
JustSpeak: Enabling Universal Voice Control on Android

Yu Zhong1, T.V. Raman2, Casey Burkhardt2, Fadi Biadsy2 and Jeffrey P. Bigham1,3

Computer Science, ROCHCI1
University of Rochester
Rochester, NY, 14627
zyu@cs.rochester.edu

Google Research2

Mountain View, CA, 94043
{raman, caseyburkhardt,

biadsy}@google.com

Human-Computer Interaction Institute3

Carnegie Mellon University
Pittsburgh, PA, 15213

jbigham@cmu.edu

ABSTRACT
In this paper we introduce JustSpeak, a universal voice
control solution for non-visual access to the Android op-
erating system. JustSpeak offers two contributions as
compared to existing systems. First, it enables system
wide voice control on Android that can accommodate
any application. JustSpeak constructs the set of avail-
able voice commands based on application context; these
commands are directly synthesized from on-screen labels
and accessibility metadata, and require no further inter-
vention from the application developer. Second, it pro-
vides more efficient and natural interaction with support
of multiple voice commands in the same utterance. We
present the system design of JustSpeak and describe its
utility in various use cases. We then discuss the sys-
tem level supports required by a service like JustSpeak
on other platforms. By eliminating the target locating
and pointing tasks, JustSpeak can significantly improve
experience of graphic interface interaction for blind and
motion-impaired users.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User In-
terfaces—Voice I/O ; K.4.2 Computers and Society: So-
cial Issues—Assistive technologies for persons with dis-
abilities

General Terms
Human Factors, Design

Author Keywords
Universal voice control, accessibility, Android, mobile

INTRODUCTION
Mouse and multi-touch surface have been widely used
as the main input methods on computers and mobile
devices for their reliable accuracy. But under circum-
stances when visual access to the display is impossible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A ’14, April 7-9, 2014, Seoul, Korea
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

or hindered, or for users with dexterity issues, it is dif-
ficult to point at a target so they are often less effec-
tive. For blind and motion-impaired people this issue
is more obvious, but other people also often face this
problem, e.g, when driving or using a smartphone under
bright sunshine. Voice control is an effective and efficient
alternative non-visual interaction mode which does not
require target locating and pointing. Reliable and natu-
ral voice commands can significantly reduce costs of time
and effort and enable direct manipulation of graphic user
interface.

In graphical user interfaces (GUI), objects, such as but-
tons, menus and documents, are presented for users to
manipulate in ways that are similar to the way they are
manipulated in the real work space, only that they are
displayed on the screen as icons. The first and most es-
sential step of interaction with GUI is target locating,
sighted people can intuitively find the target object with
a quick visual scan. But without visual access to the
screen, this simple task is often very hard to finish, which
is the main cause of difficulties in non-visual interaction.
Before the invention of screen readers [1, 7, 6], it was es-
sentially impossible to interact with a GUI non-visually.
Now that audio feedback has been used to support non-
visual accessibility of computer and smartphones, many
works [2, 4] have been focusing on utilizing voice con-
trol to improve the efficiency of eyes-free user input. As
for motion-impaired people, they face challenges in the
second step, point targeting, as most GUI interaction
techniques like mouse and multi-touch require accurate
physical movements of users’ hands or fingers.

The advantage of voice commands over mouse or multi-
touch when interacting with a screen non-visually is that
it does not require targets to be located and thus avoids
the problems with pointing as described before. This
task often costs the majority of time needed to complete
interaction with an input device, for example, moving a
cursor onto a button with a mouse. This has been deeply
studied since at least the introduction of Fitts’s law [11]
in the 1960s. On the contrary, when using speech as
input, users can expect a computing device to automat-
ically execute commands without the hassles of finding
and pointing on-screen objects. For example, to com-
plete a simple task like switching off Bluetooth on a
multi-touch smartphone, with speech-enabled interface,

a user can simply tell the phone to “switch off Bluetooth”
instead of going through the time consuming process of
finding and clicking the settings icon, and then the Blue-
tooth switch.

Unfortunately, existing voice control systems are con-
strained in many ways. We have not yet seen a system
which supports universal voice commands on a device
able to control any application. The majority of them
are either built on application level (e.g. speech input
methods) or limited by pre-defined commands set. For
instance, even the most popular voice assistants like Siri
and Google Now [2, 4] can only support built-in func-
tionalities on the device like messaging, calling and web
searching, etc.

