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Abstract. The overreaching goals in large-scale image retrieval are big-
ger, better and cheaper. For systems based on local features we show
how to get both efficient geometric verification of every match and un-
precedented speed for the low sparsity situation.
Large-scale systems based on quantized local features usually process the
index one term at a time, forcing two separate scoring steps: First, a scor-
ing step to find candidates with enough matches, and then a geometric
verification step where a subset of the candidates are checked.
Our method searches through the index a document at a time, verifying
the geometry of every candidate in a single pass. We study the behavior
of several algorithms with respect to index density—a key element for
large-scale databases. In order to further improve the efficiency we also
introduce a new new data structure, called the counting min-tree, which
outperforms other approaches when working with low database density,
a necessary condition for very large-scale systems.
We demonstrate the effectiveness of our approach with a proof of con-
cept system that can match an image against a database of more than
90 billion images in just a few seconds.

1 Introduction

The growth of content-based image retrieval systems using local features has
been driven by better techniques, faster hardware and a knowledge that these
systems work well at scale. In this work we only focus on vocabularized local
features and ignore the rich literature on other methods. The largest impact on
the size growth came from the introduction of visual vocabularies [1], a technique
which has been refined in [2–8]. This works aims to further increase the power
of this class of systems.

Nowadays, several companies offer large-scale, content-based image retrieval
services [9–13]. For example, TinEye [13] reached two billion images in 2011.
Unfortunately very little is known about the actual systems.

According to the available literature, a typical vocabulary-based system ex-
tracts features from images to produce an inverted index mapping quantized
features to a list of images exhibiting the same quantized value—a posting list.
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Fig. 1. Features A and B detected in the query image (top) are present in three images.
In Term at a Time (TAAT) we first process the posting list for A and then the posting
list for B, and accumulate scores. The top candidates are then geometrically verified.
In Document at a Time (DAAT) evaluation, posting lists are traversed in parallel, and
we do geometric verification for all documents having a sufficient number of matches.

At query time, features are extracted from the query image and quantized. The
corresponding posting lists are read, and votes are added for each document in
the list, usually using weights computed from features and document statistics.
The subset of the documents with the best scores are selected for geometric
verification, and a final score is computed, measuring how many and how well
query features align with those from the candidate.

We believe that it is important to distinguish systems designed for high
quality but where the cost per document is less of a factor, and systems which
sacrifice quality in order to go to an extreme scale. One important knob for this
is feature counts and vocabulary size.

When scaling such an approach to billions of images, one of two following
problems occur, depending on the database density. On one hand, if the feature
count per image is high and the vocabulary small, the index density is high
and the number of “random” hits in the first stage results in a large number of
candidate documents for which the match geometry would ideally be verified.
This verification can become expensive, since it typically involves fetching addi-
tional data for each tested document. If, on the other hand, the feature count
per document is low and the vocabulary size is large, the density is low, and the
average number of hits per document will be small, making the vote accumulator
very sparse. We show that both low and high densities cause problems for such
approaches; in the former case because one has to track many zeroes, and in the
latter because the fastest voting structures use too much memory and one has
to fall back to sparser, slower ones.

To address these two problems, we propose a novel scoring method that
unifies candidate extraction and geometric verification. Our approach efficiently
rejects candidates with less than four matches, and validates the geometry of all
remaining candidates. The final score is computed in a single step, considering
a single document at a time, with the geometry of all its matches, as opposed
to pre-scoring with a weighted hit count. In text retrieval, these two approaches
are called Document at a Time (DAAT) and Term at a Time (TAAT) [14], or
term-ordered evaluation and document-ordered evaluation [15].
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Fig. 2. Document at a Time (DAAT) evaluation: Posting lists are traversed in parallel,
the next element is always lowest document identifiers of the remaining documents.
Geometric verification can be done for all images with a minimal number of matches.
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Fig. 3. Term at a Time (TAAT) evaluation: Posting lists are traversed one by one;
scores are usually computed by accumulation.

To implement our DAAT approach in a computationally efficient manner, we
propose a new data structure we call the counting min-tree (CMT). It can be used
to merge a set of sorted posting lists and count how many lists each document
appears in. The counting min-tree allows our DAAT approach to quickly process
large databases while extracting the data needed for geometric verification for
all remaining candidates.

