a strong completion algorithm

might be in favor of suggesting “knowledge” to save 4

more keystrokes. To effectively correct errors and also

maximize potential keystroke savings, the keyboard

algorithm needs to strike a balance between correction and

completion.

A large amount of research [16, 8, 10] has been conducted

to improve the qualities of touch screen keyboard

algorithms. However, most of the previous research focused

on correction. Completion has received little attention in the

recent research literature. Furthermore, the relationship

between these two capabilities remains unknown. We do

not even know whether it is possible to design a keyboard

algorithm performing well for both, given the potential

conflict between them.

In this paper, we propose a technique based on the

Metropolis optimization algorithm and Pareto multi-

objective optimization to simultaneously improve the

correction and completion capabilities of a keyboard

algorithm, and investigated their relationship. We

conceptualize the keyboard algorithm design as a multi-

objective optimization problem, with the two optimization

objectives 1) correction (measured in word score to be

defined later) and 2) completion (measured in keystroke

saving ratio).

Our investigation shows that correction and completion

have only a minor conflict in the optimization space. The

algorithm simultaneously optimized for both performs

equally well with the algorithm exclusively optimized for

correction in correcting input, and has only a minor loss in

the completion capability (1.5% difference in keystroke

saving ratio) compared with the keyboard exclusively

optimized for completion.

Our research demonstrates that the proposed technique is

effective in improving a keyboard’s correction and

completion capabilities. One of the optimized keyboard

algorithms () improves the performance by 8.3% in

correction and 17.7% in completion over the keyboard

before the optimization ().

RELATED WORK

Improving Correction

A sizeable amount of research has been conducted to

improve the keyboard error correction ability. Goodman et

al. [12] proposed combing a language model with a key

press model to select the most probable key sequence other

than the key sequence dictated by strict key boundaries.

Kristensson and Zhai [16] invented an “elastic” keyboard,

which viewed the hit points as a geometric pattern. The

pattern was matched against patterns formed by the letter

key center positions of legitimate words in a lexicon. The

evaluation showed that the keyboard was capable of

correcting words even if the user missed all the intended

keys, as long as the user’s tapping pattern is close enough to

the intended word. Findlater and Wobbrock [8] proposed

improving ten-finger touchscreen typing through

adaptation. By adapting the underlying key-press

classification model, the keyboard improved the typing

speed compared to a control condition with no

personalization. Kane, Wobbrock, and Harniss et al. [14]

developed TrueKeys, combining models of word frequency,

keyboard layout and tying error patterns to correct typing

mistakes. Goel, Findlater and Wobbrock [10] developed the

WalkType keyboard which leveraged a mobile device’s

built-in accelerometer to compensate for extraneous

movement while walking. Goel, Jansen, and Mandel et al.

[11] proposed reducing the text entry error rates by

leveraging information about a user’s hand posture. Yin,

Ouyang, Partridge, and Zhai [24] further proposed adapting

the keyboard underlying spatial model to factors including

input hand postures, individuals, and target key positions.

With a hierarchical spatial backoff model, the adaptation

was capable of reducing the language-model-independent

error rate by 13.2%.

Improving Completion

In contrast to correction, improving the completion

capability on a touchscreen keyboard has received little

attention in the recent HCI research literature. Instead, some

related work can be found in earlier research focused on

users with motor impairments. Word prediction is a major

component in computer-based augmentative and alternative

communication (AAC) systems to help people with

disabilities communicate in the areas of speech, writing,

and computer applications. Keystroke savings provided by

several commercial word prediction systems [13] have been

measured in the range of 35- 47%. Koester and Levin [15]

further developed a model to simulate users’ word entry

time during the word prediction use.

Although word completion has received limited attention

from academic research, it has been playing a major role in

commercial products. The majority of present touchscreen

keyboards such as Android, iPhone, Windows phone

keyboards provide completion to various degrees.

Keyboard Optimization

Optimization has been widely adopted as an approach to

improve the keyboard performance, though the previous

work mostly focuses on optimizing the keyboard layout.

As early as 1986, Getstow et al [9] used a simple greedy

algorithm to optimize a keyboard for motor-impaired users.