In this paper, we present JustSpeak, which is designed
and built with a fundamentally different architecture on
the system level of Android. JustSpeak aims at enabling
universal voice control on Android operating system to
help users quickly and naturally control the system non-
visually and hands-freely. Users can easily access JustS-
peak on their existing Android smartphones and tablets.
The application runs in the background as a system
service which can be activated with simple gestures, a
button or a Near Field Communication (NFC) tag no
matter which application is running in the foreground.
When activated, JustSpeak records the speech spoken by
the user. The recorded audio is then transcribed into
plain texts and parsed into computer understandable
commands which are automatically executed by Just-
Speak. Unlike most current systems, JustSpeak can ac-
comodate commands for any application installed on the
device, for example, clicking buttons, scrolling lists and
toggling switches. Moreover, JustSpeak is smarter and
more natural than other works in that it supports mul-
tiple commands in one utterance. For instance, to open
the Gmail application then refresh the inbox, two com-
mands can be combined into once sentence “Open Gmail
then refresh”. The two main features differ JustSpeak
from other voice control systems and offer more intuitive
and efficient eyes-free and hands-free interaction.

The contributions of this paper include:

• a mobile application, JustSpeak, that enables universal
voice control on Android devices;

• a description of the system design that empowered
accommodation of adaptive commands parsing and
chaining; and

• a discussion on leveraging speech input to enhance in-
teraction for blind people and people with dexterity
issues.

RELATED WORK

Non-visual Interaction
As described before, currently nearly all computing de-
vices adapt GUI to offer friendly and natural interaction.
However, GUI was essentially quiet and inaccessible for

non-visual users before the introduction of screen read-
ers [12]. Over the last two decades, many screen readers
have been successful in providing accessibility for blind
users on multiple platforms. For example, JAWS [7] on
Windows personal computers, WebAnywhere [3] for the
web, VoiceOver [1] on Macintosh computers and iOS,
TalkBack [6] on Android devices, etc. Those softwares
identify and interpret what is being displayed on the
screen and then re-present the interface to users with
text-to-speech, sound icons or a braille output device.
With the non-visual feedback of screen readers, blind
people can explore the user interface, locate and manip-
ulate on-screen objects.

Screen readers largely improved the accessibility of GUI
for blind users. However, blind users still need to adapt
to traditional input techniques that require target dis-
covery. Those techniques are designed for visual inter-
action, hence require additional efforts for blind people.
For example, on non-touch devices, blind people often
use keyboard shortcuts to iterate through the interface
linearly (from top to bottom, left to right) in order to
find an object, and use gestures similarly on touch inter-
faces.

For sighted people who are not familiar with screen read-
ers, there are few works that allow them to interact with
their devices non-visually. Mostly they have to wait un-
til visual access to the devices is possible. Although the
non-visual interaction problem is often merely nuisance
for them, sometimes it can cause great inconvenience, for
instance, when someone wants to check the map while
driving a vehicle.

Speech Recognition Services
Speech recognition, also known as speech-to-text or au-
tomatic speech recognition (ASR), has been studied for
more than two decades [14] and recently been used in
various commercial products ranging from speech input
like customer service hotlines, voice IMEs, to automatic
virtual agents such as Siri and Google Now which will
be discussed in the following section.

Recognition of natural spoken speech is a very complex
problem because vocalizations vary interms of accent,
pronunciation, pitch, volume, speed, etc. The perfor-
mance of a speech recognition engine is usually evalu-
ated in terms of accuracy and speed. There are a large
number of ASR services, both in academia as research
projects [9, 13], and in industry as commercial products
[8, 10].

In the framework of JustSpeak, we employ Google ASR
service [10] to recognize spoken speech of users. Google
has been working on speech processing for a long time
and their voice recognizer is widely used in multi-
ple products across different platforms, including voice
search on mobile phones and webpages, voice IMEs and
Youtube [5] video closed captioning. Their application
programming interface (API) enables easy and seam-
less integration of scalable text-to-speech functionality

in mobile applications, and supports both online and of-
fline speech recognition.

The performance of Google ASR service is also top notch
within the competitive area. When using online recogni-
tion, the word error rate (WER) is around 15 percent,
and the average real time (RT) factor is below 1 second
[10]. It empowers JustSpeak to provide users fast and
accurate voice interaction experience.

