
Open access to the Proceedings of the
22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the
22nd USENIX Security Symposium.
August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

Strato: A Retargetable Framework for Low-Level
Inlined-Reference Monitors

Bin Zeng and Gang Tan, Lehigh University; Úlfar Erlingsson, Google Inc.

USENIX Association 22nd USENIX Security Symposium 369

Strato: A Retargetable Framework for Low-Level Inlined-Reference

Monitors

Bin Zeng

Department of Computer

Science and Engineering

Lehigh University

Gang Tan

Department of Computer

Science and Engineering

Lehigh University

Úlfar Erlingsson

Google Inc.

Abstract

Low-level Inlined Reference Monitors (IRM) such as

control-flow integrity and software-based fault isolation

can foil numerous software attacks. Conventionally,

those IRMs are implemented through binary rewriting

or transformation on equivalent low-level programs that

are tightly coupled with a specific Instruction Set Ar-

chitecture (ISA). Resulting implementations have poor

retargetability to different ISAs. This paper intro-

duces an IRM-implementation framework at a com-

piler intermediate-representation (IR) level. The IR-level

framework enables easy retargetability to different ISAs,

but raises the challenge of how to preserve security at

the low level, as the compiler backend might invalidate

the assumptions at the IR level. We propose a constraint

language to encode the assumptions and check whether

they still hold after the backend transformations and op-

timizations. Furthermore, an independent verifier is im-

plemented to validate the security of low-level code. We

have implemented the framework inside LLVM to en-

force the policy of control-flow integrity and data sand-

boxing for both reads and writes. Experimental results

demonstrate that it incurs modest runtime overhead of

19.90% and 25.34% on SPECint2000 programs for x86-

32 and x86-64, respectively.

1 Introduction

Software attacks are common, from code-injection at-

tacks to more sophisticated techniques such as Return

Oriented Programming (ROP [6, 29]). ROP chains the

attacked program’s code snippets, referred to as gadgets,

to achieve functionality desired by the attacker. It can

bypass many defensive techniques such as StackGuard

and Data Execution Prevention (DEP) [22].

Low-level inlined reference monitors (IRM [15–17])

are effective at preventing attacks against software sys-

tems. In this approach, checks are inlined into binary

code to ensure critical security properties. Take the

example of software-based fault isolation (SFI). It is a

code-sandboxing technique that isolates untrusted mod-

ules from trusted environments [32]. By having separate

code and data regions and by making the data region un-

executable, SFI prevents code-injection attacks in addi-

tion to containing faults in sandboxed modules.

Another effective IRM is control-flow integrity

(CFI [1]). An essential step in many software attacks is

to induce an illegal control flow transfer to maliciously

injected code, or to some library function as in jump-to-

libc attacks, or to some existing code snippet as in ROP

attacks. CFI enforces a strong runtime guarantee that ex-

ecution paths follow a predetermined control flow graph,

which is constructed either by source-code analysis, bi-

nary analysis, or program profiling. CFI can greatly de-

crease where ROP gadgets can be discovered and further

restrain the way gadgets can be chained, thus effectively

mitigating ROP attacks.

Low-level IRMs such as SFI and CFI are usually im-

plemented through low-level rewriting, either by per-

forming binary instrumentation, assembly-code instru-

mentation, or by modifying a compilation tool chain’s

backend to emit code with embedded checks. As an ex-

ample, PittSFIeld was implemented by assembly-code

instrumentation [21]. Google’s Native Client (NaCl [28,

37]) was built by modifying the backend of the GNU tool

chain. One key benefit of rewriting at the low level is

that a separate verifier can be built to check the result of

rewriting. The separate verifier removes the rewriter out-

side of the TCB. Furthermore, in a distributed environ-

ment, only the verifier needs to be installed at the client’s

side. The verifier checks the security of untrusted, re-

motely downloaded modules. The security architecture

of NaCl follows the separation between the rewriter and

the verifier.

On the other hand, low-level rewriting is tightly cou-

pled with a certain ISA, resulting in poor reusability and

retargetability, and hindering optimizations. It is non-

1

370 22nd USENIX Security Symposium USENIX Association

trivial to port a low-level IRM to another ISA and ex-

isting parts are hard to reuse. For instance, NaCl’s ini-

tial implementation was on x86-32 and its port to x86-64

and ARM involved significant effort in design and im-

plementation [28]. One reason for the nontrivial effort

is the differences among ISAs, including the instruction

set, the available hardware features, the number and size

of registers, and others. In addition, many components

need to be built from scratch. A typical example is op-

timizations. Any decent IRM implementation requires

optimizations to bring down the runtime cost. However,

those optimizations are tied to an ISA and hard to reuse.

We explore the building of a retargetable framework

for low-level IRMs on a high-level compiler intermedi-

ate representation; in particular, the LLVM IR [20]. The

framework, called Strato1, is general in the sense that

various security policies can be conveniently enforced

and much code can be reused among them and that in-

lined high-level checks for a specific policy can be low-

ered into distinct machine-code sequences. In Strato, we

have enforced CFI and data sandboxing for both memory

writes and reads.

IR-level rewriting comes with several benefits. First, it

is retargetable. Security checks are inserted into the high-

level representation. The check-insertion component is

shared by all target ISAs the compiler supports. Opti-

mizations that operate on the IR are also reused among

different targets. To support a new target ISA, only the

lowering from high-level checks to machine-instruction

sequences needs to be changed. Even for the same ISA,

it is easy to explore different machine-instruction se-

quences that implement the same high-level check since

the lowering part can be easily changed. Our framework

was originally built to support x86-32 and then extended

to support x86-64; only a small amount of code was al-

tered to retarget it for x86-64.

The second benefit of IR-level rewriting is that opti-

mizations are easier to implement and more optimiza-

tions can be supported. An IR usually carries a wealth of

structured information and attains many properties that

are amenable to program analyses and optimizations. For

instance, LLVM IR is in the Static Single Assignment

(SSA) form [8, 9], making analysis easier to implement.

In addition, LLVM IR preserves type information, loop

information, and dominator-tree information, which fa-

cilitate analyses and optimizations. Finally, a high-level

representation contains many fewer instructions than a

typical target machine (e.g., in LLVM 2.9, LLVM IR

has only 54 instructions while the x86-64 target has over

3,500). All these benefits make it easier to implement

optimizers that remove or hoist security checks; we call

these optimizers security-check optimizers.

However, the downside of pure IR-level rewriting is

that it results in a larger TCB compared to low-level

rewriting. The compiler backend performs sophisticated

transformations to generate low-level code, including in-

struction selection, ISA-specific optimizations, and reg-

ister allocation. Those transformations can invalidate the

hypotheses assumed by a security mechanism at the high

level. First, a bug in a transformation can produce in-

secure low-level code. A more subtle issue is that those

transformations may assume a machine model different

from the attack model of a low-level IRM. As a simple

example, a backend transformation might assume that

a variable holds the last stored value after it is loaded

back from the memory location into which the variable

is spilled. However, many low-level IRMs such as CFI

assume the memory may change arbitrarily between any

two instructions because of memory-corruption attacks.

Under this attack model, a spilled variable cannot be as-

sumed to hold the same value. Consequently, the trans-

formation may produce insecure code according to the

attack model.