MacKenzie and Zhang [19] manually optimized their

“OPTI” layout. Zhai, Hunter and Smith [25, 26] introduced

the Metropolis keyboard and later ATOMIK using the

Metropolis randomized optimization technique. All these

were layouts optimized to improve the speed of stylus/one

finger text entry for a single language. Bi, Smith and Zhai

[5] optimized the touch screen keyboard layout for five

languages: English, Spanish, French, German, and Chinese

at the same time. The optimized layout has minor

performance drop compared to the layout exclusively

optimized for one language. Bi, Smith and Zhai [4] also

explored optimizing the layout while maintaining a certain

level of familiarity with Qwerty layout. Their work led to

the Quasi-Qwerty layout, which minimized the finger/stylus

travel distance and each key was at most one-key away

from its original position on the Qwerty layout. Dunlop and

Levine [6] later introduced the tap interpretation clarity as

the third measure, conducting multidimensional Pareto

optimization for speed, familiarity and improved spell

checking. Their research was the first in the keyboard

literature to apply Pareto optimization and led to a triple

optimized keyboard layout. Oulasvirta, Reichel and Li et al.

[21] extended the layout optimization to a split keyboard

for two-thumb typing. The optimized KALQ layout

minimizes the thumb travel distance and maximizes the

alternation between thumbs.

THE KEYBOARD ALGORITHM

Text entry on touch keyboards can be viewed as an

encoding and decoding processes: the user encodes the

intend word into a series of touch points),

and the keyboard algorithm acts as the decoder, retrieving

 from the spatial signals.

At an abstract level, the decoder selects a word from the

keyboard's lexicon and calculates its probability of being

the intended word based on the information from the

following three sources:

1) The proximities of letters in to the touch points

)

2) The prior probability of from a language model.

3) The possibilities of spelling errors (e.g.,

inserting/omitting/transposing/substituting letters).

Pruning out the improbable ones, a list of the most probable

words is then ranked and suggested to the user.

While many modern keyboard algorithms may work

similarly at this abstract level, the actual implementations

of industrial modern keyboards may be rather complex and

vary across products. Since most of the commercial

keyboard algorithms are not published, it is impossible to

develop a general model representing all of them.

Fortunately, we could conduct the present research on open

source keyboards.

The Baseline Keyboard

We developed a keyboard, referred as hereafter,

based on the latest version (Android 4.3_r3) of the Android

Open Source Project (AOSP) Keyboard [1] which is open-

sourced and broadly deployed in Android mobile devices.

 shared the similar algorithm as the AOSP

keyboard which can be read and analyzed by any researcher

or developer. In brief, it worked as follows. The lexicon

composed of around 170,000 words was stored in a trie data

structure. As the algorithm received spatial signals

), it traversed the trie and calculated the

probabilities for nodes storing words, based on the

aforementioned three sources.

A critical part of the algorithm is to calculate the

probabilities of word candidates by weighting information

from three sources. Same as the AOSP keyboard, the

weights of different sources are controlled by 21 parameters

illustrated and explained in Table 1. These parameters are

pertinent to the performance of . Altering them

adjust the relative weights of information from different

sources, leading to different correction and completion

capabilities. For example, reducing the cost of un-typed

letters (i.e., lowering COST_LOOKAHEAD) would make

the keyboard in favor of suggesting long words, but it might

be detrimental to the correction ability. is

implemented based on the AOSP keyboard, and the

parameters in shared the same values as those in

the AOSP keyboard, which serves as the baseline condition

in the current research.

MEASURING CORRECTION AND COMPLETION
Typical laboratory-based studies demand intensive labor

and time to evaluate keyboards and may still lack the

necessary sensitivity to reliably detect important differences

amid large variations in text, tasks, habits, and other

individual differences. Bi, Azenkot, Partridge and Zhai [3]

proposed using remulation – replaying previously recorded

data from the same group from the same experiment in real

time simulation – as an automatic approach to evaluate

keyboard algorithms. We adopt a similar approach in the

present research: we evaluated a keyboard algorithm

against previously recorded user data to measure its

performance. Unlike the Octopus tool [3] which evaluated

keyboards on devices, we simulated the keyboard algorithm

and ran tests on a workstation. Octopus evaluates

keyboards in a “black box” fashion without access to their

algorithms and source code. The off-device approach in this

work is limited to the keyboards whose algorithm and

source code are accessible, but is much faster than Octopus.

Datasets

We first ran studies to collect data for optimization and

testing. The data collection studies were similar to those in

Azenkot and Zhai [2], and Bi et al. [3]. To avoid data

collection’s dependencies and limitations on keyboard

algorithms, a Wizard of Oz keyboard was used in the study

(Figure 2), which provided users with only asterisks as

feedback when they were entering text.