Voice Control Systems
We define voice control systems as applications or de-
vices controlled by means of human voice. Unlike di-
rect utilization of voice recognition such as voice IMEs
or voice search, voice control systems apply the results
of voice recognition to manipulate user interface or exe-
cute specified commands. All mainstream smart mobile
phones now support different levels of voice control, in-
cluding Android, Microsoft Windows phones, Blackberry
and iOS. [16] The most advanced and popular voice con-
trol applications are Google Now on Android and Siri on
iOS.

Google Now is a dialogue system on Android (4.1 and
above) that supports execution of a set of actions on
the device, including functions of most Google products.
For example, users can set reminders by saying “Remind
me to call John at 6PM”, and similarly create calendar
events, show locations on Google Maps, call or message
a contact, ect. [4] with Google Now.

Apple firstly introduced simple voice control into iOS as
a new feature of iOS 3, they then partnered with Nuance
[8] to create bring Siri into iPhone 4S and newer models
as a replacement. Users of Siri can issue voice commands
similar to but less than Google Now. For example, Siri
does not support functions of the map application on
iOS.

Although Google Now and Siri are both considered the
state of art voice control systems, they are both lim-
ited by the way they define their supported commands.
Essentially each command can only have one key word
or phrase which specifies a certain function supported by
the system, for instance, “calendar” or “alarm”. If there
is no key word found in the sentence or the sentence does
not satisfy the grammar associated with the key word,
the whole sentence will be treated as a web search query.
Also, if a user wants to execute two or more voice com-
mands, s/he has to repeat the process several time be-
cause they can only process one command in each dialog
turn. Furthermore, since the functions supported are
pre-defined and built into the applications, they do not
work with applications outside the constrained scope, for
example, third party email software.

Android Accessibility APIs
Android accessibility APIs [15] give developers ability
to provide better accessibility to users who have special
needs. With the APIs, Android developers can make
their own application more accessible by offering audio

prompts, physical feedback and alternative navigation
modes. They can also make their own accessibility ser-
vices which run in the background and provide those
enhancements for all applications, a set of application or
just a single app. For example, TalkBack, the default
screen reader of Android, is an accessibility service.

Given permissions from a user who installed an accessi-
bility service, developers can access the on screen view
hierarchy, accessibility events and enhance user experi-
ences accordingly through the accessibility APIs. Those
APIs are powerful tools because they act as a delegate
between applications and system so that an accessibility
service can be aware of any interaction performed by the
user and interface changes triggered by the event. For
example, when an user launches an Android app, acces-
sibility APIs will notify registered accessibility services
and attach all the view objects shown in the application
activity including buttons, labels, menus, etc. to the
notification. Applications can also leverage accessibility
APIs to fire interaction events on behalf of the user, in-
cluding but not limited to, clicking, long pressing and
scrolling an actionable on-screen object.

JUSTSPEAK
JustSpeak is an Android accessibility service designed for
use with any existing applications and other accessibil-
ity services (e.g. TalkBack) on smart phones and tablets
running Android 4.2 and up. The interaction to launch
applications and activate on screen control via spoken
commands is simple and intuitive and fully accessible
for non-visual use. It has been released on Google Play
Store for free downloads, for now JustSpeak only sup-
ports English.

In this section, we will first discuss how JustSpeak han-
dles speech that contains only one command and de-
scribe the system designs which enable multiple com-
mands in one sentence in the last part.

System Description
Same as other Android accessibility services (e.g. Talk-
Back), once installed, JustSpeak can be enabled under
Settings -> Accessibility (shown in Figure 1), this en-
abling operation only needs to be performed once as
JustSpeak will be automatically restarted when the de-
vice is rebooted. The same accessibility setting page is
also the place to turn off JustSpeak.

Figure 1. Enabling JustSpeak in Accessibility Settings

As shown in Figure 2, JustSpeak has three modules work-
ing together to facilitate universal voice commands once
activated by the user. The first step is speech recog-
nition which transcribes spoken speech into plain text.
Then the utterance parsing module kicks in to process
the voice recognition results into formalized commands.
And finally we search for actionable objects on the cur-
rent screen with the command arguments and manipu-
late the highest matching object or initiate system com-
mands accordingly.