Therefore, the challenge is how to perform IR-level

rewriting while still preserve low-level security. Strato

adopts a twofold approach. First, it includes a novel con-

straint encoding and checking process to propagate as-

sumptions required by security-check optimizers. The

optimizers do not remove checks; instead, they mark

them as removable and attach constraints to them. After

the backend transformations, Strato checks whether the

constraints have been invalidated by the backend. If they

are not, the unnecessary security checks are removed or

hoisted. Otherwise, the checks are left intact to preserve

the security of the low-level code. In other words, the

security-check optimizers mark optimizations at the IR

level, but the effect is taken only at the low-level code

after ensuring constraints are not violated. To further en-

sure the trustworthiness, we implement an independent

verifier to validate the final low-level code, thus remov-

ing all the instrumentations, transformations, optimiza-

tions, and constraint checking out of the TCB. The ver-

ifier helped us uncover 35 critical bugs in early versions

of Strato.

The key contributions of our work are as follows.

• A reusable and retargetable framework is proposed,

built and evaluated to enforce low-level IRMs on a

high-level IR. To the best of our knowledge, this is

the first framework that brings the benefits of high-

level representations to low-level IRMs and loses

no trustworthiness. On top of that, we have imple-

mented two low-level IRMs including CFI and data

sandboxing for both x86-32 and x86-64. To demon-

strate the benefits of the IR-level approach, we have

implemented three conventional optimizations with

ease and the runtime overhead is lower than previ-

ous work.

2

USENIX Association 22nd USENIX Security Symposium 371

• Two techniques are proposed to ensure trustwor-

thiness, including the constraint encoding/checking

and the low-level verifier. A constraint language is

used to encode assumptions that are carried across

the code-generation barrier.

• We explore and evaluate a number of alternative

security-check instruction sequences for both CFI

and data sandboxing. Different instruction se-

quences have varying overhead on different ISAs

and programs. We have discovered more efficient

instruction sequences than previous work.

This paper is organized as follows. Section 2 de-

scribes related work. Section 3 introduces the overview

of Strato. Section 4 presents how Strato performs check

instrumentation and optimization; it also presents the

constraint language. Section 5 discusses the phase of

constraint checking and check lowering. Section 6 elab-

orates on the low-level verification process. Section 7

discusses the implementation and evaluation. The last

section concludes and proposes future work.

2 Related Work

Strato is inspired by many previous low-level security

techniques. Its special focus is to build a retargetable

infrastructure to assist the exploration and optimizations

of security techniques at a high-level representation.

2.1 Inlined Reference Monitors (IRMs)

IRMs embed checks into subject programs to enforce se-

curity policies. This approach can be carried at differ-

ent language levels, from source code, to an intermedi-

ate representation, or to low-level code. A typical ex-

ample of source-code IRM is CCured [25], which inserts

checks into C code for memory safety. At the IR level,

a number of systems insert checks for various kinds of

policies [11, 15, 17, 24]. At the low level, checks can

be inserted to enforce policies such as control-flow in-

tegrity. Clearly, this is a well-studied research area. Our

system sets itself apart by performing IR-level rewriting

and preserving low-level security. The IR-level rewriting

is adopted for retargetability and for the ease of imple-

menting optimizations. At the same time, we propose

techniques to ensure that IR-level rewriting is valid with

respect to security policies at the low-level.

Next we discuss closely related systems in the area of

IRMs and compare them with Strato.

Software-based Fault Isolation. SFI isolates un-

trusted or faulty modules from a trusted environment [21,

28, 31, 32, 34, 37]. In SFI, checks are inserted before

memory-access and control-flow instructions to ensure

memory access and control flow stay in a sandbox. A

carefully designed interface is the only pathway through

which sandboxed modules interact with the rest of the

system. One subtle requirement of SFI and other IRMs

is that the inserted security checks cannot be bypassed

by computed jumps, making some form of control flow

restriction necessary. Recent SFI implementations use

instruction alignment for a crude form of control-flow

integrity.

For efficiency, SFI is typically implemented through

a combination of static verification and inlined checks.

The safety of direct memory accesses and direct jumps

can be statically checked. For computed memory vis-

its and indirect jumps, checks are inlined to make sure

that those operations stay in the sandbox. Traditional SFI

implementations are performed through low-level rewrit-

ing. As a result, they are tightly tied to a specific target

machine and difficult to port to other ISAs. One advan-

tage of low-level rewriting is that it holds the promise

of rewriting without source code being available. How-

ever, most previous SFI implementations still ask for the

cooperation of the code producer by requiring assembly

code or a special compiler to be used. A recent SFI sys-

tem [34] makes substantial progress toward an imple-

mentation through pure binary rewriting; it remains to

be seen whether the system can be generalized to IRMs

other than SFI and how optimizations can be accommo-

dated.

Control Flow Integrity. CFI ensures that runtime

control flow follows a predetermined control flow graph

even if the whole data memory is under the control of

attackers [2, 3]. One way to enforce CFI is to insert IDs

at the targets of a control transfer and a check before the

control transfer [3]; the check ensures that the expected

ID is at the actual control transfer destination. The sys-

tem by Wang et al. enforces CFI through defunctional-

ization [33]. For computed control flow transfers, their

system encodes all potential targets in a write-protected

table and uses an index to retrieve the target. Before each

computed control transfer, the index is checked to make

sure that it falls into the table before it is used to fetch

the target address from the table. Our system implements

CFI in a way similar to the original implementation [3],

but at the IR level. In addition, we explore and evaluate

a number of instruction sequences for CFI enforcement

and find efficient instruction sequences that reduce the

runtime cost of CFI.

Combining CFI with other IRMs. On top of CFI,

XFI employs a protected shadow stack to store return ad-

dresses [14]. XFI promotes control flow precision from

Deterministic Finite Automata (DFA) to Pushdown Au-

tomata (PDA). However, XFI is platform specific and its

runtime overhead is significant.

Our previous system [38] also implements both CFI

3

372 22nd USENIX Security Symposium USENIX Association

and data sandboxing and proposes optimizations to de-

crease the runtime cost. However, that implementation

performs x86-32 assembly rewriting and cannot be re-

targeted to other ISAs. By contrast, Strato can target any

ISA that a compiler supports and the instrumentation and

optimizations are shared among different targets. In ad-

dition, optimizations in the previous system use the same

range-analysis technique adopted in its verifier, making

its trustworthiness questionable. Finally, its verifier is

path insensitive and is not as accurate as the one in the

new system.

LLVM IR rewriting. A number of systems per-

form rewriting on the LLVM IR for security. SAFE-

Code [11, 12] is an enhanced version of LLVM that

can enforce object-level integrity (which is close to type

safety). SoftBound [24] also takes the approach of IR-

level rewriting. It instruments the LLVM IR for enforc-

ing spatial memory safety. However, these systems en-

force their policies only at the IR level, not at the low

level. Our system has to solve the key challenge of how

to preserve security at the low-level even with the IR-

level rewriting.

Portable Native Client (PNaCl) is an ongoing effort at

Google. A white paper describes its initial design [13].

PNaCl requires code be transmitted in the LLVM IR for-

mat, with portability as the goal. After mobile IR code is

downloaded into the Chrome browser, PNaCl compiles

the IR code into SFI-compliant native code and reuses

NaCl to constrain native code. The important difference

between PNaCl and our system is that their architecture

does not accommodate security optimizers that remove

or hoist checks. The constraint language in our system

allows optimizers to perform optimizations and attach

constraints that can be checked at the low level.

2.2 Program Shepherding and Virtual Ma-

chines

Program shepherding utilizes an efficient program inter-

preter to enforce security at runtime [19, 27]. The inter-

preter can enforce various policies during program ex-

ecution. Similarly, virtual machines either JIT or inter-

pret high-level representations, enforcing relevant secu-

rity policies during the process. Although many policies

can be enforced conveniently in interpreters and virtual

machines, the sheer size and complexity of interpreters

or JIT compilers make their trustworthiness question-

able [10, 18]. Furthermore, the runtime performance of

interpreters and virtual machines might be problematic

compared with the IRM approach. Strato incurs lower

overhead and has a much smaller TCB.