Each participant entered the same set of 50 phrases

randomly chosen from the MacKenzie and Soukoreff’s

phrase set [10]. All touch events were logged. Participants

were asked to enter text “as naturally and as fast as

possible.” The first 10 phrases for each user were

considered a warm-up and excluded in the dataset. A

Galaxy Nexus phone was used throughout the study, and

Parameter Current Value Description

DISTANCE_WEIGHT_LENGTH 0.132 Weight for the length of a word
PROXIMITY_COST 0.086 Weights for the distances between touch points and

the corresponding letters in a word
FIRST_PROXIMITY_COST 0.104
OMISSION_COST 0.458 Weights for omission errors
OMISSION_COST_SAME_CHAR 0.491
OMISSION_COST_FIRST_CHAR 0.582
INSERTION_COST 0.730 Weights for insertion errors
INSERTION_COST_SAME_CHAR 0.586
INSERTION_COST_FIRST_CHAR 0.623
TRANSPOSITION_COST 0.516 Weights for transposition errors
SPACE_SUBSTITUTION_COST 0.319 Weights for space substitution errors
ADDITIONAL_PROXIMITY_COST 0.380 Weights for the distances between touch points and

the corresponding letters in a word
SUBSTITUTION_COST 0.403 Weights for substitution errors
COST_NEW_WORD 0.042 Weights for starting a new word
COST_SECOND_OR_LATER_WORD_FIRST_C

HAR_UPPERCASE
0.25 Weights for capitalized words

DISTANCE_WEIGHT_LANGUAGE 1.123 Weight for language model
COST_FIRST_LOOKAHEAD 0.545

Weight for un-typed letters in a word
COST_LOOKAHEAD 0.073
HAS_PROXIMITY_TERMINAL_COST 0.105 Weights for terminal nodes
HAS_EDIT_CORRECTION_TERMINAL_COST 0.038

HAS_MULTI_WORD_TERMINAL_COST 0.444

Table 1. Parameters for calculating the probability of a word candidate in the and AOSP keyboard algorithms. They control

the weight of information from different sources. These values were from “scoring_params.cpp” in the AOSP source tree [1]

(Android 4.3 on Sep. 16, 2013).

Figure 2. The WOZ keyboard for data collection, which was

designed to capture fundamental text entry behaviors.

the keyboard was equal to the stock Android keyboard in

dimensions. We conducted two studies. The first one was

to collect data for the algorithm parameter optimization

(referred as the development dataset), and the second one

was for testing (referred as the test dataset). In the first

study, we recruited 40 participants. The average age was 32

(the youngest was 18 and the oldest was 59). Five were

left-handed. They were allowed to freely choose text entry

hand postures. Twenty-four users entered text with two

thumbs, 4 with one thumb, and 12 with the index finger. It

included 1,597 phrases in total.

In the second study, we recruited 24 participants, with ages

between 20 and 30. All were right handed. They all entered

text with index fingers. This data set included 960 phrases

in total.

The keyboard algorithm’s correction and completion

capabilities were evaluated using the collected data. Current

touchscreen keyboards perform word-level correction: they

correct or complete a word after a word terminator such as

a space or punctuation is entered. Therefore, the collected

data was segmented into words in evaluation. After the

segmentation, the development dataset included 7,106

words, and the test dataset had 6,323 words.

Correction

Correction is measured in word score, which reflects the

percentage of correctly recognized words out of the total

test words. The word score is defined as:

 × 100% Eq. 1

Completion

Completion is measured in keystroke saving ratio .

Given a data set with test words, is defined as:

 (
∑

∑

) × 100% Eq.2

 is the maximum number of keystrokes for

entering a word . In the worst scenario where the

keyboard fails to complete , the user needs to enter all the

letters of and presses the space bar to enter it. Therefore,

 = length of + 1 Eq. 3

 is the minimum number of keystrokes needed to

enter . Assuming that users fully take advantage of the

completion capability, will be picked as soon as it is

suggested on the suggestion bar. Therefore, is the

least number of keystrokes needed to bring on the

suggestion bar plus one more keystroke for selection. The

number of the slots on the suggestion bar may vary across

keyboards. The keyboard used in this work provides three

suggestion slots, the same as the AOSP keyboard.