We compare the performance of TAAT, heap-based DAAT, and CMT-based
DAAT under varying database density. We show that our counting min-tree
outperforms other approaches.

We validate our approach on a system that quickly retrieves images from
an index containing more than 90 billion images. The images were obtained by
crawling the web.

2 Related Work

Document at a Time scoring was introduced in 1995[14] for text search and
permits retrieval-time checking of the relative position of the query terms in
the result. Kaskiel et al. [15] showed that document-ordered query processing
is efficient for retrieving text passages. Word positioning in text is the one-
dimensional equivalent of geometric consistency testing between images.

Sivic and Zisserman [1] combined the invariance of local features [16] with
conventional retrieval techniques applied to vector-quantized SIFT [17] descrip-
tors. The quantization speed and vocabulary size has been significantly improved
by using hierarchical k-means [5] or faster search strategies, such as a kd-tree over
the k-means trained clusters [6]. Similarly, the introduction of soft assignment [6,
4] has increased matching power, at the expense of additional processing.
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Several authors have tried to enforce geometric consistency of the matches
using multiple bins during voting [2, 18, 19]. However, the types of geometric
constraints which can be enforced this way are relatively limited compared to
the exhaustive geometric verification of DAAT.

Jegou et al [2] constructed a local Hamming embedding for each posting list
to find the best matches within the posting list at query time. It improves quality
and reduces CPU load by scoring fewer images, at the cost of increased memory
usage. This approach can be combined with DAAT scoring, and will lower the
index density without the drawbacks of a larger vocabulary.

2.1 TAAT scoring variants

TAAT scoring is usually implemented as score accumulation into a vector or a
map. It can be implemented using pure counts or by using weights and multiple
bins.
Hit counting: The simplest possible TAAT scoring scheme is hit counting. We
will use this scoring variant in the timing experiments on synthetic data.

In order to implement this, we invert the document database to a set of
posting lists. At scoring time we then go over the posting lists associated with
the features in the query and for each document mentioned in a posting list, we
increment the corresponding entry in the accumulator.
TF-IDF Scoring: One way of how to do TF-IDF (Term-Frequency/Inverse
Document Frequency) scoring for images is laid out in Section 4 of [5]. Basically,
the addition from simple hit counting is that each posting list has a weight and
each document a normalizer.

In order to use TF-IDF the document weights have to be kept in memory
or be attached to the posting lists. For very large indexes, both options are
inconvenient, either due to memory used or a significant increase in posting list
sizes.

3 Approach

In this section, we present our approach to large-scale image retrieval.
Feature detection and quantization: We believe that the system described
will work with any quantized local features framework. Our system considers
local maxima of Laplacian of Gaussian as features [20]. It then describes each
feature using a descriptor similar to the one presented in [21], where we have
removed rotational invariance.

Given a training set of such descriptors, a vocabulary of 5 million vectors
for LoG maximums and 5 million vectors for LoG minimums is trained using
k-means. At runtime, quantization is achieved using a kd-tree that accelerates
the search for the appropriate quantization vector [6].
Indexing: Our indexing process produces an inverted index that allows fast
retrieval. First features are extracted and quantized from the database images,
yielding sets of quantization value, position and scale. The index is then grouped
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by quantization value. As a result, each quantization value is linked to a set of
entries. Each entry has a document identifier, a normalized image position, and
a normalized scale. Within each posting list, entries are sorted by document
identifier.

3.1 Retrieval and document at a time scoring

Given a query image, our system extracts and quantizes features. Then, it fetches
the posting lists corresponding to these features. The counting min-tree pre-
sented in the next paragraph merges the posting lists. It scans the posting lists
and groups all matches for each document, one document a time. If an image
has fewer than four hits, it is discarded immediately. Otherwise, the geometric
consistency of matches is verified, yielding the final score for this image. Then,
the counting min-tree provides matches for the next document, and scoring con-
tinues.

The system finally sorts results based on their score and returns the best
matches.