JustSpeak is efficient in terms of battery consumption
because it runs in background sleeping mode while not
being used. When the user wants to issue voice com-
mands, JustSpeak can be easily activated in several dif-
ferent ways, including dragging the home button up,
clicking the JustSpeak application icon and scanning a
customized NFC tag. Then an earcon is played to alert
the user JustSpeak is ready to record audio, a green layer
on the right edge of the screen will also be displayed to
show volume changes of detected audio with color vari-
ation. A challenge we faced when designing JustSpeak
is that many on-screen objects are iconized and do not
have labels shown beside them. For example, the four
application icons on the bottom of screen as shown on
the first phone screen in figure 2. In order to let users
easily discover what can be said, JustSpeak will briefly il-
lustrate the label associated with each actionable object
on top of it after activated.

Speech Recognition
As discussed before, we used the Google ASR service in
JustSpeak to recognize user input speech. In addition to
the reliable performance, Google ASR gives developers
great flexibility by offering both offline and online recog-
nition, therefore, JustSpeak can be used without internet
connection. Of course, there are advantages of connect-
ing to the Google servers. The most important bene-
fit for JustSpeak users is that online recognition returns
multiple scored results as opposed to single result when
using offline recognition. A simple example is shown
in table 1, when the user said ”setting”, Google ASR
returned three different results. This feature give JustS-
peak ability to increase speech recognition error tolerance
and voice commands success rate because we can iterate
through all the results by descending scoring order and
execute the most likely action. Details about the process
will be discussed in the following section.

Table 1. Multiple results with scores returned from
Google online ASR when saying “setting”

Recognition Result Score
setting 0.90
settings 0.08
sitting 0.02

Utterance Parsing
JustSpeak enables voice control of all the interface ma-
nipulating functions supported by the Android accessi-
bility APIs as well as some global system commands that

can be invoked programmatically. A complete list of cur-
rently supported actions and examples are shown in table
2 below.

Table 2. Voice actions supported by JustSpeak

Action Example Synonym
Local commands

Activate controls Click reset Tap, touch
Scroll e.g. lists Scroll up forward
Toggle switches Switch on data toggle

Long press controls Hold refresh long tap
Toggle checkboxes check vibration uncheck

Global commands
Launch apps Open Hangouts Launch, run

Show recent apps Recent Apps Recents
Show quick settings Quick settings Open

Toggle WiFi Switch WiFi On Toggle
Toggle Bluetooth Bluetooth On Toggle
Toggle tethering Tethering On Toggle

Home Go home home screen
Back Go back

Show notifications Notifications
Easy labels Easy labels

In order to provide natural and flexible user experience,
we designed a grammar based utterance parsing pro-
cess for JustSpeak. Each action can be expressed in
several different ways just like communicating with real
humans. For instance, to long press a button labeled
as “reset”, users can tell JustSpeak to “long click/press
reset”, “press/click and hold reset” or simply “hold re-
set”. Some synonyms of each supported action are also
shown in table 2. In addition, JustSpeak also supports
insertable words and phrases such as please, hmm, can
you, etc. We also defined some hot words that triggers
commonly used applications, including “browser/web”
to open default web browser, “OK Google Now” to
launch Google Now and “voice search” or “search” to
initiate voice search.

When JustSpeak receives the scored results from ASR,
it tries to process each result with the defined gram-
mar. Once a voice recognition result passes our grammar
check, we wrap it up in the form of command name and
arguments, then pass it to the execution module along
with the recognition score. In the case all of the recogni-
tion results of a user speech do not satisfy any grammar
listed in table 2, JustSpeak will abort and notify the user
about the failure with text-to-speech feedback.

Commands Execution
Once commands are parsed, JustSpeak tries to execute
each of them one by one. Most of the global commands
can be executed straightforwardly by simply invoking
specified system events. On the other hand, local com-
mands have arguments associated with on-screen con-
trols and accessibility metadata. Therefore, we need to
employ accessibility APIs to locate the interactive object
the user wishes to access when speaking local commands.

Figure 2. When activated, JustSpeak records audio spoken by the user, transcribes it into plain text, then parses the
text into formal commands, andn then finally finds the correct object on the screen to perform the command.