Note that the measure defined above is the maximum

savings offered to a user by the keyboard algorithm. If and

how often the user takes them depends on the UI design, the

user’s preference and bias in motor, visual and cognitive

effort trade-offs which are separate research topics.

OPTIMIZING KEYBOARD ALGORITHM FOR
CORRECTION AND COMPLETION
In this section, we introduce a method for optimizing a

keyboard algorithm for correction and completion, and

apply it to . In brief, we conceptualize the

keyboard algorithm design as a multi-objective

optimization problem with two objectives 1) correction and

2) completion. For particularly, it is equivalent to

optimizing the 21 parameters in Table 1 for these two

objectives.

To solve a multi-objective optimization problem, a simple

approach is to convert the multiple objectives into one

objective function, where each objective is a component in

a weighted sum. However, the challenge of this approach is

choosing an appropriate weight for each objective. Also,

this method returns only one solution, which might not be

the most desirable solution.

Instead of returning a single solution, we performed a

Pareto optimization [7], which returns a set of Pareto

optimal solutions. A solution is called Pareto optimal or

non-dominated, if neither of the objective functions can be

improved in value without degrading the other. A solution

that is not Pareto optimal is dominated: there is a Pareto

optimal solution which is better than it in at least one of the

criteria and no worse in the other. Analyzing the Pareto

optimal solutions reveals the trade-off between multiple

objectives. Additionally, the Pareto set provided a range of

optimal solutions, allowing keyboard designers and

developers to pick the desirable one according to their

preferences.

We adopted the Metropolis optimization algorithm [25] to

search for the Pareto set. The process was composed of

multiple sub processes. Each sub process started from a

random set of the 21 parameters in the range [0, 5], the

estimated range of the parameter values based on the

analysis of the algorithm. The sub process then optimized

the 21 parameters for the objective function (Eq. 4) based

on the collected development dataset:

 Eq. 4

which is a sum of word score and keystroke saving

ratio) with a weight . was randomized

at the beginning of each sub process and remained

unchanged during the sub process. changed across sub

processes. Our purpose was to ensure that the Pareto set

covered a broad range of Pareto optimal solutions.

In each iteration of a sub process, the 21 parameters moved

in a random direction with a fixed step length (0.01). We

then evaluated the keyboard algorithm with the new

parameters against the development dataset according to the

objective function (Eq. 4). Whether the new set of

parameters and search direction were kept was determined

by the Metropolis function:

 {

 Eq. 5

 was the probability of changing from the

parameter set O (old) to the parameter set N (new);

 , where , and were values of

objective functions (Eq. 4) for the new and old set of

parameters respectively; was a coefficient; was

“temperature”, which can be interactively adjusted.

This optimization algorithm used a simulated annealing

method. The search did not always move toward a higher

value of objective function. It occasionally allowed moves

with negative objective function value changes to be able to

climb out of a local minimum.

After each iteration, the new solution was compared with

the solutions in the Pareto set. If the new solution

dominated at least one solution in the Pareto set, it would be

added to the set and the solutions dominated by the new

solution would be discarded.

After 1000 iterations, the sub process restarted with another

random set of parameters and a random for the objective

function Eq. 4. We ensured that there was at least one sub

process for each of the following three weights: , 0.5,

and 1. The optimization led to a Pareto set of 101 Pareto

optimal solutions after 100 sub processes with 100,000

iterations in total, which constituted a Pareto frontier

illustrated in Figure 3.

Figure 3. The Pareto frontier of the multi-objective

optimization. The three red dots were solutions with the most

word score (), the most keystroke savings (), and the

highest () respectively.

The Pareto frontier shows that the Pareto optimal solutions

distribute in a small region, with keystroke saving ratio

ranging from 30% to 38% and word score ranging from 81%

to 88%. As shown in Figure 3, the Pareto frontier forms a

short, convex, L-shaped curve, indicating that correction

and completion have little conflict with each other and the

algorithm can be simultaneously optimized for both with

minor loss to each. Among the 101 Pareto optimal solutions,

we are particularly interested in three solutions, illustrated

in red dots in Figure 3:

1) The solution with the highest word score (), denoted

by . It is the solution exclusively optimized for

correction.

2) The solution with the highest keystroke saving ratio (),

denoted by . It is the solution exclusively optimized

for completion.