Our geometric verifier computes a four parameter transformation consisting
of stretch and translation along the x- and y-axes, using RANSAC [22] to elimi-
nate outliers, the minimal set for computing such a transformation is two points.
The verification uses several rejection criteria: The location and scale of features
must match the computed transformation and the transformation must be rea-
sonable. All tests are applied in both transformation directions. Since feature
location and scale are embedded in the posting lists, this geometric verification
does not require any additional data to be fetched or features to be matched.
This makes it very fast, which allows for exhaustive geometric verification.

3.2 Counting Min-Tree
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Fig. 4. The counting min-tree maintains a state where each node remembers where its
information came from, the value and the count. Every time we remove the element
from the root, we step the posting list associated with the current source and propagate
the information from the leaf all the way up to the root.
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The task of the counting min-tree is to merge the posting lists triggered by
the query image. In other words, it groups the information from the posting lists
document. The task is made easier by the fact that the posting lists are already
sorted by document identifier.

Merging k sorted lists, containing a total of n elements, can be done in
O(n log(k)) time by using a binary min-heap. The heap keeps track of which list
to take the next element from, as in the merge phase of a merge sort [23].

However, updating a heap for each element is costly in terms of CPU power.
Instead, we propose a novel structure called a counting min-tree, based on the
existing but somewhat lesser-known min-tree structure, sometimes also called a
winner tree.

The min-tree, like the min-heap, is realized using a binary tree, but differs
from the heap in that it only stores elements in the leaf nodes, of which there is
a fixed number—one for each posting list triggered by the query. For simplicity,
we use a complete binary tree, so that the number of nodes is always a power of
two, with the extra nodes always having a special highest “end-of-file” document
identifier.

Each inner node contains the smallest document identifier of its two children,
as well as an index into which leaf this document identifier comes from. Therefore,
the root element identifies both the least-advanced posting list and its document
identifier, allowing for immediate identification of which posting list to step.

We further augment the min-tree into a counting min-tree by including a
count in each inner node. The count contains how many leaf nodes below it has
the given document identifier; for instance, if an inner node has two leaves below
it with document identifiers 100 and 200, its document identifier will be 100 and
the count 1, but if the leaves’ document identifiers are 100 and 100, the inner
node will have a document identifier of 100 and a count of 2.

The count is, like the document identifier, propagated up the tree all the
way to the root. The root will then, in turn, not only contain the document
identifier of the least-advanced posting lists and its index, but also how many
other posting lists point to the same document identifier. Identifying candidates
for scoring then simply amounts to looking at the root node; if its count is at
least four, we have a candidate for scoring, and if not, we can continue stepping
the least-advanced posting list.

The counting min-tree has two main advantages over a heap. First, it is
significantly faster, and already at the first hit on a document we know how
many hits the document will have. Second, knowing the number of hits without
having to advance over all the hits simplifies the logic of collecting geometry
data from the posting lists.

4 Scaling Analysis

In this section, we first define a density index. We then study the behavior
of several algorithms when this density changes. To do so, we use a synthetic
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benchmark. We show that, under conditions necessary for large-scale systems,
our counting min-tree outperforms other solutions.

4.1 Index Density

In inverted index-based systems, the retrieval computation burden is propor-
tional to the number of posting list entries the system has to process for a given
query.

In order to estimate the number of elements scanned during a single query,
let N be the number of documents in the database, nq the number of features
in the query image, nd the average number of features per indexed document,
and V the vocabulary size. For simplicity, and without loss of generality, we use
in the experiments nq = nd. We denote the index imbalance factor [24, 2]

u = V

V∑
i=1

p2i , (1)

where pi is the fraction of features quantized to word i. Using Chebyshev’s sum
inequality, we see that u has a lower bound of 1, reached when pi = 1/V .

We define the index density

D =
unqnd

V
. (2)

The number of elements the system has to process for a query is

M = N
unqnd

V
= ND . (3)

On average, M = ND is the number of matches between query and indexed
features.

The value D can be used to categorize systems as sparse or dense. A high
density factor improves retrieval at the cost of a heavier computation and storage
burden. A sparse index leads to a lighter system with a potentially lower recall.

The time taken by the retrieval stage is M/r, where r is the number of entries
the system processes per second.

In the following, we measure the process rate r of several algorithms, when
processing databases of different sizes (N) and densities (D).

