
CAPA: An Architecture For Operating Cluster Networks With High Availability
(Draft under submission)

Bingzhe Liu∗ Colin Scott† Mukarram Tariq† Andrew Ferguson† Phillipa Gill† Richard Alimi†

Omid Alipourfard† Deepak Arulkannan† Virginia Jean Beauregard† Patrick Conner†

P. Brighten Godfrey∗ Xander Lin† Joon Ong† Mayur Patel† Amr Sabaa† Arjun Singh†

Alex Smirnov† Manish Verma† Prerepa V Viswanadham† Amin Vahdat†

†Google ∗UIUC

Abstract
Management operations are a major source of outages for
networks. A number of best practices designed to reduce
and mitigate such outages are well known, but their enforce-
ment has been challenging, leaving the network vulnerable
to inadvertent mistakes and gaps which repeatedly result in
outages. We present our experiences with CAPA, Google’s
“containment and prevention architecture” for regulating man-
agement operations on our cluster networking fleet. Our goal
with CAPA is to limit the systems where strict adherence to
best practices is required, so that availability of the network
is not dependent on the good intentions of every engineer and
operator. We enumerate the features of CAPA which we have
found to be necessary to effectively enforce best practices
within a thin “regulation“ layer. We evaluate CAPA based on
case studies of outages prevented, counter-factual analysis of
past incidents, and known limitations. Management-plane-
related outages have substantially reduced both in frequency
and severity, with a 82% reduction in cumulative duration of
incidents normalized to fleet size over five years.

1 Introduction

Cloud applications require high availability from cloud in-
frastructure. Application deployment patterns vary from non-
replicated (single-zone) services to multi-regional replicated
services designed for 24/7 global availability [6]. To accom-
modate this range of deployment patterns, cloud infrastructure
must ensure high baseline availability within a zone, and fail-
ure domain independence across zones. Networking, as a
baseline dependency for other infrastructure and services, is
particularly critical for availability.

Despite the criticality of networking, single zone and corre-
lated multi-zone network failures take place frequently (e.g.,
[5, 44, 68] in March 2022 alone). At Google, we find that
≥ 58% of cluster (datacenter) network outages since 2018
result from management operations. Previous research has
recommended a number of best practices for executing op-
erations in order to improve availability [1, 7, 23]. These

recommendations include defining failure domain boundaries,
ensuring progressive and supervised change rollout, defense-
in-depth, consistency across planes, invariant monitoring, etc.
While these best practices are well understood, major cloud
providers continue to suffer outages that in hindsight could
have been prevented by application of these practices.

In our experience managing Google’s fleet of cluster net-
works, several challenges make it difficult for engineers and
operators to consistently follow best practices: (C1) Com-
plexity and diversity of system interactions. Cluster net-
working has evolved into a complex distributed system of
many interdependent subsystems. The cross product of the
system’s behavioral axes, the variety of operations it supports,
and the range of services that perform operations result in
a huge surface area where best practices might need to be
adhered to. (C2) Difficulty isolating failure domains. Fail-
ure domain isolation reduces correlated failures. But cluster
networks are fundamentally coupled as they must connect to
each other and exchange routing messages through a wide
area network (WAN) [27, 28]. Additionally, centralized oper-
ational teams and systems with global responsibilities create
coupling through their day-to-day operations. (C3) Need to
balance safety vs. operational velocity. Aggressive rate lim-
iting can create a logjam of business critical network updates.
In practice, operators must resort to some degree of concur-
rency to keep up. Moreover, certain issues might only be
triggered in later stages such that progressive rollout alone
is not sufficient. (C4) Software development velocity over-
head. Strict adherence to best practices comes with high de-
velopment costs, particularly for a foundational service like
cluster networking that cannot always make use of common
implementations of convenient abstractions (e.g., distributed
storage). Mandating a high-level of rigor for best practice ad-
herence across the dozens of teams and hundreds of engineers
that maintain individual subcomponents is at odds with the
desire to maintain high software development velocity.

In this paper, we ask: is it feasible to limit the systems
where strict adherence to best practices is required, so that
availability of the network is not dependant on the best in-

1

tentions of every engineer and operator? We describe our
experiences with CAPA, the “containment and prevention
architecture” we have designed and implemented with the
goal of systematically enforcing best practices while avoiding
the need for all subsystems to be encumbered by enforcement.
We enumerate all of the features we have found through expe-
rience to be necessary in order to achieve our goal.

Following [31], CAPA organizes subsystems into three
layers: a regulation layer separates the production critical
layer below from the operations workflow layer above. CAPA
defines rules for each layer.

• The production critical layer encompasses the network
control and data planes responsible for handling appli-
cation payload. The components in this layer adhere to
strict failure domain containment.

• The operations workflow layer contains capacity plan-
ning, modeling, and rollout workflows that produce be-
havioral intents for the production layer based on busi-
ness needs. The services in this layer make no changes
to the production critical layer directly, and instead proxy
intended changes via the regulation layer.

• The regulation layer initiates behavioral changes to com-
ponents in the production critical layer, and modulates
changes by providing rate limiting, health supervision,
and fast rollback of certain operations.

Going well beyond [31], we describe in detail through-
out the paper how CAPA addresses challenges C1-C4. To
address the complexity of system interactions (C1) CAPA’s
regulation layer (i) ensures that management operations first
‘drain’ (move traffic away from) the data plane entities they
are about to mutate, to mitigate unexpected interactions even
in cases where operators believe the operation will not disrupt
traffic, and (ii) enforces protected cross-section bandwidth,
a novel invariant that ensures ‘drain’ requests (and therefore
operations per (i)) are blocked until there is enough available
capacity to safely accommodate the operation (§3.1, §4.1).

To prevent correlated failures across zones (C2), the reg-
ulation layer rate-limits management operations across the
fleet to prevent them from concurrently affecting too many
zones, and the production critical layer ensures via ACL en-
forcement that outbound control messages originating from
within a zone are disallowed thereby limiting blast radius
and ensuring “low-dependency” bootstrap capability (§4.1,
§4.2). One of the few unavoidable exceptions for outgoing
ACL enforcement are BGP routing updates, which are needed
because cluster networks must maintain connectivity via the
WAN. To mitigate correlated failures that propagate through
BGP, we have developed fail-static fallback routing that al-
lows cluster networks to maintain WAN connectivity even
when dynamic BGP routing fails (§4.3). When dynamic BGP
routing fails, our border routers continue forwarding packets
through pre-programmed static routes to existing traffic en-
gineering tunnels in the data plane. Although these backup

routes may be less optimal, many packets will continue arriv-
ing at their destination thanks to end-host mechanisms such as
PLB [50], as long as a working path exists in the data plane.

Safety policies such as protected cross-section bandwidth
and the maximum allowable concurrency of operations need
to be adjusted to meet the velocity needs of each type of
management operation (C3) (§4.1). The regulation layer
provides a centralized place for these adjustments.

In CAPA, only systems in the production critical layer have
strict failure domain isolation requirements. Developers at the
operations workflow layer are unhindered by these require-
ments (C4), e.g., they can rely on high-level abstractions and
build globally scoped systems which are easier to build and
reason about [41]. Since all outputs from the workflow layer
are filtered through the regulation layer before propagating
to the production critical layer, we largely avoid coupling
between global failure domains in the workflow layer and the
carefully contained failure domains in the production layer.

CAPA has helped us make considerable progress towards
systematic enforcement of production best practices, which
improves both baseline availability and failure domain inde-
pendence. We perform a qualitative retrospective analysis
of relevant outages (including before CAPA’s deployment)
to show that 84% could have been prevented or mitigated
by CAPA. Moreover, our fleet’s annual incident rate has
decreased by more than 73% from pre- to post-deployment.
As CAPA was our primary investment in reliability improve-
ments, given the substantial improvements and a number of
“near-miss” success stories, it is fair to attribute most of this
improvement to the design and deployment of CAPA. At the
same time, our work is not complete; we characterize inci-
dents where CAPA did not help, highlighting key limitations.

2 Background

2.1 Cloud deployment patterns

The grouping of servers connected by a datacenter fabric
is called a cluster, and we therefore refer to the datacen-
ter network fabric as a cluster network. Compute resources
are presented as zones (≥ 1 co-located clusters) and regions
(≥ 3 zones) to customers. Cloud customers use these build-
ing blocks for a range of deployment patterns, from non-
replicated services to multi-region replication [6, 13, 21].

In order to provide 99.9% zonal availability, each zone can
only tolerate ~4 minutes per month of downtime. This implies
that any failure event that requires human intervention will
almost certainly render a zone as out of service-level-objective
(SLO). Correlated failures (those that simultaneously affect
multiple zones) are particularly problematic as they negate
customer replication.