3) The solution with highest , denoted by

 . It is the solution optimized for both correction

and completion, with 50% weight for each objective.

 and reveal the highest correction and completion

capabilities a keyboard can reach, while is the most

balanced solution with equal weights for correction and

completion. The parameter sets, correction and completion

capabilities for , and are reported in Table 2.

The optimization results showed the default parameter set

taken from the AOSP keyboard in Android 4.3 (Sep. 16,

2013) was sub-optimal in both correction and completion

according to the criteria and the development dataset used

in this study , , and all improve the word score

and keystroke saving ratio by at least 10% over .

It is more illuminating to compare the three Pareto optimal

solutions , , , since they are all optimized

under identical conditions with the same dataset. Table 2

shows that is close to in keystroke saving ratio,

and close to in word score. It indicates simultaneously

optimizing for both objectives causes only minor

performance degradation for each objective. These results

were later verified with the separate test dataset.

Parameters moved in various directions after the

optimization. For such a complex optimization problem

with 21 free parameters, it was difficult to precisely explain

why each parameter moved in such a direction after the

optimization. However, we observed some distinct patterns

of parameter value changes, which partially explain the

performance differences across keyboards.

For examples, the parameters pertinent to the cost of

proximity of touch points to letters (i.e.,

PROXIMITY_COST, FIRST_PROXIMITY_COST)

decreased substantially from to , , and ,

indicating that the optimized algorithms tend to be more

tolerant to errors in spatial signals. The cost of untyped

letters in a word (i.e., COST_FIRST_LOOKAHEAD) also

decreased, indicating that the optimized algorithms were

more likely to predict untyped letters as the user’s intention,

especially after typing the first letter, to save keystrokes.

EVALUTING KEYBOARD ALGORITHMS

To test the external validity of the optimization results, we

evaluate the keyboard algorithms before and after the

optimization using the test dataset, which was collected

from 24 users not participating in the development dataset

collection.

Correction

Word Score. We first analyzed the word scores for different

keyboards. An ANOVA showed that the keyboard

algorithm had a significant main effect on word score (F3, 69

= 58.379, p < 0.001). The mean (SD) scores were 82.7%

(9.1%) for , 91.0% (4.9%) for , and 86.9%

(7.9%) for , and 91.2%(4.6%) for . Pairwise mean

comparison showed the differences were significant for

each pair (p < 0.001) except for vs. . (p = 0.509).

Figure 4 also shows the mean (SD) word score per word

length. As shown, , and performed almost equally

well across all word lengths. The biggest gap between these

Word Score 77.5% 88.4% 81.7% 88.0%

Keystroke Saving Ratio 20% 30.9% 38.3% 37.3%

Parameters

DISTANCE_WEIGHT_LENGTH 0.132 0.052 0.412 0.172

PROXIMITY_COST 0.086 0 0 0

FIRST_PROXIMITY_COST 0.104 0.01 0.08 0.05

OMISSION_COST 0.458 0.048 0.458 0.108

OMISSION_COST_SAME_CHAR 0.491 1.371 0.991 0.951

OMISSION_COST_FIRST_CHAR 0.582 0.092 0.582 0.382

INSERTION_COST 0.730 1.17 1.13 0.740

INSERTION_COST_SAME_CHAR 0.586 0.01 0.08 0

INSERTION_COST_FIRST_CHAR 0.623 0.753 0.613 0.583

TRANSPOSITION_COST 0.516 0.576 0.436 0.436

SPACE_SUBSTITUTION_COST 0.319 0.22 0.210 0.06

ADDITIONAL_PROXIMITY_COST 0.380 1.20 1.08 1.06

SUBSTITUTION_COST 0.403 1.603 1.143 1.143

COST_NEW_WORD 0.042 0.12 0.02 0.332

COST_SECOND_OR_LATER_WORD_FIRST_C

HAR_UPPERCASE

0.25 0.69 0.370 0.09

DISTANCE_WEIGHT_LANGUAGE 1.123 1.783 1.463 1.573

COST_FIRST_LOOKAHEAD 0.545 0.053 0 0.095

COST_LOOKAHEAD 0.073 0.08 0 0

HAS_PROXIMITY_TERMINAL_COST 0.105 0.20 0.11 0.04

HAS_EDIT_CORRECTION_TERMINAL_COST 0.038 1.098 1.418 0.998

HAS_MULTI_WORD_TERMINAL_COST 0.444 1.434 0.994 1.224

Table 2. Word Scores, Keystroke Saving Ratios and Parameters for the algorithm before (), and after () the

optimization. The blue indicates the parameters decreased and red means the values increased after the optimization.

two keyboards was for words with 7+ characters: the word

score of was 1.5% higher. Both , and performed

better than and across all word lengths,

especially for words with 5 or more letters. The word scores

for , and were at least 14% (absolute) higher than

 and 6% higher than .