4.2 Synthetic Experiment

In order to compare the raw speed of several different scoring strategies, we
define a synthetic experiment with a database of N synthesized documents, each
with n random features from a vocabulary of size V . The query is a synthesized
document with n features drawn from the same uniform distribution. The scoring
task is to retrieve from the database all the documents with at least four hits.

We evaluated two DAAT implementations and two TAAT ones:
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Fig. 5. On synthetic data and a sparse setup with a large vocabulary (10M) and a
small feature count (150), the advantage of using the counting min tree (CMT) is
growing with increased database size.
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Fig. 6. On synthetic data, the counting min-tree (CMT) is the fastest option for pure
hit-counting as long as the problem remains sparse. Above a certain density voting into
a vector becomes faster.
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and a small feature count (100), the vector based hit counter has a massive advantage
in terms of raw speed.
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CMT DAAT using a counting min-tree.
heap DAAT implemented using a heap.
map TAAT with a sparse vote accumulator, implemented using a hash table 1.
vec TAAT with a dense vote accumulator, implemented using an array of 8-bit

integers2

For each algorithm, we measure the number r of posting list entries processed
per second in dense and sparse scenarios. For both TAAT algorithms, r includes
the time required to vote and the time to scan the accumulator for documents
with at least four hits. The DAAT algorithms achieve the same task in a single
pass.

We compiled our benchmark with GCC 4.4.3, and ran it in 64-bit mode on
one core of an Intel E6600 2.4GHz CPU.

The goal of our first experiment is to evaluate how the algorithms behave
when database density changes. In this scenario, the database size is N = 1
million images. The vocabulary contains 10 million words, as for the real data
experiment of Section 5. The number of features per image is equal for both
query and reference images: nd = nq = n. We let n vary from 30 to 2000. By
doing so, we change the index density.

Our second experiment concentrates on the sparse case. The vocabulary has
10 million words. The number of features is n = 150. This configuration matches
the one of our real data experiment.

The third scenario considers a high density case: the vocabulary has 10k
words. The number of features per image is set to n = 100. This configuration
is very costly for large-scale databases, due to the number of entries processed.
However, the tested algorithms, exhibit interesting behaviors in these conditions,
which are presented next.

4.3 Synthetic Results

The advantage of DAAT scoring over TAAT scoring depends on the sparsity of
the problem.

Figure 6 shows how algorithms behaves when the database density changes.
When the index is dense, TAAT scoring with a dense accumulator outperforms
other methods. When the density is low, as required for large scale databases,
the counting min-tree is faster. The counting min-tree is almost always faster
than heap-based DAAT which is always faster than TAAT implemented with
a hash table. The counting min-tree requires a small, constant time initializa-
tion. That explains why its performance degrade compared to other methods
when processing extremely short posting lists. The results of this experiment
clearly show that one should consider the importance of database density when
designing a vocabulary-based image retrieval system.

1 We use an unordered map<uint32, int>, which is new for C++11. We found that
it outperforms map<uint32, int> and hash map<uint32, int> in all cases.

2 For small databases 32-bit integers are slightly faster, but they scale less well.
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Figure 5 depicts the sparse database scenario. It shows that the dense ac-
cumulator for TAAT is the slowest option. This is because reading out the re-
sults and resetting the vector become computationally heavy O(N) compared to
traversing the posting lists O(Nn2/V ). A sparse accumulator is a significantly
faster option, but it is remains slower than DAAT approaches. The rate at which
both TAAT implementations process hits remain roughly constant with respect
to the database size. In this sparse database scenario, DAAT scoring outper-
forms vector based TAAT scoring, since they avoid the O(N) step of finding all
elements with a sufficient score in a vector.

Figure 7 shows results of the dense index experiment. In these conditions,
TAAT with a dense accumulator outperforms other methods since the O(N)
cost of finding the matches in the accumulator is majored by the O(Nn2/V )
cost for processing the posting lists.

By dividing a large problem into smaller sub-problems it is possible to take
the highest speed of each method and linearize to larger problems. This also
makes it possible to keep the memory requirements of the vector and map based
scorers at a reasonable level.

5 Proof of Concept on Real Data

In order to show that this can run at scale we used the method described above
build a low invariance index of 94 billion images obtained as part of a large
web-crawl. This means that many of the images are small and that there is a
high number of near-duplicates in the set, however, the set is still amazingly rich
and provides an extraordinary coverage of what is on the internet.