To do so, we maintain a view indexer in JustSpeak, this
indexer is essentially a hashmap mapping the text labels
or content descriptions to their associated interactive in-
terface element. For example, if an image button is la-
beled as ’compose’ by the developer, even if this label is
not shown on the screen, we will keep an entry of word
’compose’ mapping to this button. Since the contents
shown on the screen are constantly updated. JustSpeak
listens to all types of accessibility events 1. Those events
include the source of updated view and metadata such
as time stamp, details of the modification, identification
of corresponded application, etc. They empower JustS-
peak to dynamically update the indexer to keep it fresh.
For example, when the text inside a textbox is modified
by the user or the system, JustSpeak will receive a View
Changed event, then JustSpeak will swap the stale node
and its descendants in the indexer with the newer ones
passed in with the event.

This indexer becomes handy when a local command is
handed to the execution module, we can query the in-
dexer with the argument string to find matching nodes
shown on the screen. Since user inputs are sponta-
neous and do not always match the labels defined by
developers, it is necessary to design a flexible mecha-
nism that allows flexibility. We used a word overlapping
based ranking algorithm so that users do not have to say
the exact label to find an on-screen object. For exam-
ple, if a command specifies ’compose message’ and there
are two buttons on the screen that contains word ’mes-
sage’, then ’compose a new message’ will yield higher
score than ’show message’ and JustSpeak will perform
the command on the ’compose a new message’ button.

1Android accessibility events,
http://developer.android.com/reference/android/view/
accessibility/AccessibilityEvent.html.

This algorithm is used for all local commands that re-
quire the user to specify name of an interface element,
including activation, switch toggling, long pressing and
checkbox updating as shown in table 2. Once a unique
node is found, JustSpeak will validate whether the com-
mand can be performed on this specific object with ac-
cessibility APIs, if not, it will continue to a lower ranked
object. For instance, checking command can be only ap-
plied on checkboxes. For scrolling commands, JustSpeak
only needs to find a scrollable item in the indexer be-
cause in most mobile interfaces the chance of more than
one extended views existing together is minimum.

As described before, when using online ASR, there are
usually several scored commands, JustSpeak tries to pro-
cess each of them to find out whether their arguments
correspond to a unique actionable node in the indexer by
descending scoring order. This way if ASR produced er-
rors in the highest scored result because of users’ accents
or other factors, JustSpeak still has a large chance of exe-
cuting the requested command. If none of the command
has argument that can be validated in the indexer, this
execution attempt will be considered failed. The result
of execution is announced with synthesized speech.

Chaining of Commands
Support of multiple commands in single speech is an im-
portant feature of JustSpeak for two reasons. Firstly,
it is more time efficient to combine multiple commands
into one sentence than repeating the whole dialog turn
for several times; secondly, it is more natural and con-
sistent with the way spontaneous speeches are produced
to express ordered requests in single utterance. An ex-
ample of using chained voice commands is illustrated in
figure 3.

http://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
http://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html

In the JustSpeak framework, utterance parsing and com-
mands execution modules work together to understand
speeches containing more than one commands. All of
the supported functions listed in table 2 can be chained
into a single sentence. As shown in figure 3, the utter-
ance is parsed into an array of commands in the order
that they are placed in the sentence. A challenge placed
upon utterance parsing is disambiguation, for example,
sentence ’click reset and home’ can be viewed as either
one command: clicking button ’reset and home’ or two
commands: clicking button ’reset’ and then navigating
back to home screen. In order to obtain better disam-
biguation performance, grammars of each supported ac-
tion have to be defined as detailed as possible, JustSpeak
also assigns higher priority to commands that can be val-
idated on current screen, taking the sentence before as
an example, if there is a button labeled as ’reset’ on the
screen, then the two commands result will be preferred.
Since execution of an action usually causes numbers of
interface updates, for example, clicking a button often
results in opening of a new page, a dialog or an appli-
cation, the array of commands can not be executed at
the same time. In fact, the execution module only tries
to validate the first command arguments and execute it
if possible, and then waits for a short time until all the
accessibility events fired by the previous command are
settled and then proceeds to the next command on the
updated screen. Theoretically, users can chain as many
commands as they wish, but in practice, we found speech
recognition errors build up quickly with the growth of
speech length. With the error tolerance mechanism dis-
cussed before, JustSpeak is able to reliably support nor-
mal length spontaneous speeches containing four or less
commands.

Figure 3. JustSpeak parses a spoken sentence into three
ordered commands and executes them one at a time.