Ratio of Error Reduction. In addition to word score, we also

examined the keyboard’s capability of correcting users’

erroneous input strings, which is measured in Ratio of Error

Reduction (RER) [3]. RER is defined as:

 Eq. 6

 is the error rate of the literal text, which reflects a

user’s uncorrected keyboard output. The literal text is

generated from the closest key labels on the keyboard to

users’ actual touch points. This is a naïve key-detection

algorithm that offers no error correction, and literally

transcribes the user’s touch points. Since the test data set

was segmented into words, is measured as:

 Eq. 7

Figure 4. Mean (SD) word scores across 24 participants for , . The striped bars show overall results and

solid bars show results per word length.

 is the error rate of the transcribed text, the

output of a keyboard. It is defined as:

 Eq. 8

Note that RER is applicable only when

The analysis showed that is 28.8%. The RERs were

40.9% for , 70.0% for , 54.5% for and 70.4%

for . was close to in correcting users’ input

errors. Both of them corrected 30% more errors than

 , and 15% more than .

Table 3 shows examples of correction for different

keyboards.

Literal Intended and

agsim again agsim agsim again

popilariry popularity popular popularity popularity

quivj quick quivj quivj quick

Table 3. Correction examples for keyboards. Words in red are

erroneous literal text or incorrect corrections.

Completion

We examined the keystroke saving ratio for different

keyboards. An ANOVA showed a significant main effect of

keyboard on keystroke saving ratio (F3, 69 = 7531, p < 0.001).

The mean (SD) keystroke saving ratios were 18.5% (1.0%)

for , 36.2% (9.8%) for , and 37.7% (1.2%) for

 , and 30.3%(1.2%) for . Pairwise mean comparison

showed that the differences were significant between every

two conditions (p < 0.005).

Figure 5 also shows the mean(SD) keystroke saving ratio

per word length. The keystroke saving ratio for was

slightly higher than , but the difference between them

was small. The biggest difference was for words with 7

characters, where the keystroke saving ratio of was 3%

higher than that of . Both and saved more

keystrokes than and , especially for words with

5 or more characters: and saved more than 20%

keystrokes than , and 7% more than for these

words. Table 4 showed examples of keystroke savings for

these keyboards.

provide provide provide provide

favorite favorite favorite favorite

watch watch watch watch

Table 4. Examples of completion for different keyboards

Letters predicted by a keyboard are illustrated in gray and

typed letters are in bold black.

Dataset-Independent Keystroke Saving Ratio. The

keystroke saving ratios illustrated in Figure 5 were

calculated based on the test dataset collected from a prior

user study. In addition, we estimated keystroke saving

ratios based on an assumption of perfect input: each touch

point was placed on the center of the intended key. This

method separated the effect of a particular data set, and also

simulated the behaviors of one type of users who type

extremely carefully and accurately. Such results were

complementary to the results in Figure 5, which simulated

the behavior of experts who usually typed ahead and always

trusted keyboards’ correction and completion capabilities.

Assuming perfect input, the keystroke saving ratios were

20.9% for , 37.9% for , 39.9% for , and

32.5% for , based on the same set of words in the test

data set. They were approximately 2% higher than the

corresponding values estimated from the test data set. The

results also echoed the finding shown in Figure 5: and

 were close in keystroke saving, and both of them were

considerably better than and .

Discussion

Correction and completion have only a minor conflict. The

algorithm simultaneously optimized for two objectives (i.e.,

) performs almost equally well with the algorithms

optimized for one objective only (i.e., and), in the

corresponding measure. The word score of has no

significant difference from that of : both of them are able

0

20

40

60

80

100

Series1 Series2 Series3 Series4

Word Length (Characters)

1 2 3 4 5 6 7 7+

Overall

Word Score (%)

Figure 5. Mean (SD) keystroke saving ratios across 24participnts for , and . The striped bars show overall

results and solid bars show results per word length.

to correctly recognize around 91% of the words. is

slightly better than in completion (1.5% higher), but

at the cost of having a significantly lower word score (4.1%

lower).