3 Overview of Strato

This section elaborates on the workflow of Strato. We

will discuss where checks are inserted and optimized,

and where constraint checking and verification happen.

We have used Strato to implement CFI and data sand-

boxing, two specific IRMs. Therefore, we first discuss

those IRMs’ attack model and security policies.

Attack Model. Strato adopts CFI’s attack model [1].

We assume there is a separate code and data region. The

data region is under the control of an attacker, who is

modeled as a concurrent thread that can overwrite any

memory location in the data region. This rather pes-

simistic assumption is actually realistic given the abun-

dance of memory corruption vulnerabilities. In addition,

we assume that the code region and machine registers

cannot be changed by attackers. The assumption on the

code region can be discharged by hardware protection

such as DEP [22] or the W ⊕ X protection in latest x86

processors. The assumption about registers is consistent

with kernel-based multithreading. Note that even though

the attacker cannot directly modify the code region or

registers, he/she may indirectly induce such a change.

For instance, if a program loads from memory to a regis-

ter, the register’s new value is controlled by the attacker

since the data region is controlled by the attacker. If

the program further uses the register as the address of

a memory-write operation, the operation may change the

code region since the register’s value is controlled by the

attacker. Therefore, a protection mechanism must pre-

vent such indirect effects from damaging the system.

Security policy. In Strato, we have implemented two

IRMs: CFI and data sandboxing. The CFI policy is

with respect to a control-flow graph, whose edges con-

nect control-transfer instructions to allowed destination

basic blocks. We say a program obeys the CFI policy if

all control transfers in the program during runtime follow

the control-flow graph.

The data-sandboxing policy restricts memory reads

and writes. Following previous work [21, 32, 38], we

place a guard zone immediately before the data region

and another guard zone immediately after the data re-

gion. We use gz size to denote the size of both guard

zones. We assume that access to guard zones is hardware

trapped (through page protection). Guard zones facili-

tate optimizations of data sandboxing. With the guard

zones, a memory read or write is safe with respect to the

data-sandboxing policy if its address is either in the data

region or in the guard zones.

Workflow. In order for an IRM-implementation

framework to be retargetable, the majority of instrumen-

tation and optimizations need to be decoupled from a

specific ISA. A high-level representation provides such

a vehicle. A remaining question is where to insert the

4

USENIX Association 22nd USENIX Security Symposium 373

IRM-instrumentation phase inside a compiler. A typi-

cal optimizing compiler has many layers that transform

an IR program to another IR program with simplified

semantics or better performance. Therefore, the IRM-

instrumentation phase can be scheduled at any stage be-

tween IR generation and the backend.

On one end of the spectrum, we can schedule the IRM-

instrumentation pass right after the compiler frontend;

that is, after the IR is generated by the frontend. The

benefit is that it can reuse a large number of existing

IR-level optimization passes, which can optimize away

unnecessary security checks. However, it has two draw-

backs. First, since the security of low-level code gen-

erated by the compiler is what we are interested in, we

need a way to ensure those IR-level optimizations do not

wrongly optimize away security checks. One way to ac-

complish this would be to modify the optimizations to

carry enough information to the low level for certifica-

tion, similar to proof-carrying code. However, modifying

complex compiler optimizations is non-trivial. The sec-

ond and more serious drawback of scheduling the IRM-

instrumentation pass right after the frontend is that exist-

ing optimizations may not be safe according to the attack

model of an IRM. As we discussed before, the CFI attack

model assumes that data memory is untrusted. However,

a typical IR assumes a much different machine model.

As an example, LLVM IR adopts an Unlimited Register

Machine (URM) model in the SSA form [20]. A real

machine has a limited number of registers and so LLVM

IR variables may be spilled into untrusted memory loca-

tions. Therefore, if an LLVM IR optimization depends

on the URM model for correctness, then the optimized

result may not be safe according to CFI’s attack model.

On the other end of the spectrum, the IRM-

instrumentation phase can be scheduled right before the

compiler backend for code generation. This is the design

adopted in Strato. The downside is that existing com-

piler optimizations are not reused and we have to develop

our own optimizations to optimize IRM checks to im-

prove efficiency. But optimizations for security checks

can be implemented straightforwardly at the LLVM IR

level, which has a small number of instructions and is

in the SSA form. For the policy of data sandboxing, we

implemented three optimizations with ease, shared by all

targets supported by LLVM. With this design, there is

no need to trust or modify a large number of existing IR-

level compiler optimizations. Optimizing compilers have

a large code base and bugs are unavoidable [35].

Fig. 1 presents the workflow of Strato, which is imple-

mented as extra passes added to the LLVM compiler. We

next explain the steps of how source code is translated

to low-level code through Strato-augmented LLVM. We

add stars to those steps that are added in Strato to distin-

guish them from those steps already in LLVM.

Figure 1: Workflow of Strato

(1) Compiler frontend. LLVM’s clang frontend gener-

ates the IR code.

(2) Compiler optimizations. LLVM’s transformations

and optimizations change the IR code to simpler and

optimized code.

(3) *Check insertion. Security checks are inserted be-

fore dangerous instructions to generate secured IR

code. The dangerous instructions and checks in-

serted depend on the security policy. Since the cur-

rent policy is CFI and data sandboxing, security

checks are inserted before memory loads and stores

as well as computed jumps. Note this step inserts

more checks than necessary. Later steps will remove

unnecessary checks. Security checks are inserted as

LLVM intrinsic functions, which will be lowered to

machine-instruction sequences at a later step (if they

are not optimized away).

(4) *Check optimization. After check insertion, cus-

tom optimizations for removing security checks are

performed on the IR code. We implement three ef-

fective optimizations to demonstrate the amenability

of high-level IR to optimizations: redundant check

elimination, sequential memory access optimization,

and loop-based check optimization. Our optimiza-

tions differ from traditional ones in that no security

checks are removed or moved around at this step.

A check that is deemed unnecessary is marked as

removable and constraints are attached to it. The

check will be removed only after the constraints are

checked to be valid at a later step. If those con-

straints are violated by later steps of the compilation,

the check will not be removed.

(5) Code generation. The compiler backend performs

instruction selection, instruction scheduling, ISA-

5

374 22nd USENIX Security Symposium USENIX Association

specific optimizations, and register allocation. Low-

level assembly code is generated as the result.

(6) *Constraint checking. If the constraints for a check

are invalidated during compiler transformations and

optimizations, the check is kept intact. Otherwise, it

is removed.

(7) *Check lowering. Security checks are lowered to

machine-instruction sequences. Usually a security

check can be implemented by multiple machine-

instruction sequences. This step therefore provides

a convenient place to experiment with different se-

quences to evaluate which one produces the best per-

formance.

(8) *Verification. An independent verifier is run to

check the low-level code. If the verification fails,

then the code is rejected.

The above design makes it straightforward to adapt to

a different ISA. Steps including check insertion, check

optimization, and constraint checking can be reused

across ISAs. The check-lowering and the verifier com-

ponents need to be tailored for a new ISA. As we will

discuss, the amount of effort involved to retarget Strato’s

implementation from x86-32 to x86-64 is small.

4 Check Instrumentation, Optimizations

and the Constraint Language

The goal of security-check instrumentation is to guard

dangerous operations with checks so that they cannot be

abused by adversaries. For CFI, IDs are inserted before

control-flow targets. Furthermore, checks are inserted

before computed jumps, including indirect calls, indirect

jumps and return instructions2; these checks ensure that

the expected IDs are there at the targets of control-flow

transfers [1].