2

2.2 Cluster networking

As described elsewhere [16, 47, 54], Google’s software-
defined network (SDN), a.k.a. “cluster network service”,
includes:

• The data plane switches of a Jupiter [47, 54] fabric, in-
cluding their operating system and firmware stack.

• SDN applications, responsible for programming
switches, tracking link state, traffic matrices, etc.

• The dedicated machines called network control servers
(NCS) that run the SDN applications. These machines
are completely independent from normal machines.

• The dedicated instance of the Borg [61] cluster scheduler
that manages the NCS.

• A separate control plane network (CPN) that provides
out-of-band connectivity between the NCS machines
and data plane switches.

Steady state behavior refers to how—in the absence of on-
going management operations—the cluster network service
treats the user payload (network packets) while responding
to changes in the runtime environment (e.g., shifts in traffic,
links failures). The primary expectation from users is reach-
ability from cluster machines to destinations both inside the
cluster and outside (through the WAN) with expected latency,
packet loss rates, and bandwidth.

We define an outage as an event where the network service
behavior fails to meet user expectations, defined precisely
as active prober packet loss or latency exceeding predefined
thresholds. Examples include blackholes, capacity loss that
leads to congestion, or suboptimal pathing.

2.3 Best practices for operations and their im-
plementation challenges

Since management operations are a common cause of outages,
several studies have analyzed outage incidents [1, 7, 23, 42]
and proposed best practices for operating networks with high
availability. We recap the most relevant practices, as well as
challenges we have faced in enforcing them.

Failure domain containment. System designers should
identify failure domains (e.g., groupings of physical entities
which share power supply, cooling, software control, etc.) and
enforce as much as isolation as possible between domains in
order to minimize the risk that a failure’s “blast radius” will
extend beyond domain boundaries.1 Failure domain isolation
also reduces the risk of lockout during disaster recovery, since

1Failure domains are hierarchical. For example, top-of-rack (ToR)
switches reside in the same physical failure domain as the machines on the
rack; each ToR connects to multiple middleblocks (another failure domain);
the middleblocks reside within an aggregation block which are designed
to be both physically independent from other aggregation blocks (separate
power and cooling supplies) and logically independent (separate software
control) [16].

proper isolation requires systems to avoid cyclic dependen-
cies involved in bootstrapping the failure domain (e.g., the
cluster network service cannot depend on a distributed storage
service which in turn depends on the cluster network service
for its operation).

In practice system designers need to strike a balance be-
tween minimizing blast radius and minimizing system com-
plexity and cost (C1, C2). For example, some exceptions need
to be made in practice for communication (e.g., BGP routing
messages) that is allowed to cross failure domain boundaries.

Progressive, supervised change rollout. Faulty operations
can lead to service disruptions or violations of failure do-
main containment. To mitigate these risks, changes should
be rolled out gradually. Progressive rollout alone does not
improve safety; the health of the system needs to be closely
supervised throughout the rollout, otherwise the network re-
mains vulnerable to “slow wrecks” where service behavior
gradually but continuously degrades. To keep up with the vol-
ume of operations needed to sustain the business, the system
must strike a good balance between safety and velocity (e.g.,
level of concurrency) of operations (C3).

Monitoring and upholding invariants. Safety invariants
should be monitored during change rollout to maintain sys-
tem health [23]. Black-box metrics (those that do not assume
any knowledge of the internal implementation details of the
network, and therefore capture the user’s perspective), such
as remote procedure call (RPC) latency or success rates, are
effective at detecting failures regardless of root cause as soon
as the service behavior begins degrading [1] since they cap-
ture the exact conditions that the user experiences, but they
are not effective at detecting the degradation before it occurs.
Subject matter experts can also identify white-box invariants,
i.e. those that leverage implementation details of their sub-
systems (e.g., “at least 2 replicas should be responsive”), but
white-box invariants that generalize to a diversity of system
interactions have remained elusive (C1).

Provisioning capacity headroom. Provisioning more ca-
pacity than strictly needed to accommodate traffic improves
safety. For example, headroom ensures that when a man-
agement operation (especially those that require involvement
from human technicians) becomes stuck, the operation can
remain in a paused state without risking congestion on the un-
affected portions of the network. The costs of deploying extra
capacity can be ameliorated by serving low priority (QoS)
traffic during periods without ongoing operations.

Fast recovery. Fast recovery limits outage duration. In prac-
tice, recovery often requires humans to understand the situ-
ation and determine a recovery strategy. In a system with
many ongoing changes it is not always obvious what needs to
be rolled back. Systems can also fail in ways that cannot be
recovered by rollback, e.g., if the outage wipes out data, or
prevents access to the system itself – a real concern for net-
working. Automated recovery that rolls back too aggressively

3

Operations Workflows

 Management
Interfaces

Dependencies on
systems in other layers

are not allowed.

Dependencies scoped to the system’s failure domain are allowed, and their
interactions are unregulated. All other dependencies are disallowed.

Production Critical Systems
(The Cluster Network Service)

Cluster …

Dataplane
health
signals

Choke
Point

Cluster Cluster

Only regulation
systems can
access the

production critical
layer to make
management

plane changes.

Regulation
Systems

Behavioral changes

Behavioral changes

Figure 1: CAPA’s layering and enforcement architecture.

can also be at odds with operational velocity (C3).

3 CAPA architecture Overview

CAPA is Google’s system for safely operating our cluster net-
works. Following [31], CAPA organizes system components
into three layers, as shown in Figure 1: (a) the production
critical layer, comprising the components (control plane and
data plane) that are responsible for delivery of application
payload. We must ensure failure independence (§4.2, §4.3)
and high baseline availability in this layer to meet service
expectations (SLOs). (b) the regulation layer, a small number
of centrally maintained services with exclusive access to the
management interfaces in the production critical layer. It up-
holds best practices by applying changes progressively (§4.1)
while monitoring system health and invoking automatic roll-
back of operations (“behavioral changes”) if needed (§3.1).
The regulation layer maintains the key invariant of ensur-
ing sufficient bandwidth at all cross-sections of the network
(§3.1), and enforces global rate limiting to reduce the risk of
correlated failures triggered by faulty operations concurrently
executing in different zones (§4.1). (c) the operations work-
flow layer contains all other systems needed for operations. A
key function of this layer is generating the intended behavior
(configuration) of the production critical layer, and realizing
that intent by invoking operations via the regulation layer.

3.1 Life cycle of an operation
Before we dive into the details of CAPA’s components, we
will walk through the life cycle of an example management
operation in CAPA.2 We choose a capacity expansion as our
example. Table 1 lists other types of operations.

Capacity expansion starting in the workflow layer. Based
on projected traffic demands, a forecasting service in the
workflow layer predicts that capacity will be needed on the

2§6 gives an overview of network management at Google prior to CAPA.

Category of Operation Frequency
Capacity expansion/contraction 1 per 3.6 months

Switch software upgrade 1 per 4 weeks
Controller software upgrade 1 per 2 weeks

Hardware repairs 1 per 35 minutes

Table 1: Categories of behavioral changes (“operations”) that our
networks undergo. Frequencies are computed as averages per cluster
network across all clusters over one year.

Dataplane and
CPN switches

SDN
ControllersNCS

NCS Cluster
Scheduler

(s1)

D
ataplane

health signals

Regulation Proxies

Behavioral
Changes

Switch
Proxy

SDN
Proxy

NCS
Proxy

Access Control

Rate Control

Health Checks

Rollback Monitor

(s2)

(s3)

(s4)
(s5)

Management Interfaces Production Critical Layer

Operations Workflow Layer
Capacity

Expansion
Hardware
Repairs

Software
Upgrade

…

Figure 2: Detailed view of the regulation layer.

WAN-facing links of the fabric border router (FBR) portion
of a cluster network. This in turn initiates a capacity expan-
sion workflow that begins by retrieving a model of which
entities (e.g., fibers, transceivers) will need to be added to the
network [41]. The workflow dispatches purchase orders and
waits for delivery of the new materials to the datacenter floor.
Once the materials arrive at the datacenter floor, the capacity
expansion workflow dispatches instructions to technicians
on how to wire and qualify (e.g., verify that bit error rate is
sufficiently low for) new physical links. The physical changes
needed for the capacity expansion are “append-only,” mean-
ing that technicians do not need to mutate any pre-existing
links carrying live traffic. We reserve spare ports on both the
FBR side and the WAN side to make this possible.