This finding suggests that it is possible to simultaneously

optimize a keyboard algorithm for both correction and

completion at the same time, with little compromise

compared to the specialized models that are optimized for

only one objective.

Pareto optimization improves a keyboard’s correction and

completion capabilities. The results (Figure 4) shows that

 improves the word score by 8.3%, and keystroke

saving ratio by 17.7% over based on the test

dataset, echoing the findings from the development dataset

(Figure 5). These results indicate that the proposed method

based on the Pareto optimization and the Metropolis

algorithm is an effective approach of improving keyboard

algorithm quality.

The improvements are more pronounced for long words.

 improves the word score by 14% and the keystroke

saving by 20% for words with 5 or more letters, over

 . is also more effective than in

correcting users’ input errors: it reduces users’ input error

by 70% while only reduces input error by 40.9%.

LIMITATIONS AND FUTURE WORK

The datasets used this paper were collected in a Wizard of

Oz setting, and covered a vocabulary of common English

words. As a result, the optimal values for the parameters

may change as the usage environment and/or vocabulary

become more diverse We plan to further expand this work

to larger and more diverse data sets, both from lab studies

and long-term longitudinal studies.

We employed a remulation-based approach [3] to evaluate

keyboard algorithms, which measured the correction and

completion power a keyboard algorithm can offer, but did

not evaluate the entire user experience of a touchscreen

keyboard. How and to what degree a user can take

advantage of a keyboard’s correction and completion power

depends on the UI design, users’ preferences and bias in

motor, visual and cognitive effort trade-offs, However,

based on the success of popular mobile and for example

CJK (Chinese, Japanese, Korean) text input methods, it is

safe to say both correction and completion are desirable

features. One question was whether completion be done

without significant loss of correction power for the user,

which this work is focused on.

The same proposed Pareto optimization process may be

applicable for various keyboard algorithms. Due to the

limited scope one paper can cover and the accessibility of

the keyboard algorithms, we only applied it to a variant of

the AOSP keyboard. It would be interesting to apply it to

other keyboards, to examine the shape of the Pareto

frontiers, and to investigate the improvements it can bring.

CONCLUSIONS

Although correction and completion are featured in almost

all modern touchscreen keyboards, their relationship has not

been studied in the research literature. The present work

explores the optimality issues of them, resulting in the

following contributions.

First, the work suggests that correction and completion

have only a minor conflict with each other. It is possible to

optimize a keyboard algorithm for both at the same time,

with no compromise to correction, and only a minor

compromise to completion. Before this investigation, it was

unknown whether this would be possible because one could

imagine that optimizing for one objective would come at a

large cost for the other.

Second, we demonstrated the effectiveness of applying a

Pareto optimization method based on the Metropolis

algorithm to improve the correction and completion of a

keyboard algorithm. Our investigation based on an variant

of AOSP keyboard showed that a keyboard after the

optimization (i.e.,) improved the word score by 8.3%

and keystroke saving ratio by 17.7% over the keyboard

before the optimization (i.e., . The methods

developed in this work can be applied to other keyboards

with minor modifications.

0

10

20

30

40

50

Series1 Series2 Series3 Series4

Word Length (Characters)

1 2 3 4 5 6 7 7+

Overall

Keystroke Saving Ratio (%)

REFERENCES

1. Android Open Source Project

http://source.android.com/

2. Azenkot, S. and Zhai, S. (2012). Touch Behavior with

Different Postures on Soft Smart Phone Keyboards.

Proc. of MobileHCI’12. 251-260.

3. Bi, X., Azenkot, S., Partridge, K., Zhai, S. (2013)

Octopus: Evaluating Touchscreen Keyboard Correction

and Recognition Algorithms via Remulation, Proc. of

CHI’13, 543 – 552.

4. Bi, X., Smith, B., Zhai. S. (2010) Quasi-Qwerty Soft

Keyboard Optimization , Proc. of CHI’10, 283~286.

5. Bi, X., Smith, B., Zhai. S. (2012) Multilingual

Touchscreen Keyboard Design and

Optimization. Human-Computer Interaction , Volume

27, Issue 4, 352-382.

6. Dunlop, M. and Levine, J. (2012) Multidimensional

pareto optimization of touchscreen keyboards for speed,

familiarity and improved spell checking. Proc. of

CHI’12, 2669-2678.

7. Matthias Ehrgott (2005). Multicriteria Optimization.

Birkhäuser. ISBN 978-3-540-21398-7.