For data sandboxing, Strato inserts a check before

each load and store instruction; the check ensures that

the instruction’s memory address is within the data re-

gion. In addition, after a definition of a pointer variable,

a check is inserted to ensure that the pointer is within

the data region. A check is also inserted at the entry of

a function for a pointer parameter. In this step, Strato

inserts more checks than necessary.

Since checks are inserted at the IR level, the same pro-

tection strategy is adopted for all machine targets, includ-

ing x86-32 and x86-64. This provides uniformity and en-

ables most of the code to be shared between targets. In

contrast, NaCl adopts very different protection strategies

for x86-32, x86-64, and ARM (segmentation on x86-32,

large addresses and guard regions on x86-64, and address

masking on ARM).

After check instrumentation, optimizations are run on

the secured IR to mark unnecessary checks. To demon-

strate the ease of implementing optimizations at the IR

level, we have implemented three optimizations for re-

moving unnecessary data-sandboxing checks: redundant

check elimination, sequential memory access optimiza-

tion, and loop-based optimization. In these optimiza-

tions, checks are not removed. Rather, checks that are

deemed removable are marked and constraints are at-

tached to them. Checks whose constraints are still valid

after the backend processing are removed in the later

constraint-checking step.

Redundant Check Elimination. Since the check-

instrumentation step inserts a check after the definition of

a pointer variable and also before the use of the variable

via a load or store, the checks before the uses are redun-

dant at the IR level. Fig. 2 presents an example. Column

(a) presents the original C code and column (b) presents

the LLVM IR code before check instrumentation. During

check instrumentation, three checks are inserted. First,

a check is placed at the beginning of the function for

the pointer parameter ptr. Second, since there are a

load in block labeled else and a store in block labeled

then, checks need to be placed before them. check2 and

check3 are unnecessary at the IR level. However, they

cannot be removed in the IR code because ptr.safe

might be spilled into the untrusted stack during register

allocation. Instead, check2 is marked as removable and

a constraint is attached, specifying that the check can be

removed if and only if ptr.safe is not spilled between

check1 and check2. In Fig. 2(c), constraints are at lines

starting with the # symbol. check3 in block then is at-

tached with a similar constraint. After register alloca-

tion, the constraint checker checks whether ptr.safe

has been spilled. If not, the two checks are removed.

Otherwise, they are kept intact.

LLVM IR is in the SSA form, making it easy to im-

plement the above optimization. First, the def-use chain

is explicit in the SSA form. Furthermore, the SSA form

ensures that ptr.safe is not modified between check1

and check2. By contrast, if carried out on machine code,

the optimizer would have to perform dataflow analysis to

determine whether a pointer has been guarded and mod-

ified.

Sequential Memory Access Optimization. Most

programming languages support aggregate types such as

structs in C and classes in C++. A common pattern ex-

ists in member accesses: a base pointer plus a constant

offset is used to visit a specific member. With the guard

zones before and after the data region, a memory access

with a base pointer and a constant offset is safe as long

as the base pointer is within the data region and the offset

is smaller than the guard-zone size. This observation can

be exploited to remove checks if members of an object

6

USENIX Association 22nd USENIX Security Symposium 375

(a) Original C code

int foo

(int v, int *ptr)

{
int tmp = 0;

if (v > 47)

*ptr = v;

else

tmp = *ptr;

return tmp;

}

(b) Unsecured IR code

entry:

tmp = 0

if(v > 47) goto then

else:

tmp = load *ptr

goto end

then:

store v, *ptr

end:

ret tmp

(c) Secured and optimized IR code

entry:

ptr.safe = call guard(ptr) // check1

tmp = 0

if(v > 47) goto then

else:

ptr.safe1 = call guard(ptr.safe) // check2

noSpill(ptr.safe, check1, check2)

tmp = load *ptr.safe1

goto end

then:

ptr.safe2 = call guard(ptr.safe) // check3

noSpill(ptr.safe, check1, check3)

store v, *ptr.safe2

end:

ret tmp

Figure 2: An example for illustrating redundant check elimination. guard is the security check to ensure that the input

pointer is in the data region, which is implemented as an LLVM intrinsic function.

(a) Original C code

struct s

{
long x;

long y;

};
int sum

(struct s *p)

{
return p->x + p->y;

}

(b) Unsecured IR code for sum

x = gep p, 0, 0

tmp1 = load *x

y = gep p, 0, 1

tmp2 = load *y

sum = add tmp1, tmp2

ret sum

(c) Secured and optimized IR code

p.safe = call guard(p) // check1

x = gep p.safe, 0, 0

x.safe = call guard(x) // check2

noSpill(p.safe, check1, check2)

sizeof(struct s)*0 + sizeof(long)*0 < gz size

tmp1 = load *x.safe

y = gep p.safe, 0, 1

y.safe = call guard(y) // check3

noSpill(p.safe, check1, check3)

sizeof(struct s)*0 + sizeof(long)*1 < gz size

tmp2 = load *y.safe

sum = add tmp1, tmp2

ret sum

Figure 3: An example for illustrating sequential memory access optimization.

are visited sequentially and the base pointer is shared by

multiple visits.

In LLVM IR, the getelementptr instruction takes a

base pointer and multiple indices as operands and is used

to compute the address of a sub-element of an aggregate

data structure. If the base pointer has been guarded, the

offset is a constant, and the offset is determined to be

smaller than the guard zone size, then the pointer com-

puted by getelementptr does not need to be guarded

again. However, the size of each member cannot be de-

termined at the IR level because it may be target depen-

dent. For example, type long takes 4 bytes in x86-32 and

8 bytes in x86-64. As a result, the check after the defi-

nition of a pointer variable through getelementptr can

be marked as removable and attached with constraints

specifying that the base pointer cannot be spilled and the

final offset from the base pointer should be less than the

guard-zone size.

Fig. 3 presents an example. In column (a), struct s

contains two long members and the function sum com-

putes their sum. In column (c), Strato inserts check1

at the entry to function sum and check2 and check3

after each getelementptr instruction (abbreviated as

gep in the figure). The constraints for check2 spec-

ify that it can be removed if there is no spill between

check1 and check2 for pointer p.safe and the offset

sizeof(struct s)*0 + sizeof(long)*0 is smaller

than the guard-zone size (this condition can be deter-

mined to be true even at the IR level because it is always

zero; however, values of other expressions may be target

dependent). Similar constraints are attached for check3.