Capacity expansion processed by the regulation layer.
For scalability of routing updates, we maintain link aggre-
gation (“trunks”) at the WAN boundary: we split all WAN-
facing physical links into four trunks (each with distinct power
and cooling failure domains), and assign a single SDN control
domain responsible for routing over each trunk. Trunks are
the level of abstraction that the SDN routing stack operates
on; BGP sessions, next-hops, metric computations, etc. are
maintained on a per-trunk basis.

To bring the physical capacity into service, the capacity
expansion workflow needs to reconfigure each of the SDN
control domain’s configuration for the trunk it routes over.
The workflow first drains traffic from the links under the con-
trol domain’s purview before initiating any reconfiguration,
primarily to protect against any unexpected side-effects of the
operation; as discussed in §5, unexpected side-effects have

4

While FBR SDN control domains remain

Orchestrate
purchase

orders

Orchestrate
installation
instructions

Drain() single
FBR SDN

control domain

Config() single
FBR SDN

control domain

Undrain() single
FBR SDN control

domain

Request
network
model

Invoke Qual()
on newly

connected links

Figure 3: The capacity augment workflow’s state machine. The
workflow repeatedly invokes APIs in the regulation layer, which are
enumerated in Table 2.

historically been a prevalent cause of outages. The regulation
layer refuses to process operations that do not already have
drains covering the entities they affect.

As depicted in Figure 3, the capacity expansion workflow
invokes the Drain() API on the SDN proxy in the regulation
layer before proceeding with trunk reconfiguration for each
FBR SDN control domain. As shown in Figure 2, the SDN
Proxy first (s1) confirms whether the workflow has permis-
sion to perform a Drain(), and (s2) whether the rate limits
across the fleet for performing FBR Drain() would not be
violated. Concurrency control and rate limits reduce the scope
of temporally correlated failures by limiting the number of
domains that may be affected (§4.1).

Enforcing cross-section capacity. The regulation layer en-
forces that all target elements should be drained before pro-
ceeding with the operation: besides protecting against inadver-
tent impact on live traffic, this invariant allows the Drain()
API to double as a semaphore that guards the network’s band-
width while allowing concurrent operations.

Figure 4 depicts how Drain() doubles as a semaphore.
Multiple operations, each requesting drains, can proceed con-
currently so long as the effective (“residual”) capacity in all
relevant cross-sections of the network are above a threshold
(see §4.1 for details). Example network cross-sections on a
per cluster network basis include: all WAN-facing links, inter-
aggregation-block links, intra-aggregation-block links, top-of-
rack (ToR) to middleblock links, and control plane network
links between SDN controllers and data plane switches [54].
Cross-sections can be overlapping and hierarchical, e.g., we
seek to prevent partitions of any particular aggregation block,
but we also protect aggregate interblock bandwidth.

Operations are blocked when the threshold is reached, but
they can proceed as soon as the previously in-progress opera-
tions conclude and restore capacity by issuing an Undrain().
The semaphore also gracefully handles organic failures; in
case some network elements lose their ability to service traf-
fic (e.g., due to hardware failures), the effective capacity is
automatically reduced, thus blocking subsequent operations.

From a workflow’s perspective, Drain() is atomic, i.e.,
if it succeeds, the residual network is in a safe state and
the drained entities are safe to operate on. The SDN proxy
processes Drain() requests in a serial order within each clus-

Time

Av
ai

la
bl

e
C

ro
ss

-S
ec

tio
n

 C
ap

ac
ity

Maximum Capacity

Minimum Capacity Threshold
Op1
start

Op2
start

Op3
start

Op2
end

Op3
end

Op1
end

Capacity Headroom

Op3
blocked

Figure 4: Example of drain thresholds (“ensure minimum cross-
section bandwidth”) acting as a semaphore for regulating concurrent
operations. Op3 is blocked until capacity is released by Op1/Op2.

Interface Description
SDN Controllers
Config() Configuration used by SDN apps. Includes fabric

topology, routing policies, etc.
Drain/
Undrain()

Deprefer the targeted elements from the routing so-
lution. May require coordination across domains.

Dataplane and CPN Switches
Install() Updates software running on the switch.
Config() Modifies non-routing behavior, e.g., port speeds.
Qual() Initiates disruptive bit-error-rate test on a port.
NCS Cluster Scheduler
Add/Remove
Machine()

Modify set of servers running NCS jobs.

Create/Update/
DeleteJob()

Create, update or delete the jobs to run in the cluster.

Config() Updates resource management policies.
NCS
Install/Update() Install or update the firmware and OS of the server.
Restart/
Shutdown()

Reboot or shutdown the server.

Table 2: List of RPC interfaces for management plane operations
on various components in the cluster networking service (non-
exhaustive).

ter network, which prevents deadlock so long as each work-
flow requests a single Drain() at a time. In the case that
there is insufficient effective bandwidth (or some other health
check fails, as we describe below), the Drain() invocation is
blocked and leaves no side effects until it is unblocked.

Applying the drain and configuration changes. The SDN
Proxy actuates the Drain() by invoking management inter-
faces on the production critical layer (s4). Once the Drain()
completes, the workflow may proceed with reconfiguration
of trunks by invoking a Config() API3 on the SDN Proxy
within the regulation layer. Table 2 describes other manage-
ment APIs provided by the regulation layer.

The proxies execute the same steps (s1-s4) to actuate the
reconfiguration. Once reconfiguration is complete, the work-
flow will issue an Undrain() and repeat starting from the
Drain() for the next FBR SDN control domain.

Continuous health checks. Network health can change
rapidly and unexpectedly, e.g., from hardware failures, sud-

3The format of the Config() change is arbitrarily defined by applica-
tion developers; in this case it describes which physical links the routing
controllers should aggregate together as a trunk.

5

den traffic shifts, or unexpected side-effects of operations.
The regulation layer continuously checks two types of

health signals—black-box and white-box signals (introduced
in §2.3)—both before (s3) and during (s4) the execution of
operations. While black-box signals are a lagging indicator of
problems (e.g., discards occur only after congestion reaches
unsafe levels), some white-box signals can act as preventive
leading signals. Protected cross-section bandwidth is an ex-
ample of a white-box invariant, and is the only invariant we
have found so far that generalizes to all operations. Other
examples include ensuring a minimum number of SDN ap-
plication replicas are live, checks on whether any parts of the
cluster networks have entered fail-static [16], bans on certain
orderings of operations that are known to cause issues, and
outputs from operation simulators or analyzers.

Automated drain rollbacks. When servicing a Drain() in-
vocation, the SDN Proxy actuates the request incrementally
by repeatedly invoking management interfaces in the produc-
tion critical layer for a subset of the entities referenced in the
Drain(). If health checks ever fail (e.g., we detect packet
discards, or effective capacity drops below safe thresholds)
and only a subset of the entities in the Drain() have com-
pleted, the SDN Proxy can automatically roll back (s5) the
partially executed Drain(). If a Drain() has already been
acknowledged as completed to the workflow, we cannot cur-
rently rollback those drains. As part of our future work (§6),
we are exploring automated rollback of the operations that
proceed after the Drain() has been acknowledged.

4 Detailed Design

4.1 Rate Limiting & Concurrency Control

As described in §3.1, the regulation layer performs rate limit-
ing and concurrency control. Rate-limits help maintain failure
independence by limiting temporally correlated outages that
arise from concurrent operations. Rate limiting also maintains
baseline availability by increasing the probability that issues
are caught early in low-risk cluster networks.

Rate limiting enforcement. Google uses MALT [41] to
represent the elements in our network, their attributes, and
their relationships with each other. Using this representation,
a global service in the regulation layer builds a fleet-wide
model of cluster level failure domains and sub-cluster fail-
ure domains (e.g., aggregation blocks) within each cluster.
The global service also provides a rate-limiting policy con-
figuration to set the maximum concurrency allowed across
(hierarchical) failure domains to balance velocity and pro-
duction risk. Policies are reviewed by senior members in
engineering and operations teams on a per use-case basis.

Equipped with modeling and policy, the global rate limiting
system ensures that only the desired number of entities are
operated on concurrently or within a time epoch. For example,

we can set policies to limit concurrent capacity expansions
to only N clusters globally, or require 15 minutes between
successive operations on each of all 4 FBR domains within
each cluster such that at most N clusters can lose at most 25%
of FBR capacity within a 15-minute window.