8. Findlater, L., and Wobbrock, J.O. (2012). Personalized

input: improving ten-finger touchscreen typing through

automatic adaptation. Proc. of CHI ’12. 815-824.

9. Getschow, C. O., Rosen, M. J., and Goodenough-

Trepagnier, C. (1986). A systematic approach to design

a minimum distance alphabetical keyboard. Proc. of

RESNA (Rehabilitation Engineering Society of North

America) 9th Annual Conference, 396-398.

10. Goel, M., Findlater, L. and Wobbrock, J. (2012)

WalkType: using accelerometer data to accomodate

situational impairments in mobile touch screen text

entry. In Proc. of CHI '12. 2687-2696.

11. Goel, M., Jansen, A., Mandel, T., Patel, S., and

Wobbrock. J. (2013) ContextType: using hand posture

information to improve mobile touch screen text entry.

Proc. of CHI '13, 2795-2798.

12. Goodman, J., Venolia, G., Steury, K., and Parker, C.

(2002). Language modeling for soft keyboards. Proc. of

AAAI ‘02, 419-424.

13. Higginbotham, J. (1992) Evaluation of keystroke

savings across five assistive communication

technologies Augmentative and Alternative

Communication Vol. 8, No. 4 , 258-272.

14. Kane, K. S, Wobbrock, J., Harniss, M., and Johnson, K.

(2008) TrueKeys: identifying and correcting typing

errors for people with motor impairments. Proc. of

IUI’08, 349-352.

15. Koester, H. H., Levine, S. P. (1994) Modeling the speed

of text entry with a word prediction interface, IEEE

Transactions on Rehabilitation Engineering, Volume: 2

Issue: 3 177 – 187.

16. Kristensson, P-O., Zhai, S. (2005) Relaxing Stylus

Typing Precision by Geometric Pattern Matching. Proc.

IUI'05, 151–158,

17. MacKenzie, I. S., and Soukoreff, R. W. (2003). Phrase

sets for evaluating text entry techniques. Proc. of CHI

EA ‘03, 754-755.

18. MacKenzie, I. S., and Tanaka-Ishii, K. (Eds.). (2007).

Text Entry Systems: Mobility, Accessibility,

Universality: Morgan Kaufmann Publishers.

19. MacKenzie, I. S., and Zhang, S. X. (1999) The design

and evaluation of a high-performance soft keyboard.

Proc. of CHI '99, 25-31.

20. Nielsen. nielsen.com/us/en/newswire/2010/u-s-teen-

mobile-report-calling-yesterday-texting-today-using-

apps-tomorrow.html

21. Oulasvirta, A., Reichel, A., Li, W., Zhang, Y.,

Bachnynskyi, M., Vertanen, K. and Kristensson, P.O.

(2013) Improving two-thumb text entry on touchscreen

devices. Proc of CHI. 2765 – 2774.

22. Time.com techland.time.com/2011/07/21/study-fewer-

than-50-of-smartphone-users-make-calls/

23. Wobbrock, J.O. (2007). Measures of text entry

performance. Chapter 3 in I.S. MacKenzie and K.

Tanaka-Ishii (eds.), Text Entry Systems: Mobility,

Accessibility, Universality. San Francisco: Morgan

Kaufmann, pp. 47-74.

24. Yin, Y., Ouyang, T., Partridge, K., and Zhai, S. (2013)

Making touchscreen keyboards adaptive to keys, hand

postures, and individuals: a hierarchical spatial backoff

model approach. Proc. of CHI '13. 2775-2784.

25. Zhai, S., Hunter, M., & Smith, B. A. (2000). The

Metropolis Keyboard - an exploration of quantitative

techniques for virtual keyboard design. Proc. of

UIST’00. 119-218.

26. Zhai, S., Hunter, M., & Smith, B. A. (2002).

Performance optimization of virtual keyboards. Human-

Computer Interaction, 17(2,3), 89-129.

http://source.android.com/
http://www.nielsen.com/us/en/newswire/2010/u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow.html
http://www.nielsen.com/us/en/newswire/2010/u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow.html
http://www.nielsen.com/us/en/newswire/2010/u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow.html
http://techland.time.com/2011/07/21/study-fewer-than-50-of-smartphone-users-make-calls/
http://techland.time.com/2011/07/21/study-fewer-than-50-of-smartphone-users-make-calls/