Loop-based check optimization. Loop optimization

is important because programs tend to spend the major-

ity of runtime in loops. Performance is improved if a

security check inside a loop can be hoisted outside the

loop. For example, if a pointer is not modified inside

7

376 22nd USENIX Security Symposium USENIX Association

(a) Original C code

long sum

(long *ar, long len)

{
long rst = 0, i;

for (i=0; i<len; ++i)

rst += ar[i];

return rst;

}

(b) Unsecured IR code

rst = 0

i = 0

if (len <= 0) goto end

for.body:

ptr = gep ar, i

tmp = load *ptr

rst += tmp

i += 1

if (i >= len) goto end

goto for.body:

end:

ret rst

(c) Secured and optimized IR code

rst = 0

i = 0

ar.safe = call guard(ar) // check1

if (len <= 0) goto end

for.body:

ptr = gep ar.safe, i

ptr.safe = call guard(ptr) // check2

noSpill (ar.safe, check1, check2)

noSpill (i, check1, check2)

sizeof(long) * 1 < gz size

tmp = load *ptr.safe

rst += tmp

i += 1

if (i >= len) goto end

goto for.body:

end:

ret rst

Figure 4: An example for illustrating loop optimization.

the loop, then a check for the pointer can be hoisted. As

another example, if a pointer is incremented or decre-

mented for a small stride (less than the guard-zone size)

inside the loop, and there is a memory access through the

pointer in the loop, then the check can be hoisted. The

reason this is safe is because access to the guard zones is

trapped; if the initial value of the pointer is checked to be

inside the data region, then the change to the pointer in

one loop iteration will make the pointer to be either in the

data region or in guard zones and the access through the

pointer serves as a check. This optimization follows the

loop optimization described by Zeng et al. [38]; please

refer to that paper for detailed analysis of the soundness

of the optimization. As another optimization example,

if there is a pointer that is calculated from the induction

variable of the loop, the increment to the induction vari-

able is a small stride (less than the guard zone size), and

there is a memory access through the pointer in the loop,

then the check can be hoisted. LLVM IR encodes loop

information explicitly, making it easy to detect induction

variables and strides.

In our optimizations, a hoistable check is not moved.

Instead, a new check is inserted into the loop preheader

and the old check is marked as removable and attached

with constraints. An important constraint is that the rele-

vant pointer cannot be spilled. Fig. 4 presents a concrete

example. The program in column (a) adds elements in

array ar. The program visits memory once per iteration.

The check can be hoisted if and only if the induction vari-

able is the only variable used to calculate the memory lo-

cation and the stride is smaller than the guard-zone size

and there is a memory visit using the memory location in

every path inside the loop.

constraint ::= noSpill [var, src, dst]

| term comparator term

term ::= term + term | term * term |
var | constant | gz size

comparator ::= < | > | == | >= | <=

Figure 5: Syntax of the constraint language.

Summary about optimizations. The three opti-

mizations demonstrate that a high-level IR can simplify

the implementations of optimizations, which are reused

among target ISAs. Additional optimizations enabled by

a high-level IR can further decrease the runtime cost of

Strato.

The constraint language. For completeness, we

present the syntax of the constraint language in Fig. 5.

A check may be attached with one or more constraints.

All constraints need to be satisfied in order for the check

to be removed; that is, there is an implicit conjunction

when interpreting a list of constraints.

The constraint noSpill [var, src, dst] denotes

that var cannot be spilled between src and dst, where

src and dst are program locations. Note the seman-

tics of this constraint is that the variable cannot be

spilled along every control-flow path from src to dst.

Therefore, the noSpill constraints in the example of

Fig. 5 effectively require that ar.safe and i cannot be

spilled in the entire loop. The comparison constraint

“term1 comparator term2” represents a relation be-

tween term1 and term2. It can be used to encode the

constraint that a constant offset should be less than the

guard-zone size, as in Fig. 3.

The design of the constraint language depends on what

optimizations Strato supports and also LLVM’s back-

8

USENIX Association 22nd USENIX Security Symposium 377

end. For instance, the noSpill constraint is there be-

cause LLVM’s backend may break this assumption by

spilling variables to memory. An IR-level optimization

may check more conditions. But if there is no possi-

bility for the backend to break a condition, that condi-

tion does not need to be encoded and propagated. For

instance, in loop optimizations, the condition that there

must be a memory access through the pointer in question

can be checked at the IR-level alone. Another point is

that it is possible new optimizations may require adding

new predicates to the constraint language. We believe the

constraint language can be extended straightforwardly.

5 Constraint Checking and Check Lower-

ing

After LLVM’s backend processing, Strato performs con-

straint checking and check lowering. Constraint check-

ing examines the constraints attached to each check and

checks whether they are valid. If the constraints are valid,

the check is removed. If they are invalid, the check is

lowered to a sequence of machine instructions.

Our constraint language is designed so that constraints

can be checked straightforwardly at the low level, with

the help of information preserved by LLVM. For exam-

ple, a comparison constraint becomes constant expres-

sions at the low level because after fixing the ISA sizes

of types become constants. To check a noSpill con-

straint, the constraint checker first identifies the corre-

spondence between IR variables and registers (LLVM

preserves enough information for this purpose) and uses

data-flow analysis to check whether the register that cor-

responds to the IR variable is moved to memory between

the source and destination locations.

Remaining checks are lowered to machine-instruction

sequences. A high-level check can be implemented by

many machine-instruction sequences. The overhead of

different sequences varies. Strato makes it easy to try dif-

ferent machine-instruction sequences—only the check-

lowering step needs to be modified. We have evalu-

ated a large number of machine-instruction sequences for

checks in CFI and data sandboxing. We discuss exam-

ples of possible sequences next, but leave the discussion

about the performance overhead of various sequences to

the evaluation section.

ID encodings. Strato’s CFI instrumentation requires

the encoding of IDs at control-flow targets. ID-encoding

instructions have to satisfy two conditions. First, the

instruction must take a long immediate value as an

operand, which is used to encode the ID. Second, the in-

struction cannot introduce side-effects that change the se-

mantics of the program. The original CFI uses prefetch

instructions for encoding IDs. We have evaluated a large

number of alternative instructions that satisfy the two

conditions. They are put into three groups. Instructions

in the first group take an immediate value and assign it

to a machine register. For example, “movl $ID, %eax”

assigns the immediate value ID to register eax. It can

be used to encode the ID as long as eax is dead at the

point where the instruction is inserted.3. Instructions in

the second group perform arithmetic operations on a reg-

ister with the ID and assign the result to a register. For

example, “add $ID, %eax” can be used to encode the

ID as long as eax and the flags register are dead. Instruc-

tions in the last group take a register and the ID value and

defines only the flags register. For example, “cmp $ID,

%eax” can be used as long as the flags register is dead at

the point of insertion.

6 Verification

Compiler optimizations and transformations are untrust-

worthy because compilers have a large code base and are

buggy [26, 36]. Bugs in optimizations that remove se-

curity checks are even harder to catch because they do

not crash programs but introduce vulnerabilities silently.

To remove those optimizations out of the TCB, Strato in-

cludes a verifier at the end of the compilation pipeline to

validate the assembly output of the compiler.

The verifier checks if the assembly code satisfies the

CFI and data sandboxing policy. CFI verification is

straightforward. The LLVM assembly preserves enough

information to reconstruct a control-flow graph, which is

used by the verifier to check if necessary ID-encoding

and ID-checking instructions are there in the assem-

bly. Data-sandboxing verification is more challeng-

ing because Strato’s optimizers may remove or hoist

checks. Strato’s verifier follows the design of a previ-

ous verifier [38] to implement range analysis for data-

sandboxing verification (with improvements; see below).

The basic idea is to compute the ranges of registers at all

program points and check if the ranges of memory ad-

dresses fall into the data region plus guard zones. The

calculation of ranges uses a standard iterative algorithm

until a fixed point is reached.

Strato’s verifier improves the previous range-analysis

verifier by adding path sensitivity. Ranges of registers

may be different along different paths after a sequence

of comparison and jump instructions. As an example,

the assembly snippet in AT&T syntax in Fig. 6 is ex-

tracted from 175.vpr in SPECint2000. The range of reg-

ister eax shrinks down to the data region after the andl

masking, where $DATA MASK is the constant mask for the

data region. The movl instruction expands the range of

eax to [bottom, top] because it loads from untrusted

memory.4 Without path sensitivity, the range of eax

would remain [bottom, top] at the entry to the two

9

378 22nd USENIX Security Symposium USENIX Association

andl $DATA MASK, %eax

movl (%eax), %eax

cmpl $3, %eax

ja .LBB5 8

movl *.LJTI(,%eax,4), %eax

.LBB2:

...