The rate limiting system accounts for the full hierarchy of
failure domains in making its decisions, e.g., to perform an
operation such as a Drain() upon a middleblock in a partic-
ular cluster, all rate-limiting policies that apply to Drain()
operations will be checked. Any ongoing operations in that
middleblock will be checked against policies that apply to
middleblocks; then, ongoing operations in the aggregation
block that the middlebock resides in will be checked against
policies that apply to aggregation blocks, and so on through
the cluster, zone, region, and global levels [54]. The oper-
ation will be allowed to proceed only if all policies defined
at all levels of the hierarchy deem that the operation is in
compliance with rate limiting.
Concurrency control and capacity headroom. Rate limit-
ing policies are defined according to the scope of entities
that operations intend to mutate. In some cases, operations
affect a larger set of entities than intended. Protected cross-
section bandwidth and Drain() as a semaphore further pro-
tect against unintended side-effects and “slow wrecks” where
rollout supervision fails to detect degradation.

The threshold we use for protected cross-section bandwidth
(capacity headroom) is largely determined by the level of
redundancy designed into the network. Across most cross-
sections (exceptions in §4.4) of the dataplane, we employ
4 independently operable (sub-cluster) failure domains, and
only 3 are needed to maintain sufficient capacity to avoid
outages, leading to a minimum 25% capacity headroom. In
our example (§3.1), there are 4 independent FBR domains.
Similarly, within an aggregation block, we have 4 middle-
blocks, and we have 4 interblock routing domains [47]. In the
control plane network, we generally have 2-way redundancy
of switches and paths, so CAPA does not allow draining either
unless both are healthy.

4.2 Failure Domain Containment
Separating the operations workflow layer from the produc-
tion critical layer, and rate limiting operations through the
regulation layer helps prevent temporally correlated failures.
However, this protection is only effective if the failure do-
mains themselves are well contained.

Appropriately defined failure domain boundaries should
align physical points of failure (e.g., power and cooling) with
software control. Once failure domain boundaries are defined,
we must audit dependencies between software components to
ensure that there is no unintentional communication across
boundaries. Most interactions among our system components
take place over RPCs.4 For containment, cluster network ser-

4Exceptions include BGP (§4.3), NTP (§4.4), and DHCP.

6

WAN(s)

CPN

NCS Cluster

Middle Block
Switches

ToR Switch

CPN Links
Data Plane Links
WAN Peering Links
Low-dep Boundary
CPN Router

NCS Machine Rack

Machine Rack

Aggregation Blocks

OOB (out-of-band) CPN Links to Dataplane Switches

Fabric Border
Router Block

…

Figure 5: The low-dependency boundary encompasses all elements
of the data plane, control plane network (CPN), network control
servers (NCS), and their software. RPCs to any services running in
normal machine racks or across the WAN are disallowed. (Interblock
connectivity and certain other elements not shown for legibility.)

vice components within one datacenter network are not al-
lowed outbound or inbound modify5 RPCs to other cluster net-
works or other layers (depicted in Fig. 1). To enforce this rule
we use a combination of (1) token-based authentication [24],
e.g., ACLs to prevent all outbound RPCs, (2) locking down
all inbound Management Interfaces in the production critical
layer to the proxies in the regulation layer,6 and (3) monitor-
ing cross-domain RPCs to/from system components to detect
any interfaces that may inadvertently remained unprotected.

Failure domain containment enforcement extends to the
transitive closure of all the dependencies of the components
in the production critical layer, creating a foundational failure
domain containment structure that is robust to erosion as
the system evolves. We encourage but do not enforce the
same failure domain enforcement rules for sub-cluster failure
domains (e.g., individual aggregation blocks) in the cluster.
Low-Dependency Requirements Our restriction on out-
bound RPCs implies that all components within the produc-
tion critical layer must be “low-dependency”, meaning that
dependencies outside the cluster network service are disal-
lowed. Figure 5 presents all the elements within the low-
dependency boundary. All cluster network service software
on switches and SDN control applications on NCS machines
must be designed without any outside dependencies on soft-
ware services that run in the normal machine racks either in
the same datacenter or another datacenter. Low-dependency
is an expensive requirement to meet as it precludes use of
convenient, broadly understood, high-level infrastructure ser-

5We allow read-only inbound RPCs to facilitate monitoring.
6We are further strengthening these boundaries using separate crypto-

graphic scopes for each failure domain. This reduces the principals that may
act across failure domains even in the face of security incidents.

vices, such as multi-zonal replicated storage systems, work
queues, load balancers, authentication mechanisms, etc.

Ultimately this burden is required considering (i) avoid-
ing circular dependencies on network connectivity simplifies
bootstrap and disaster recovery (further discussion in §6), and
(ii) the requirement encourages a minimal “trusted comput-
ing base” of services that are absolutely needed to maintain
steady state behavior. Minimalism reduces the components in
the production critical layer and therefore reduces the number
of subsystems that can cause an outage.

4.3 Static routes for WAN interconnects
Inter-domain BGP routing updates are one of the few un-
avoidable exceptions to RPC boundary containment. WAN
connectivity requirements are in tension with failure domain
isolation as BGP messages themselves are a vector for cor-
related failures. BGP has multiple properties that make it
source of historical outages at Google, including:

1. BGP speakers disseminate information rapidly, which
can cause multi-zonal outages from a bad update.

2. BGP speakers lack a global view and make uncoordi-
nated best-path decisions; this can result in replicated
speakers creating loops (each peer believing the other has
the preferred next-hop) and unintendend route withdraws
(e.g., when loops are detected, or when each speaker de-
prefers its own next-hops).

3. In default configurations, BGP ties together liveness of
the data plane and the control plane through keep-alive
messages. Upon three missed keep-alive messages, the
peer is assumed to have failed and routes are withdrawn,
even if the data plane is healthy. This is particularly
problematic for SDN where the BGP speaker is separate
from the dataplane switches.

To achieve failure domain isolation we require additional
defense-in-depth for BGP. We rely on BGP message filter-
ing [11] for defending against (1) and (2), and implement a
static route fallback policy for the WAN and CPN routes for
(3). Conceptually, fail-static routing splits BGP-based connec-
tivity into two parallel routing systems: traditional, dynamic
(optimal) routing via BGP, and a simpler, rarely changing,
safe but suboptimal set of “static” routes. The fail-static policy
makes traffic fall back to the static routes whenever dynamic
routes become unavailable, thus substantially reducing corre-
lated failures that are triggered by unavailability of the BGP
control plane without complete loss of the data plane.7

From the perspective of the fabric border routers within
the cluster network, static routes are configured as a virtual
output port that switches can send traffic out of when the SDN

7In the event of complete data plane partition, packet loss will still occur
once the packets reach the partition.

7

controller detects loss of dynamic BGP messages. Within the
WAN, static routes still need to be available at every hop to
preserve end-to-end connectivity. We implement static routes
in the WAN as either traffic-engineering tunnels that fail-static
(for B4 [28]), or redistribution of cached routes even when
BGP keep-alive timers have expired.

Static routes can be updated progressively in accordance
with best practices, at the cost of temporary mismatch with pri-
mary (BGP) routes. In an application of the end-to-end prin-
ciple [51], these periods of mismatch are acceptable thanks to
an end-host mechanism that repaths onto healthy paths [50].
Using knowledge of the network topology, the progressive
rollouts are sequenced to avoid creating loops.

4.4 Exceptions
We allow a few exceptions to the Drain()-before-operate
rule when we conclude that the benefits of simplification
outweigh the safety risks. For example, we do not require
Drain() for most changes to ToR switches (with the excep-
tion of decommissioning) as their failure domain is only a
handful of machines; further, many racks do not have redun-
dant ToRs, so draining the ToRs would require vacating the
underlying machines, creating second order disruption. Sim-
ilarly, although we require Drain() before config changes
to (sharded) FBR control domains, we have concluded that
sharding of SDN control domains is not worth the complexity
cost for our aggregration blocks, and we therefore allow con-
fig changes to those control domains without requiring the
data plane entities under their purview to be drained.

We also allow a few exceptions to the “low-dependency”
restriction, which we permit either to ease the transition from
a historical dependency, e.g., NTP from another cluster during
switch boot, or as an optimization, e.g., host level telemetry
to drive more optimal traffic engineering. These exceptions
create a lockout risk, but we require the teams to have well-
tested fallback mechanisms so that the cluster service can
recover in absence of these dependencies.

5 Evaluation

We evaluate CAPA with three methodologies:

1. We enumerate examples of real production incidents
where CAPA successfully prevented or mitigated out-
ages, to examine CAPA’s mechanisms in practice.

2. We conduct a comprehensive retrospective analysis of
outages affecting our cluster networks from 2018 - 2022
that had behavioral change as their root cause to un-
derstand where CAPA would have been beneficial and
where CAPA still has limitations. Some of these outages
pre-dated CAPA, due to the fact that we incrementally
rolled out CAPA’s features over multiple years.