We extracted quantized features for 94 billion images. For each image we ex-
tracted (up to) 200 (average 135) non-rotational invariant features and quantized
using 10M cells. This gives a total count of 1.3 · 1013 features, with a feature
distribution very close to random which was compressed to 63TB with a per
feature cost of 5.4 bytes. This feature processing was run integrated with other
feature processing on a very large cloud.

We wrote a single posting-list index over these features to a networked file
system.

To query against the index, we set up a single machine to which we send the
quantized features of the query image. The query is processed in three stages:
In the first stage, the posting lists are fetched from the networked storage and
decompressed. In the second stage, we advance the posting lists in DAAT-order
using a counting min-tree, and documents with at least four hits are scored by
geometric consistency. In the last stage, we sort the results by score and return
the top 1000 results to the caller.

Unfortunately the time to fetch and decompress is larger than the actual
time needed for scoring. For a typical 100 feature query we need to fetch and
decompress 65M entries (that is 350MB) which takes just below 2 seconds. The
scoring parallelizes very well and runs at around 12.5M entries per core-second
on eight cores, for a scoring time of around 0.7 seconds.
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Fig. 8. The query is in the first column; the remaining columns are the first few results
in score order. From top to bottom: The Taj Mahal, the Belfry of Bruges, the Palace
of the Romanian Parliament, La Sagrada Familia, Notre Dame, St. Vitus Cathedral,
the Royal Palace of Brussels, Saint Basil’s Cathedral, Big Ben, the Sydney Opera
House, and the Versailles. Matching famous landmarks is rather easy since the database
contains a very large number of images of these so recall does not have to be perfect.
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Fig. 9. Common classes of mismatches. Faces matches other faces, round object match
round objects and text matches text.

The difference in scoring speed from the synthetic experiment mainly comes
from the fact that in the synthetic experiment the posting lists are zero termi-
nated 32 bit integer arrays while we here deal with more complicated structures
which handle 64 bit docids and also hold payloads. Another source of slowdown is
that the scoring in the synthetic experiment was simple hit-count scoring while
we here do far more complicated scoring. However, since we are considerably
much faster than the network, we have demonstrated that we can keep up with
the data feed. A system running at 30M entries per core-second would need
160MB/s input per core to stay fed, a rate which would be hard to sustain from
any other source than RAM. Already at you need almost 70MB/s per core.

Sharding the system will change the amount of data which needs to be pro-
cessed per machine but will not change the balance between processing power
and io-needs.

The experimental system has considerable amounts of RAM but only requires
the memory needed to hold the posting lists relevant for the current query.

Quality Problems Driven By Scale: When running all-against-all on the UKY
[5] database, a single false positive corresponds to a pairwise false positive rate
of 10−8. With a larger database, this rate corresponds to ten false positives per
query per per billion images in the database.

Studying the mismatches on a very large image database is instructive, and
most fall into one of four categories: faces, round objects, text and watermarks.
In order to prepare Figures 9, we have increased the number of query features
in order to make these cases clearer.

If You Have the Images, You Can Index Them: Even though the task of indexing
billions of images might sound gigantic, it is worth pointing out that the task
of creating an index of this type is in most cases much smaller than the task of
collecting the images.

Given a feature detector, descriptor, and quantization pipeline running at
30 images per second, each CPU core can index about three million images per
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day. The highly parallel nature of the computation and the dropping price of
multi-core systems makes it affordable to scale to very large corpora.

6 Conclusions

We have proposed a DAAT approach to image retrieval, efficiently implemented
using a counting min-tree. Our method verifies the geometry of every candidate
in a single pass. Our proof of concept setup is able to query a database of more
than 90 billion images in a few seconds.

By studying the speed of multiple algorithms as a function of the database
density, we have shown that our approach efficiently handles the extreme scoring
sparsity required to query very large databases, at an acceptable cost.

It was our plan to show a great win from geometric scoring of all possible
hits, however, for the hit-density which we have in our proof of concept system
there are very few “random” documents with at least four hits and it would have
been affordable to fetch these and verify. We suspect that there would be a clear
win for a system operating in a denser setting.

It is our hope that this work will have demonstrated that if you can acquire
an image collection, then the step to indexing it is not very far.
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