.LBB8:

...

Figure 6: An example for illustrating path sensitivity in

range analysis.

popl %ecx

cmpl $ID, 1(%ecx)

jne error

jmpl *%ecx

Figure 7: A wrong CFI sequence for return instructions.

successor blocks labeled with .LBB2 and .LBB8; conse-

quently, the verifier would report an out-of-range error

on the movl instruction because its memory address is

“.LJTI + eax*4”, where .LJTI is a constant in the data

region. With path sensitivity, the verifier computes the

range of eax to be [0, 3] before movl and successfully

validates that the address is within the data region plus

guard zones. The verifier in the previous system [38]

used instruction pattern matching to verify this pattern.

By adopting a path-sensitive analysis, Strato’s verifier is

more general and can verify all security-check optimiza-

tions we have presented.

With the help of the verifier, we discovered 35 subtle

bugs in early versions of Strato. Those bugs would be

hard to discover otherwise. We classify the bugs into

three groups as follows.

• Bugs in CFI instrumentation code. CFI implemen-

tation inserts IDs at branch targets and check in-

structions before computed jumps. The check in-

structions need to load the IDs at target locations.

Therefore, they visit memory and need to be sand-

boxed as well according to data sandboxing. As

an example, the snippet in Fig. 7 contains an early

version of a CFI check sequence for return instruc-

tions. The return address is popped into register

ecx, which is then used to load the ID for compar-

ison. The cmpl instruction visits the code region

using address ecx+1, which is unsafe because it is

from the untrusted stack. Our verifier successfully

caught this bug and we fixed the sequence by insert-

ing a data-masking instruction on ecx before cmpl.

• Bugs in the source program. Our verifier even

found a bug in the source code of 253.perlbmk,

a program in SPECint2000. The bug is a possi-

ble null-pointer dereference. The perlbmk program

has its own malloc function, which can return a

null pointer when a memory allocation fails and the

malloc is inlined by the compiler. A null pointer

is represented as value 0 and is outside the range of

data region plus guard zones. It was caught by the

verifier. We modified the source code of perlbmk

to fix this bug.

• Bugs in LLVM intrinsic functions such as

llvm.memset and llvm.memcpy. LLVM synthe-

sizes programs into intrinsic function calls as an

optimization. These intrinsic function calls can be

lowered into a sequence of machine instructions or

direct calls to the library functions depending on

the tradeoff between code size and the function-

call overhead. At the IR level, there is no way

to predict how an intrinsic function will be low-

ered. If they are lowered into machine-instruction

sequences, then their pointer arguments need to be

sandboxed as they may visit memory. Our veri-

fier caught these bugs and we fixed those machine-

instruction sequences to insert data-masking in-

structions for pointers.

The combined verifier for x86-32 and x86-64 contains

approximately 7k LOC including white space lines, com-

ments, and debug statements. The majority of the code is

a giant switch table for all the machine instructions that

the verifier has to support (In LLVM 2.9, x86-64 target

contains 3,747 machine instructions). The size of the ver-

ifier is a concern and we leave its verification for future

work [23].

Finally, we note that our verifier performs verification

at the assembly level. We use it mostly to catch bugs

in the Strato compiler so that the compiler is out of the

TCB. A more desirable design is to implement a verifier

for binaries directly. This is actually a matter of engi-

neering: we just need to modify the assembler to encode

the control-flow graph as extra information in a binary so

that the binary-level verifier can disassemble the binary

reliably; the kinds of verification tasks involved are the

same after disassembly.

7 Implementation and Evaluation

We have implemented Strato on top of LLVM 2.9. The

check-instrumentation step is implemented as a pass

and scheduled after LLVM’s IR optimization passes.

The security-check optimizations are performed right

after check instrumentation. The constraint checking

and check lowering are implemented in one pass in the

10

USENIX Association 22nd USENIX Security Symposium 379

compiler backend after register allocation. The range-

analysis based verifier is scheduled at the very end in the

backend. Constraints are encoded as LLVM metadata.

In total, the instrumentation and optimizations consist of

approximately 3,750 lines of C++ code, shared between

x86-32 and x86-64. The constraint checking and check-

lowering component has 1,420 lines of C++ code with

an additional 180 lines added for x86-64. The verifier

includes 6,960 lines of C++ code, with 1,240 lines added

for x86-64.

The object code after data-sandboxing and CFI in-

strumentation cannot run directly and needs specialized

linker scripts and a specialized loader. We have devel-

oped linker scripts for both C and C++ programs tar-

geting x86-32 and x86-64. The linker scripts link ob-

ject code generated by LLVM to three sections (includ-

ing code, data, and read-only data) at specified addresses.

We have also developed a loader that loads various sec-

tions in a binary at specified addresses in the address

space and sets up appropriate protection for those sec-

tions using the mprotect system call. We reused PittS-

FIeld’s library wrappers and libraries for x86-32 [21]; we

also adapted them for x86-64.

For evaluation, we have built and run the benchmark

suites bakeoff and SPECint2000 in Strato. The bake-

off benchmark suite contains three programs: hotlist, lld,

and md5. It has been used by previous code-sandboxing

frameworks for evaluation [14, 16, 31]. SPECint2000

contains twelve computation-intensive programs and is

widely used for compiler evaluation. All benchmark

programs in bakeoff and SPECint2000 can be success-

fully compiled in Strato. All programs were compiled

with the -O3 full optimization level except for 254.gap

in SPECint2000, which ran correctly only with -O0 en-

abled due to bugs in LLVM 2.9’s optimizations. All ex-

periments were conducted on a Ubuntu 11.10 box with

an Intel Core 2 Duo CPU at 3.16GHz and 8GB of RAM.

Experiments were averaged over three runs and the stan-

dard deviation was less than two percent of the arithmetic

mean.

Security benefits. Security benefits of Strato de-

pend on what IRMs have been incorporated. The cur-

rent implementation supports CFI and data sandboxing.

The low-level output of all programs in bakeoff and

SPECint2000 can be successfully verified by Strato’s

verifier. Assuming the verifier is correct, the compiled

code of those benchmark programs satisfies the CFI and

data sandboxing policy.

CFI and data sandboxing come with well-documented

security benefits. The original CFI work discusses that

CFI can block a test suite of 18 attack vectors, as well as

some heap-overflow attacks [3]. Data sandboxing as in

SFI is effective in isolating faults in untrusted modules,

as reported in NaCl [37] and Robusta [30].

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

hotlist lld md5 avg

prefetch
mov32ri
mov16ri

mov8ri
add32ri
add16ri
test32ri

Figure 8: Performance overhead for CFI with various ID-

encoding instructions on bakeoff programs.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 9: Performance overhead for CFI with movl as

the ID-encoding instruction on SPECint2000.

CFI and data sandboxing cannot prevent all attacks.

For example, non-control data attacks [7] cannot be pre-

vented if critical data are stored inside the sandbox.

These attacks can corrupt the data without violating a

control-flow graph. However, another IRM called Data-

Flow Integrity (DFI [4]) can prevent such attacks.

Performance evaluation. IRMs insert runtime checks

into programs and slow down program execution. We

present the performance overhead as the percentage of

execution-time increase of instrumented programs com-

pared with uninstrumented programs.