3. We examine quantitative data (active network probes)
to show incidence trend and severity of management
plane related outages. Although this does not establish
causality, CAPA was our primary investment in relia-
bility improvements; given quantitative correlation and
the first two qualitative evaluations, we can reasonably
attribute these gains to CAPA.

For both the qualitative analysis and the quantitative analy-
sis, we consider all outages which exceeded ≥ 5% packet loss
across all active probers (§5.4) in at least one cluster network,
and lasted for ≥ 5 minutes. We refer to such incidents as “bad
fabric incidents.” A single outage may cause multiple bad
fabric incidents if it affects multiple cluster networks.

5.1 Methodology Discussion
We must cope with three challenges in evaluating CAPA:

1. Our customers will not tolerate us running randomized
control trials (“A/B tests”) on our deployed reliability
mechanisms. Moreover, even if we were able to do so,
there is strong evidence that the underlying distribution
of outage severity is memoryless (“long-tailed”), imply-
ing that we would need to run A/B tests over a multi-year
period for statistical soundness.

2. Cluster networking systems, operational workflows, fleet
size and CAPA’s own capabilities are constantly evolv-
ing; we have incrementally rolled out its features over
several years, and have continuously made modifications
to our safety policies. Hence, there is no single system
that can be evaluated.

3. We cannot gather a comprehensive list of all “near-miss”
success stories where a CAPA mechanism prevented an
outage, largely because it is infeasible to precisely define
those circumstances.

While we cannot establish causality, we believe our eval-
uation methodology effectively illuminates CAPA’s impact,
particularly given that CAPA was our only investment into
hardening against faulty management operations. We em-
ploy the same qualitative analyses internally to evaluate new
investments into availability improvements.

5.2 Success stories
We first describe a selection of incidents where CAPA suc-
cessfully prevented or mitigated outages.
Layer separation, rate limiting, health monitoring and
fail stop. As noted earlier, Google uses a network model [41]
to express intended state of our networks. Operational au-
tomation systems continuously monitor differences in the
current and intended state of the network, initiating manage-
ment plane operations to apply the intended state. A bug in
the network modeling system mistakenly updated the models

8

for all the clusters globally. Automation systems, unaware
of the buggy nature of this change, detected the differences
across the fleet and initiated a huge number of concurrent
operations to apply new configuration to dataplane switches
to align them with the intended state in the model.

CAPA limited the concurrency and rate of changes, moni-
tored the health of cluster networks, and raised alerts about an
unusual backlog of operations. The Drain()-before-operate
rule prevented the few operations that were allowed within the
rate limits from causing damage to the dataplane. Separation
between the operations workflow layer and the production
critical layer prevented a buggy global intent from propagat-
ing unabated to the fleet, and rate limiting at the regulation
layer created temporal separation between operations that—if
allowed to execute immediately—would have created corre-
lated failures across multiple zones.

Ensuring disruptive operations are covered by drain. A
workflow responsible for decommissioning ToR switches had
a bug resulting in an incorrect intent to decommission ToRs
across multiple aggregation blocks instead of the specific
planned block. The bad intent propagated undetected through
several planning systems, but the “ensure operations are cov-
ered by drain” validation at the regulation layer rejected the
downstream intent after detecting that some ToRs were still
serving traffic. If the intent had been allowed to propagate to
routing systems, the machines under those ToRs would have
become partitioned.

Protected cross-section bandwidth. Our switch config roll-
out workflow first checks if a switch is drained for repairs,
and if so skips pushing configs to that switch until the repair
case is resolved (since the switch is likely unresponsive). The
database that tracks switches under repairs was undergoing
a migration to a new format; to reduce human toil during
the migration, the config rollout workflow was modified to
query either the old or new format. The rollout workflow
misinterpreted the new format, causing it to skip pushing
configs to switches that were not under repairs. At a later
point, another workflow started to upgrade the software of
the switches. The upgraded software on the skipped switches
was unable to interpret the stale config, causing the switches
to enter an unstable state, and consequently to be excluded
from pathing by the routing application. This exclusion led
to capacity imbalance at the WAN boundary. The regulation
layer detected that cross-section bandwidth had dropped be-
low safe thresholds, and stopped the switch software upgrade
workflow from breaking additional switches.

BGP fail static. Maglev [12] is a datacenter-scale load bal-
ancing service. It relies on the cluster network to encapsulate
packets destined to virtual IP addresses (VIPs) which map to
machines in the datacenter. Jupiter’s traffic engineering sys-
tem [47] relies on telemetry about traffic volume to program
optimal paths to prefixes. A bug in Maglev software created
telemetry reports with invalid network prefixes, which were

Mechanism Prevent or Mitigate

Rate limiting, monitoring, and fail stop 74%
Protected cross-section bandwidth 47%
Failure domain containment 11%
Fail-static for WAN interconnects 21%

At least one applicable mechanism 84%
No applicable mechanism* 16%

Table 3: Counterfactual analysis of which CAPA mechanisms ei-
ther were applicable or would have been applicable in mitigating
or preventing all outages which resulted in at least one bad fabric
incident and which had an operation as root cause trigger from 2018
- 2022. Multiple mechanisms could be applicable for any particular
outage. *See §5.3.2.

duly discarded by Jupiter’s traffic engineering system. How-
ever, without telemetry data, routing entered a fall-back mode
using equal-cost-multi-path (ECMP) instead of the more ef-
ficient weighted-cost-multi-path (WCMP) scheme. Via a
sequence of other optimizations and bugs, several equal-cost
prefixes were then aggregated to a single, larger IP prefix
that was not present in the export list for the WAN, caus-
ing the BGP prefix to be withdrawn. Fortunately, when the
WAN stopped receiving dynamic advertisements, static routes
kicked in, successfully keeping WAN traffic flowing.

CAPA’s rate limiting mechanism prevented concurrent roll-
outs that could have resulted in simultaneous bugs in multiple
cluster networks. Additionally, BGP static routes prevented
an outage even when the behavior was triggered by manage-
ment plane operations for a separate service.

5.3 Retrospective analysis of outages

We retrospectively analyze all management plane triggered
outages that resulted in at least one bad fabric incident be-
tween 2018 - 2022. Many of these incidents pre-dated CAPA.
We analyze which of CAPA’s mechanisms either were, would
have been, or still are not applicable. Our analysis does not
establish statistical significance since the number of outages
are insufficient; our goal is instead to gain qualitative insights
into CAPA’s mechanisms in the context of real incidents.

As Table 3 shows, CAPA’s mechanisms either were or
would have been applicable to mitigate or prevent 84% of
outages. Table 3 demonstrates that there is no single ‘magic-
bullet’ prevention mechanism, due to the wide diversity of
failure modes in our systems. Some level of rate limiting
was in place during most of these outages, but without ad-
ditional mechanisms (e.g., protected capacity), management
workflows caused “slow wrecks” where the network gradually
degraded until an outage occurred. Similarly, gaps in failure
domain containment allowed a small number of operations to
affect a large number of failure domains.

9

5.3.1 Retrospective case studies

GCP Incident 19009. A significant outage in 2019 [22]
affected Google services globally due to misalignment of
job scheduling and SDN controller (Orion) failure domains,
where a single job controller managed multiple Orion do-
mains. A reconfiguration intended for a single job scheduler
triggered cascading failures that brought down all Orion jobs
for a large number of zones. This outage underscored the
need for considering the transitive closure of dependencies
for failure containment: although the SDN controllers, NCS
machines, dataplane switches were all in separate failure do-
mains, the job scheduler was not considered as part of the
containment.

This outage could have been limited to a single cluster with
proper failure domain containment. BGP fail-static would
have further mitigated the outage since WAN dataplane con-
nectivity was functional despite failed Orion jobs.

IncidentB. Dataplane switches require a reboot after certain
management operations, and are expected to signal the man-
agement systems to trigger the reboot. For a new management
operation, the switch failed to signal the reboot requirement.
A switch configuration rollout exercising this new operation
gradually caused a large number of switches to enter an un-
healthy state. Orion misinterpreted the lack of responsiveness
from these switches as being due to CPN connectivity issues,
and then entered massive fail-open (MFO) where it refused to
program new routes [16].8 MFO complicated recovery, since
engineers had to find an emergency override that would al-
low them to reboot undrained switches rather than requesting
Orion to drain them before rebooting.

If CAPA had required drains before pushing configs to
fabric switches (as it does now), impact could have been
avoided. Even if drained switches still broke upon receiving
the new config, not all switches would have been affected
since protected cross-section bandwidth would have halted
drain requests (and therefore config pushes) once the affected
entites in the cross-section exceeded a threshold.

IncidentC. The workflow responsible for choosing locations
of new machine racks on the datacenter floor relies on human
provided layout. An error caused racks to be targeted to the
wrong datacenter. The associated turnup workflow concluded
that rather than adding new ToRs, it needed to update loca-
tions of existing ToRs. To do this, the turnup workflow deletes
entities in the model and adds them back with updated loca-
tions. A different workflow designed to continually monitor
model differences and push new configs to the network de-
tected the difference between the delete step and the add-back
step and pushed configs that decommissioned a large number

8MFO is a feature in Orion wherein routing apps halt upon unresponsive-
ness from a large number of dataplane switches. The premise is that switches
may become disconnected from the routing apps, but may be serving data-
plane just fine, so it is better to keep the current dataplane forwarding state
instead of avoiding the unresponsive switches and steering traffic towards a
small number of responsive switches, thereby creating congestion.

of live ToRs. Black-box monitoring did not detect packet loss,
since the monitoring system itself decommissioned probing
jobs running under those deleted ToRs.

The impact could have been avoided if CAPA had checked
whether drains on ToRs were in place before removing the
ToR entities from the configuration of aggregation block SDN
controllers.9 Rate limiting configuration pushes to the con-
trollers of the aggregation blocks would not have stopped the
operations since the health signal was also affected.
5.3.2 Retrospective and other known limitations

We share experiences with a selection of outages where
CAPA’s mechanisms did not fully prevent an outage. In
addition we list other known limitations of the architecture.
These highlight that as much as CAPA has helped improve
reliability for cluster networking, there is still work to do.

IncidentD. During a capacity augment, operators inad-
vertently disconnected undrained physical links. CAPA’s
Drain()-before-operate works well to prevent software from
making such mistakes, but not humans in the physical world.
We have invested in user experience improvements (e.g.,
pagers, real-time feedback) to reduce these risks, but actions
in the physical world cannot be programmatically stopped.

IncidentE. A bug in interaction between Drain() and rout-
ing applications caused BGP announcements to be revoked
before intra-fabric routing finished moving outbound traffic
away from WAN-facing links. This resulted in an abrupt
loss of forwarding state and packet loss blips for 7 minutes
until the intra-fabric routing converged. We have drawn two
lessons from this incident: (i) Unsurprisingly, CAPA’s own
mechanisms can have bugs and hence it is important to have a
multi-layer defense. Draining traffic (even if buggy), together
with rate limiting as a second layer of defense, contained the
duration and the blast radius. (ii) It is important to monitor
that each layer is working as intended, so that multiple layers
are not simultaneously impaired thereby increasing risk.

IncidentF. A workflow made a modeling change that affected
both switch and Orion configs. Later, an unrelated workflow
inadvertently pushed those configs to Orion but not switches.
This resulted in a version mismatch, causing switches to
fall back to ECMP rather than WCMP. ECMP resulted in
higher utilization on links with slower speeds. The issue went
undetected until the workflow pushed config to enough do-
mains to cause congestion and packet loss. Although CAPA’s
cross-section capacity monitoring was in place, the imple-
mentation at the time (now fixed) failed to account for ECMP
behavior over heterogeneous link speeds. This outage illus-
trates a broader challenge: although cross-section capacity is
a remarkably effective health signal, we must continuously
update our interpretation of capacity signals to keep astride
with advancements in routing.

9We except ToRs from Drain()-before operate for config pushes direct
to a single ToR (§ 4.4), but we still require drains for configuration changes
whenever a large multiple ToRs are affected simultaneously.

10

Metric 2018 2019 2020 2021 2022

Bad Fabric Incidents 1.0x 2.36x 0.28x 0.23x 0.27x
Cumulative Duration 1.0x 5.96x 0.44x 0.10x 0.18x

Table 4: Counts and cumulative duration of “bad fabric incidents”
across the fleet (cluster networks with ≥5% loss for ≥5 minutes)
that had an operation as their trigger, normalized to the number of
switches in the fleet at the beginning of the year, relative to the
normalized count for 2018. A single cluster network may undergo
≥1 bad fabric incident.

Other known limitations: Beyond these three cases, we are
aware of a number of other limitations of CAPA:
Organic failures: CAPA is designed to mitigate impact from
planned changes rather than organic failures such as link cuts
(though it does protect capacity headroom, thereby increasing
the chance that the network can accommodate traffic despite
failures). Similarly, CAPA does not address outages triggered
by coincidental or malicious user behavior (e.g., DDoS at-
tacks, or packets of death). We consider protection against
such problems as part of the baseline functionality of the net-
work service which should be addressed through multi-path
routing, testing, packet filtering, etc.
Infrequently used disaster recovery tools: In CAPA we have
allowed both the workflow and regulation layers to be high
dependency, i.e., the services in this layer can depend on
higher layer services such as distributed storage that poten-
tially depend on multiple cluster networks. This allows cre-
ation of cyclic dependencies which create lockout risk during
large-scale outages (e.g., GCP Incident 19009 [22]), where
sufficient clusters are degraded to render the higher level ser-
vices unavailable. To address this gap, we provide separate
“breakglass” management tools that can be used when low-
dependency recovery is required. Fortunately these tools
are infrequently used; but infrequency of use increases the
chances of encountering bugs when the tools are actually
needed. We address this by regular testing at smaller scale
and maximizing the shared libraries between the breakglass
tools and systems used on a day-to-day basis.

5.4 Quantitative data

Application-perceived availability is determined by the source,
destination, and service class (priority) the application uses to
send messages. We employ active probing where a subset of
machines continuously send packets of various QoS classes
to each other in order to monitor network availability.

Table 4 demonstrates trends in total bad fabric incidents
caused by management operations in a five-year period (2018
- 2022). We normalize these counts to the size of our fleet
(measured in terms of # of fabric switches across all cluster
networks) since the number of behavioral changes (and there-
fore potential # of outages) we execute is proportional to the
size of the fleet. Table 4 shows a 73% reduction in normalized

bad fabric incidents over the period.
Table 4 also shows cumulative duration of bad fabric inci-

dents caused by management operations. We observe a 82%
reduction in normalized duration. A single large outage in
2019 [22] accounts for 73% of cumulative bad fabric duration.

6 Discussion

Does CAPA apply beyond cluster networking? Failure
domain containment enforced via RPC ACLs is a generic
mechanism that is already used by other systems (e.g., cluster
schedulers). Layered enforcement and regulation (Fig. 1) is
also applicable to other production services, but it requires
clear separation of management plane interfaces from data-
plane interfaces, something that not all services do consis-
tently. Lastly, the idea of defense-in-depth through progres-
sive and supervised rollout is applicable to other services, but
it needs to be adapted to the specific context. For example, for
cluster scheduling it could mean that the resources allocated
to a service should be reduced progressively and should never
go below a configured threshold.

Is CAPA provably safe? CAPA’s architecture is based on
principled reasoning about failure domain containment and
separation of operational systems from the cluster network
service, but we cannot claim that it is provably safe, espe-
cially given reliance on domain specific heuristics, exceptions
(§4.4), and known limitations (§5.3.2). It is unclear whether
provably safe systems for continuously evolving and com-
plex systems like cluster networking are feasible, but the data
(§5.2, §5.4) clearly demonstrate that CAPA is effective for
real-world large-scale systems, while also providing motiva-
tion to continue to invest into improvements.

Should we use progressive updates in the production crit-
ical layer itself? In §5, we see a number of incidents that are
caused by rapidly propagating updates (e.g., route program-
ming) within the production critical layer. We have pondered
whether to rate-limit messages in the production critical layer
itself. To date, we have decided against it, as fast responses to
organic events—such as switch/link failures, changes in traffic
conditions, or route availability from adjacent domains—are
critical for predictable performance and low packet loss in
the steady state. While rapid route programming undoubtedly
increases risk of failures, we believe the tradeoff is worth-
while so long as failures are rare and contained to one cluster
(ideally sub-cluster failure domains).

How has CAPA evolved? What’s next? CAPA’s design
is informed by experience accumulated since Google built
its first datacenter network. The datacenters were built with
failure domain separation at physical, data and control plane
levels, but this separation was not enforced. We relied on
manual management operations (scripts invoked by humans)
in the early days, and then factored out management plane
functionality into dedicated services to reduce duplication

11

across scripts. Security and reliability concerns lead to ac-
cess controls for these services. Datacenters becoming the
basis for Google Cloud accelerated both capacity and feature
growth, and underscored the need for more reliable opera-
tions. We invested in more advanced network modeling [41],
automation in operations, and principles of layering for pro-
duction operations. Large-scale outages like GCP incident
19009 [22] brought additional emphasis on considering the
full transitive closure of dependencies in failure domain con-
tainment, BGP fail-static, and low dependency recovery. Our
ongoing focus is on preventing erosion of enforcement over
time and driving new directions that will further improve the
safety and velocity of operations.