We first evaluated the performance implication of al-

ternative machine-instruction sequences that implement

the same high-level checks. We have tested a large

number of alternative ID-encoding instructions, classi-

fied into three groups discussed in Sec 5. Fig. 8 presents

the runtime overhead of various ID-encoding instructions

on bakeoff programs for x86-32 when enforcing the CFI

policy. In the figure, color bars are used for different ID

encodings. The figure presents only a subset of what we

have tried due to space limit. In addition, we evaluated

different ID lengths such as 32-bit IDs, 16-bit IDs and

8-bit IDs. Shorter IDs do not necessarily have better per-

formance and they shrink the space for IDs. In the figure,

we use mov32ri to represent the case of using a 32-bit

mov instruction that moves a 32-bit immediate value to a

general register. As can be seen from the figure, most ID-

encoding instructions are more efficient than prefetch,

11

380 22nd USENIX Security Symposium USENIX Association

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

x86-32 x86-64

hotlist
lld

md5
avg

Figure 10: Performance overhead for CFI combined with

data sandboxing for both reads and writes on bakeoff.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 11: Performance overhead for CFI combined

with data sandboxing for both reads and writes on

SPECint2000.

the one used in the original CFI implementation.5 The

case of 32-bit movl instruction has the lowest runtime

overhead.

Fig. 9 presents the performance overhead of CFI alone

on SPECint2000 with movl as the ID-encoding instruc-

tion. CFI incurs an average of 5.89% and 7.95% slow-

down on x86-32 and x86-64, respectively. Our CFI im-

plementation is competitive with previous CFI systems.

The original CFI work [3] has 15% overhead and our

own previous work [38] has 7.7% overhead on x86-32.

Fig. 10 and Fig. 11 present the overhead of enforcing

CFI and data sandboxing for bakeoff and SPECint2000

programs, respectively. Both cases of x86-32 and x86-

64 are presented. The numbers are with respect to the

case of using the mov32ri instruction as the ID encod-

ing in CFI, and using the and instruction for sandboxing

memory addresses. On average, Strato incurs 37.7% on

x86-32 and 39.3% on x86-64 for bakeoff programs, and

19.9% on x86-32 and 25.3% on x86-64 for SPECint2000

programs. The high overhead on hotlist is due to the

two checks in the inner loop of two nested loops and they

cannot be optimized away or hoisted.

Strato’s performance is competitive with previous

SFI/CFI systems. We note most previous systems sand-

box only memory writes for protecting integrity, but

not memory reads for protecting confidentiality. There

are many more memory reads than writes in programs.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 12: Code size increase on SPECint2000.

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

x86-32 x86-64

hotlist
lld

md5
avg

Figure 13: Code size increase on bakeoff.

Strato’s data sandboxing protects both memory reads and

writes. There are two other SFI/CFI systems that sand-

box both reads and writes. XFI’s average performance

overhead for bakeoff programs are 53.7% on x86-32; in

comparison, Strato’s overhead is 37.7%. XFI does not re-

port performance results for SPECint2000. Our previous

system [38] also sandboxes both reads and writes at the

assembly level. It reports an average overhead of 27.2%

for x86-32; in comparison, Strato’s overhead is 19.9%.

We believe that the performance difference is because

Strato’s optimizations can take advantage of structured

information available at the IR level. For instance, the

previous system uses the dominator-tree analysis to re-

cover loops and induction variables at the assembly level,

while LLVM IR tells explicitly where loops and induc-

tion variables are. In summary, Strato provides compet-

itive performance and provides retargetability, lacked by

previous systems.

Code Size. We measured the code-size increase on

SPECint2000 and bakeoff programs. Strato does not

alter the data sections of programs. It increases the

size of text sections by inserting extra security checks.

Fig. 12 and Fig. 13 present the text-section size increase

on SPEC CPU2000 and bakeoff programs, respectively.

On average, the text section grows 36.10% on x86-32

and 52.05% on x86-64 for SPECint2000 programs, and

5.83% on x86-32 and 5.19% on x86-64 for bakeoff pro-

grams. Text-section size inflates more on SPECint2000

because it contains larger programs with many more

12

USENIX Association 22nd USENIX Security Symposium 381

functions; the compiler aligns functions on boundaries.

Although disk space is not a major problem in a typi-

cal computing environment, it may matter in embedded

systems. Benchmark programs were compiled with -O3,

which is optimized for runtime performance, not for bi-

nary size. If the binary size is a major concern, programs

can be optimized with -Os, which uses shorter instruc-

tion sequences.

Memory Usage. We also evaluated the memory us-

age of Strato. The memory-footprint increase for bench-

mark programs is negligible since Strato does not change

the data memory. It increases memory footprint only

through the code-size increase, but the code section takes

a small fraction of total runtime memory.

8 Conclusions and Future Work

Conclusions. We have introduced an IRM framework

to enforce low-level security policies by working on a

high-level intermediate representation. For retargetabil-

ity, Strato performs its instrumentation and optimizations

on a high-level IR, which brings the benefits of struc-

tured information and a small instruction set. In addition,

we have designed techniques that deal with problems

that might arise due to backend transformations and op-

timizations. A constraint language is proposed to prop-

agate invariants across the backend for validation. Fur-

thermore, a path-sensitive verifier is implemented to ver-

ify the final output of the whole framework. Our exper-

imental results show that the framework’s performance

is competitive with previous sytems. Our framework ex-

plores an alternative design point of how low-level IRMs

can be implemented. This design point provides retar-

getability, performance, trustworthiness, and ease of im-

plementation.

Future work. There are many other low-level IRMs

that we can incorporate into Strato, including data-flow

integrity [4] and fine-grained access control of mem-

ory [5]. The workflow of Strato is general enough to

accommodate those IRMs, but individual components

such as check insertion and lowering need to be up-

dated for a particular IRM. We are interested in design-

ing a check-optimization engine that can be shared by

many IRMs; for example, optimizations such as redun-

dant check elimination can be shared. Ultimately, we are

interested in generalizing Strato so that it is parametrized

by a policy specification, which guides the phases of

check insertion, optimization, and lowering.

9 Acknowledgments

We thank Cliff Biffle for providing us with his ini-

tial development, useful documents, and suggestions.

We also thank Mengtao Sun for his help to the project

and anonymous reviewers for their insightful comments.

This research is supported by US NSF grants CCF-

0915157, CCF-1149211, CCF-1217710, and a research

award from Google.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proceedings of the 12th ACM confer-

ence on Computer and communications security (New York, NY,

USA, 2005), CCS ’05, ACM, pp. 340–353.

[2] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J. A

theory of secure control flow. In ICFEM (2005), K.-K. Lau and

R. Banach, Eds., vol. 3785 of Lecture Notes in Computer Science,

Springer, pp. 111–124.

[3] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity: principles, implementations, and applica-

tions. ACM Trans. Inf. Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[4] CASTRO, M., COSTA, M., AND HARRIS, T. Securing soft-

ware by enforcing data-flow integrity. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI) (2006),

pp. 147–160.

[5] CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M.,

AKRITIDIS, P., DONNELLY, A., BARHAM, P., AND BLACK, R.

Fast byte-granularity software fault isolation. In ACM SIGOPS

Symposium on Operating Systems Principles (SOSP) (2009),

pp. 45–58.

[6] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.-

R., SHACHAM, H., AND WINANDY, M. Return-oriented pro-

gramming without returns. In Proceedings of the 17th ACM con-

ference on Computer and communications security (New York,

NY, USA, 2010), CCS ’10, ACM, pp. 559–572.

[7] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,

R. K. Non-control-data attacks are realistic threats. In In

USENIX Security Symposium (2005), pp. 177–192.

[8] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,

AND ZADECK, F. K. An efficient method of computing static sin-

gle assignment form. In Proceedings of the 16th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages

(New York, NY, USA, 1989), POPL ’89, ACM, pp. 25–35.