Automated rollback of operations beyond Drain(): An inter-
esting side-effect of 82% reduction in elapsed outage duration
is that newer outages are almost always unique and difficult
to prevent with simple principles, even with the benefit of
hindsight. This elevates the need for faster recovery. We are
working towards fully intent-driven network management that
will allow us to quickly roll back to known good state upon
failures. For this, we are extending rollback support beyond
in-flight Drain() operations, as well as uplevelling the reg-
ulation layer APIs to more directly express intent instead of
using the current imperative APIs (Table 2).

Up-leveling SDN’s management interface: Today, workflows
reach their intended state by sequencing low-level imperative
APIs. Workflows are not aware of each other’s existence or
intent. CAPA has created safe guards that prevent outages,
but workflows are still vulnerable to data races and indefinite
blockages. We are working on up-leveling APIs and increased
awareness of concurrent workflows within the regulation and
production critical layers to prevent these outcomes.

7 Related Work

Layering for network management. In a keynote lecture,
Koley describes ZTN, a three-layered architecture that reg-
ulates network management operations applied to Google’s
B2 and B4 wide area networks [31]. CAPA adopts the same
principle of isolating operation workflows from data/control
planes by interposing a regulation layer.

Beyond layering, ZTN describes how operations workflows
can be made device-agnostic by acting on an abstract model
of the network [41], which is particularly relevant in the wide
area network where Google purchases “traditional” routers
from hardware vendors. ZTN only briefly touches on other
topics such as rate limiting and invariant monitoring. We
focus on cluster networking, where failure domains are “leaf
nodes” of the overall network, and where network designers
have many more degrees of freedom in defining failure do-
mains as a result of our software-defined control plane. We go
well beyond ZTN by describing the multiple mechanisms we
have built into CAPA which we have found to all be necessary

to protect the availability of the network, including ‘drain-
before-operate‘, protected cross section bandwidth, fleet-wide
rate limiting, ACL enforcement and auditing, low-dependency
requirements, and BGP static routes.
Production best practices. Several papers [1, 7, 23, 38, 42]
describe reliability best practices for general systems and
networked systems in particular. We do not propose novel best
practices; we describe our experience in what mechanisms
are necessary to systematically enforce them within a thin
“regulation” layer.
Network management. The literature on network analysis
and testing [26, 53, 64], simulation and emulation [33, 36, 66],
verification [9, 14, 17, 18, 29, 30, 48, 55] and synthe-
sis [35, 37, 40, 43, 57, 62] can be applied to change man-
agement. These mechanisms test or verify if changes are
safe to proceed before releasing them, or automatically gen-
erate correct configurations from intent. WAN failure do-
main containment [32], network update and change plan-
ning [2, 34, 49, 52, 56, 65], drain operations [60], impact
analysis [19, 58, 65] and failure mitigation [15, 63] are also
applicable. These mechanisms allow network operators to
manage changes safely and effectively. This paper describes
our experience piecing together such mechanisms into a co-
hesive architecture; while existing literature describes sin-
gular aspects of systemically enforcing best practices, we
are unaware of any work describing experiences holistically
enforcing all best practices.
Failure studies. Prior studies [4, 25, 46, 46] have shown the
network to be among the major causes of cloud service out-
ages. Along that line, many failure studies particularly focus
on data center networks [3, 8, 10, 20, 23, 35, 36, 39, 45, 46,
59, 63, 67]. Among them, some studies [23, 38, 39] have
conclusions that motivate our paper or align with our obser-
vations: (1) planned changes and maintenance contribute to
a majority of the outages; (2) failures are inevitable in large
scale complex systems, and we need to proactively prepare for
failure (e.g., with failure domain isolation and fast recovery).
Though our paper examines outage case studies as a qualita-
tive evaluation of CAPA, our goal is not to comprehensively
analyze the characteristics of observed outages.

8 Conclusion

Production best practices are only effective if they can be reli-
ably enforced. CAPA demonstrates an approach for providing
enforcement of best practices without relying on the good in-
tent of every engineer and operator. CAPA has allowed us to
maintain availability while facing the practical realities of a
continually evolving and large scale production environment.

Even with a 73% reduction in incident rate and 82% re-
duction in outage duration, the pressure to deliver higher
availability, higher operational and feature development ve-
locity, and increased complexity in cluster networking means
that this area remains ripe for further innovation.

12

References

[1] Heather Adkins, Betsy Beyer, Paul Blankinship, Pi-
otr Lewandowski, Ana Oprea, and Adam Stubblefield.
Building Secure and Reliable Systems: Best Practices
for Designing, Implementing, and Maintaining Systems.
O’Reilly Media, 2020.

[2] Omid Alipourfard, Jiaqi Gao, Jérémie Koenig, Chris
Harshaw, Amin Vahdat, and Minlan Yu. Risk based
planning of network changes in evolving data centers. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019. ACM, 2019.

[3] Peter Bailis and Kyle Kingsbury. The network is reliable.
Commun. ACM, 2014.

[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Ed. Syn-
thesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2013.

[5] Tom Bedford. Internet outages: Spotify, Discord
and more are finally back up. In TechRadar, 2022.
https://www.techradar.com/news/live/internet-down-
spotify-discord-facebook-and-more-are-all-suffering-
outages.

[6] Anna Berenberg and Brad Calder. Deployment
Archetypes for Cloud Applications. ACM Computing
Surveys, 2022.

[7] Betsy Beyer, Chris Jones, Jennifer Petoff, and
Niall Richard Murphy. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media,
Inc., 1st edition, 2016.

[8] Ayush Bhardwaj, Zhenyu Zhou, and Theophilus A. Ben-
son. A Comprehensive Study of Bugs in Software
Defined Networks. In 51st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2021. IEEE.

[9] Yiyang Chang, Sanjay G. Rao, and Mohit Tawarmalani.
Robust Validation of Network Designs under Uncertain
Demands and Failures. In 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2017. USENIX Association.

[10] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. FBOSS: building switch software at
scale. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2018. ACM.

[11] Jérome Durand, Ivan Pepelnjak, and Gert Doering. BGP
operations and security. RFC, 7454:1–26, 2015.

[12] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16).

[13] Google Compute Engine. Designing resilient sys-
tems. https://cloud.google.com/compute/docs/
tutorials/robustsystems.

[14] Seyed Kaveh Fayaz, Tushar Sharma, Ari Fogel, Ratul
Mahajan, Todd D. Millstein, Vyas Sekar, and George
Varghese. Efficient Network Reachability Analysis
Using a Succinct Control Plane Representation. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016. USENIX Association.

[15] Sifat Ferdousi, Massimo Tornatore, Ferhat Dikbiyik,
Charles U. Martel, Sugang Xu, Yusuke Hirota, Yoshi-
nari Awaji, and Biswanath Mukherjee. Joint Progressive
Network and Datacenter Recovery After Large-Scale
Disasters. IEEE Trans. Netw. Serv. Manag., 2020.

[16] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
Richard Alimi, Shawn Shuoshuo Chen, Mike Conley,
Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu
Bollineni, Amr Sabaa, Shidong Zhang, Min Zhu, and
Amin Vahdat. Orion: Google’s Software-Defined net-
working control plane. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21). USENIX Association, 2021.

[17] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and
Todd D. Millstein. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
15. USENIX Association.

[18] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast Control Plane Analysis
Using an Abstract Representation. In Proceedings of
the ACM SIGCOMM 2016 Conference. ACM.

[19] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya
Akella, and Ratul Mahajan. Management Plane Analyt-
ics. In Proceedings of the 2015 ACM Internet Measure-
ment Conference, IMC 2015. ACM.

13

https://cloud.google.com/compute/docs/tutorials/robustsystems
https://cloud.google.com/compute/docs/tutorials/robustsystems

[20] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proceedings
of the ACM SIGCOMM 2011 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications.

[21] Google. Google Cloud Basics: Geography
and regions. https://cloud.google.com/docs/
geography-and-regions.

[22] Google. Google Cloud Networking Incident
19009. https://status.cloud.google.com/
incident/cloud-networking/19009.

[23] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or Die: High-
Availability Design Principles Drawn from Googles Net-
work Infrastructure. In Proceedings of the ACM SIG-
COMM 2016 Conference. ACM.