[9] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,

AND ZADECK, F. K. Efficiently computing static single assign-

ment form and the control dependence graph. ACM Trans. Pro-

gram. Lang. Syst. 13, 4 (Oct. 1991), 451–490.

[10] DEAN, D., FELTEN, AND WALLACH. Java security: From hot-

java to netscape and beyond. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy (Washington, DC, USA,

1996), SP ’96, IEEE Computer Society, pp. 190–.

[11] DHURJATI, D., AND ADVE, V. S. Backwards-compatible array

bounds checking for C with very low overhead. In ICSE (2006),

pp. 162–171.

[12] DHURJATI, D., KOWSHIK, S., AND ADVE, V. S. SAFECode:

enforcing alias analysis for weakly typed languages. In PLDI

(2006).

[13] DONOVAN, A., MUTH, R., CHEN, B., AND SEHR, D.

PNaCl: Portable Native Client Executables (white paper).

http://src.chromium.org/viewvc/native_client/

data/site/pnacl.pdf, 2010.

[14] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND

NECULA, G. C. XFI: software guards for system address spaces.

13

382 22nd USENIX Security Symposium USENIX Association

In Proceedings of the 7th symposium on Operating systems de-

sign and implementation (Berkeley, CA, USA, 2006), OSDI ’06,

USENIX Association, pp. 75–88.

[15] ERLINGSSON, U., AND SCHNEIDER, F. B. IRM enforcement of

java stack inspection. In Proceedings of the 2000 IEEE Sympo-

sium on Security and Privacy (Washington, DC, USA, 2000), SP

’00, IEEE Computer Society, pp. 246–.

[16] ERLINGSSON, U., AND SCHNEIDER, F. B. SASI enforcement

of security policies: a retrospective. In Proceedings of the 1999

workshop on New security paradigms (New York, NY, USA,

2000), NSPW ’99, ACM, pp. 87–95.

[17] EVANS, D., AND TWYMAN, A. Flexible policy-directed code

safety. In IEEE Symposium on Security and Privacy (S&P)

(1999), pp. 32–45.

[18] GOVINDAVAJHALA, S., AND APPEL, A. W. Using memory er-

rors to attack a virtual machine. In Proceedings of the 2003 IEEE

Symposium on Security and Privacy (Washington, DC, USA,

2003), SP ’03, IEEE Computer Society, pp. 154–.

[19] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.

Secure execution via program shepherding. In Proceedings of the

11th USENIX Security Symposium (Berkeley, CA, USA, 2002),

USENIX Association, pp. 191–206.

[20] LATTNER, C., AND ADVE, V. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Pro-

ceedings of the 2004 International Symposium on Code Gener-

ation and Optimization (CGO’04) (Palo Alto, California, Mar

2004).

[21] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a

CISC architecture. In Proceedings of the 15th conference on

USENIX Security Symposium - Volume 15 (Berkeley, CA, USA,

2006), USENIX-SS’06, USENIX Association.

[22] MICROSOFT. A detailed description of the data execution pre-

vention (dep) feature in windows xp service pack 2, windows

xp tablet pc edition 2005, and windows server 2003, September

2006.

[23] MORRISETT, G., TAN, G., TASSAROTTI, J., TRISTAN, J.-B.,

AND GAN, E. Rocksalt: Better, faster, stronger SFI for the x86.

In ACM Conference on Programming Language Design and Im-

plementation (PLDI) (2012), pp. 395–404.

[24] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND

ZDANCEWIC, S. Softbound: highly compatible and complete

spatial memory safety for C. In PLDI (2009), pp. 245–258.

[25] NECULA, G., MCPEAK, S., AND WEIMER, W. CCured: type-

safe retrofitting of legacy code. In 29th ACM Symposium on Prin-

ciples of Programming Languages (POPL) (2002), pp. 128–139.

[26] REGEHR, J. The future of compiler correctness, August 2010.

[27] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using

software dynamic translation. In Annual Computer Security Ap-

plications Conference (2002), pp. 209–218.

[28] SEHR, D., MUTH, R., BIFFLE, C., KHIMENKO, V., PASKO, E.,

SCHIMPF, K., YEE, B., AND CHEN, B. Adapting software fault

isolation to contemporary cpu architectures. In Proceedings of

the 19th USENIX conference on Security (Berkeley, CA, USA,

2010), USENIX Security’10, USENIX Association, pp. 1–1.

[29] SHACHAM, H. The geometry of innocent flesh on the bone:

return-into-libc without function calls (on the x86). In Proceed-

ings of the 14th ACM conference on Computer and communi-

cations security (New York, NY, USA, 2007), CCS ’07, ACM,

pp. 552–561.

[30] SIEFERS, J., TAN, G., AND MORRISETT, G. Robusta: Taming

the native beast of the JVM. In 17th ACM Conference on Com-

puter and Communications Security (CCS) (2010), pp. 201–211.

[31] SMALL, C. A tool for constructing safe extensible c++ systems.

In Proceedings of the 3rd conference on USENIX Conference on

Object-Oriented Technologies (COOTS) - Volume 3 (Berkeley,

CA, USA, 1997), COOTS’97, USENIX Association, pp. 13–13.

[32] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,

S. L. Efficient software-based fault isolation. In Proceedings of

the fourteenth ACM symposium on Operating systems principles

(New York, NY, USA, 1993), SOSP ’93, ACM, pp. 203–216.

[33] WANG, Z., AND JIANG, X. Hypersafe: A lightweight approach

to provide lifetime hypervisor control-flow integrity. In Pro-

ceedings of the 2010 IEEE Symposium on Security and Privacy

(Washington, DC, USA, 2010), SP ’10, IEEE Computer Society,

pp. 380–395.

[34] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Se-

curing untrusted code via compiler-agnostic binary rewriting. In

Proceedings of the 28th Annual Computer Security Applications

Conference (2012), pp. 299–308.

[35] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and

understanding bugs in c compilers. SIGPLAN Not. 46, 6 (June

2011), 283–294.

[36] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding

and understanding bugs in C compilers. In Proceedings of the

32nd ACM SIGPLAN conference on Programming language de-

sign and implementation (New York, NY, USA, 2011), PLDI ’11,

ACM, pp. 283–294.

[37] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,

ORM, T., OKASAKA, S., NARULA, N., FULLAGAR, N., AND

INC, G. Native client: A sandbox for portable, untrusted x86

native code. In In Proceedings of the 2007 IEEE Symposium on

Security and Privacy (2009).

[38] ZENG, B., TAN, G., AND MORRISETT, G. Combining control-

flow integrity and static analysis for efficient and validated data

sandboxing. In 18th ACM Conference on Computer and Commu-

nications Security (Oct. 2011), ACM.

Notes

1The name Strato comes from stratosphere, which is an intermedi-

ate layer of Earth’s atmosphere that contains ozone absorbing ultravio-

let light from the Sun.
2Return instructions are changed to a sequence of pop, check, and

indirect jump instructions to prevent a concurrent attacker from modi-

fying the stack after the check.
3eax is a caller-saved register and is dead at the entry to a function.

Furthermore, dead registers can be identified through liveness analysis
4In our implementation, bottom is 0 and top is the maximum un-

signed integer, which is 232 −1 for x86-32 and 264 −1 for x86-64.
5 Since the original CFI work, some versions of Intel and AMD

hardware changed the behavior of prefetch; it becomes more expen-

sive, since it pulls in TLB entries. As a result, choice of IDs used in

prefetch greatly affects its runtime cost.

14