[24] gRPC Authors. gRPC: Authentication. https://grpc.
io/docs/guides/auth/.

[25] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, 2016. ACM.

[26] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know
what your packet did last hop: Using packet histories
to troubleshoot networks. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014. USENIX Association.

[27] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, 2013.

[28] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Ex-
perience with a Globally Deployed Software Defined
WAN. In Proceedings of the ACM SIGCOMM Confer-
ence, Hong Kong, China, 2013.

[29] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header Space Analysis: Static Checking for
Networks. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2012. USENIX Association.

[30] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and Philip Brighten Godfrey. VeriFlow: Verify-
ing Network-Wide Invariants in Real Time. In Proceed-
ings of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2013. USENIX
Association.

[31] Bikash Koley. Keynote lecture: The Zero Touch Net-
work. In International Conference on Network and
Service Management, 2016.

[32] Umesh Krishnaswamy, Rachee Singh, Nikolaj S.
Bjørner, and Himanshu Raj. Decentralized cloud wide-
area network traffic engineering with BLASTSHIELD.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2022. USENIX Associ-
ation.

[33] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[34] Bingzhe Liu, Kuan-Yen Chou, Pramod Jamkhedkar, Bi-
lal Anwer, Rakesh K. Sinha, Kostas N. Oikonomou,
Matthew Caesar, and Brighten Godfrey. Practical Au-
tomation for Management Planes of Service Provider
Infrastructure. In FlexNets ’21: Proceedings of the
4th FlexNets Workshop on Flexible Networks Artificial
Intelligence Supported Network Flexibility and Agility,
2021. ACM.

[35] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo
Chen, Tao Wang, Hui Xu, Lei Zhou, Qing Ma, and Ming
Zhang. Automatic Life Cycle Management of Network
Configurations. In Proceedings of the Afternoon Work-
shop on Self-Driving Networks, SelfDN@SIGCOMM
2018. ACM.

[36] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. CrystalNet:
Faithfully Emulating Large Production Networks. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, 2017. ACM.

[37] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh K.
Sinha, and Giritharan Rana. A composition framework
for change management. In ACM SIGCOMM 2021
Conference. ACM.

[38] Ben Maurer. Fail at scale: Reliability in the face of
rapid change. Queue, 13(8):30–46, sep 2015.

[39] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A Large Scale Study of Data Center Net-
work Reliability. In Proceedings of the Internet Mea-
surement Conference 2018, IMC 2018. ACM.

14

https://cloud.google.com/docs/geography-and-regions
https://cloud.google.com/docs/geography-and-regions
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://grpc.io/docs/guides/auth/
https://grpc.io/docs/guides/auth/

[40] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lu-
cian Popa, Jeongkeun Lee, Jayaram Mudigonda, Puneet
Sharma, and Yoshio Turner. Corybantic: towards the
modular composition of SDN control programs. In
Twelfth ACM Workshop on Hot Topics in Networks,
HotNets-XII, 2013. ACM.

[41] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 403–418, Santa Clara, CA, February
2020. USENIX Association.

[42] Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch.
Thinking about Availability in Large Service Infrastruc-
tures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS 2017. ACM.

[43] Christopher Monsanto, Joshua Reich, Nate Foster, Jen-
nifer Rexford, and David Walker. Composing software
defined networks. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2013. USENIX Association.

[44] Jay Peters. Apple has resolved the outage
affecting iMessage, Apple Music, the App
Store, and other services. In The Verge, 2022.
https://www.theverge.com/2022/3/21/22989393/apple-
is-down-outage-music-imessage-maps-icloud-app-
store.

[45] Rahul Potharaju and Navendu Jain. Demystifying the
dark side of the middle: a field study of middlebox
failures in datacenters. In Proceedings of the 2013
Internet Measurement Conference, IMC. ACM.

[46] Rahul Potharaju and Navendu Jain. When the network
crumbles: an empirical study of cloud network failures
and their impact on services. In ACM Symposium on
Cloud Computing, SOCC ’13, 2013. ACM.

[47] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang, Vir-
ginia Beauregard, Patrick Conner, Steve D. Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: transforming Google’s datacenter network
via optical circuit switches and software-defined net-
working. In SIGCOMM ’22: ACM SIGCOMM 2022
Conference. ACM.

[48] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton:

Scalable network configuration verification through
model checking. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2020. USENIX Association.

[49] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA:
Using Graphs to Express and Automatically Reconcile
Network Policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM 2015. ACM.

[50] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen
Yin, Qiaobin Fu, Gautam Kumar, Masoud Moshref, Jun-
hua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. PLB: congestion signals are simple and effec-
tive for network load balancing. In Proceedings of the
ACM SIGCOMM 2022 Conference, 2022.

[51] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End
Arguments in System Design. ACM Trans. Comput.
Syst., 1984.

[52] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: synthesizing network-wide configuration up-
dates. In ACM SIGCOMM 2021 Conference. ACM.

[53] Colin Scott, Andreas Wundsam, Barath Raghavan,
Aurojit Panda, Andrew Or, Jefferson Lai, Eugene
Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock,
Hrishikesh B. Acharya, Kyriakos Zarifis, and Scott
Shenker. Troubleshooting blackbox SDN control soft-
ware with minimal causal sequences. In ACM SIG-
COMM 2014 Conference. ACM.

[54] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Hanying Liu, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. In SIGCOMM ’15, 2015.

[55] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent
Vanbever, and Martin T. Vechev. Probabilistic Verifi-
cation of Network Configurations. In SIGCOMM ’20:
Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication. ACM.

[56] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
Ming Zhang, and Ahsan Arefin. A network-state man-
agement service. In ACM SIGCOMM 2014 Conference.

15

[57] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H. Y. Wong,
and Hongyi Zeng. Robotron: Top-down Network Man-
agement at Facebook Scale. In Proceedings of the ACM
SIGCOMM 2016 Conference.

[58] Aisha Syed, Bilal Anwer, Vijay Gopalakrishnan, and
Jacobus E. van der Merwe. DEPO: A platform for safe
deployment of policy in a software defined infrastruc-
ture. In Proceedings of the 2019 ACM Symposium on
SDN Research, SOSR.

[59] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and
Stefan Savage. California fault lines: understanding the
causes and impact of network failures. In Proceedings
of the ACM SIGCOMM 2010 Conference, 2010.

[60] Kaushik Veeraraghavan, Justin Meza, Scott Michel-
son, Sankaralingam Panneerselvam, Alex Gyori, David
Chou, Sonia Margulis, Daniel Obenshain, Shruti Pad-
manabha, Ashish Shah, Yee Jiun Song, and Tianyin Xu.
Maelstrom: Mitigating Datacenter-level Disasters by
Draining Interdependent Traffic Safely and Efficiently.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2018. USENIX Associ-
ation.

[61] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[62] Andreas Voellmy, Junchang Wang, Yang Richard Yang,
Bryan Ford, and Paul Hudak. Maple: simplifying SDN
programming using algorithmic policies. In ACM SIG-
COMM 2013 Conference.

[63] Xin Wu, Daniel Turner, Chao-Chih Chen, David A.
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure mitiga-
tion. In ACM SIGCOMM 2012 Conference.

[64] Hongyi Zeng, Peyman Kazemian, George Varghese, and
Nick McKeown. Automatic test packet generation. In
Conference on emerging Networking Experiments and
Technologies, CoNEXT ’12, 2012. ACM.

[65] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before You Change: Preventing Correlated Fail-
ures in Service Updates. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2020. USENIX Association.

[66] Qizhen Zhang, Kelvin K. W. Ng, Charles W. Kazer,
Shen Yan, João Sedoc, and Vincent Liu. MimicNet: fast
performance estimates for data center networks with ma-
chine learning. In ACM SIGCOMM 2021 Conference.

[67] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, 2017.

[68] Ariel Zilber. PlayStation network goes down, spark-
ing panic among gamers. In The New York Post,
2022. https://nypost.com/2022/03/23/playstation-
network-goes-down-sparking-panic-among-gamers/.

16

	Introduction
	Background
	Cloud deployment patterns
	Cluster networking
	Best practices for operations and their implementation challenges

	CAPA architecture Overview
	Life cycle of an operation

	Detailed Design
	Rate Limiting & Concurrency Control
	Failure Domain Containment
	Static routes for WAN interconnects
	Exceptions

	Evaluation
	Methodology Discussion
	Success stories
	Retrospective analysis of outages
	Retrospective case studies
	Retrospective and other known limitations

	Quantitative data

	Discussion
	Related Work
	Conclusion