USE CASES AND DISCUSSION
JustSpeak innovatively provides enhancements to all An-
droid applications and the Android system itself by the
means of natural and fast voice control that can be ac-
cessed non-visually and hands-freely across the whole
platform. Its value is not limited to assisting blind users,
in fact all Android device users can benefit from JustS-
peak in variety of cases.

For Blind Users
As the primary user group of non-visual interaction tech-
niques, we believe blind users of Android devices can
interact with their smart phones faster and more eas-
ily with assistance of JustSpeak. In fact, this project was
initially designed specifically for blind users, we only dis-
covered its value for other user groups later during the
course of developments.

As described before, most blind people use screen read-
ers to interact with their computers and portable elec-
tronic devices. On Android smart phones and tablets,
JustSpeak does not interfere with existing screen read-
ers and other accessibility services (e.g. TalkBack). On
contrary, they work together to offer a better user expe-
rience to blind users. In fact, since blind users perceive
the representation of user interfaces in the form of text
read by screen readers, they are already aware of the
strings associated with each object that can be said as
valid voice commands. Therefore, they can more easily
familiarize themselves with JustSpeak and get the best
out of it. We have observed that in many cases blind
users spend a large amount of time looking for a spe-
cific object on their phones. The main reason is that
screen readers are designed as a linear iterative screen
explorer, although blind users can usually identify an
on-screen control by its first few words and fast forward
with increased text-to-speech speed, it still takes more
time and efforts for them to locate a target on the screen
than for sighted users even if they know it’s shown on the
screen. In unfamiliar applications this problem can be
even worse. JustSpeak can significantly reduce the time
and efforts needed to access application controls for blind
users. A simple case that blind users of Android can
benefit greatly from JustSpeak is launching applications.
Nowadays one can easily find hundreds of applications
installed on a personal Android device, even with visual
access to the screen, it is usually a nightmare for users to
fumble through pages of application icons and spot one
of them that they want to open. With the assistance of
JustSpeak, this operation can be as easy as saying the
application name. In fact, after the release of JustSpeak,
we have noticed many users, both blind and sighted, use
it to launch applications regularly.

For Sighted Users
Although GUI is designed for sighted users primarily,
sighted users often find them inevitably placed under sit-
uations where non-visual interaction is required. With-
out visual access to the screen, and being not screen

reader users, their smartphones or tablets are very diffi-
cult to interact with in those cases. Examples like eyes-
busy status (e.g. driving, meeting) and environments
which render the screen invisible or untouchable (e.g.
direct sunshine, wearing gloves) have been described be-
fore. JustSpeak is an effective alternative to complete
urgent tasks without looking at the screen under those
circumstances.

From the user feedback we collected, we discovered an-
other unexpected user group which also benefited from
JustSpeak. One of our users pointed out that JustSpeak
is also a great tool for “anyone with dexterity issues”. Al-
though those Android users do not have difficulty find-
ing on-screen objects, it is often a hard task for them
to point to them accurately with fingers on multi-touch
screens, JustSpeak alleviates their burden to move the
device so that they can just place it at a place where
they can activate JustSpeak, and use spoken commands
to let JustSpeak perform interactions on their behalf.
JustSpeak is especially useful for motion-impaired users
when completing a complex task because with chained
voice commands they only have to finish one physical in-
teraction with the device which is activation. To better
server the users with dexterity issues, JustSpeak added a
’Tap and Speak’ option in the most recent version. Once
selected, users can activate JustSpeak by touching any
place on the screen.

For Android Power Users
Mobile devices are limited by the screen size compar-
ing to computers, therefore mobile app developers adapt
hierarchical interface to arrange application contents in
different pages. For Android users who are familiar with
their applications and know the controls on each applica-
tion page that need to be accessed in order to complete a
complex task , JustSpeak can save them hassles to click
through several levels to find commonly used functions
by chaining commands together. An example is starting
a video call with a contact inside Google Hangouts which
is a three step task as shown in figure 4 below. With
touch interaction, the user has to first launch Google
Hangouts at the bottom left corner on the main screen,
then click on the contact in the middle, and finally tap
the small video call button on the top right corner, with
JustSpeak, the task is simplified to an activation gesture
and one single utterance.

In addition, we also allow users to enable automatic re-
activation in JustSpeak preferences. Once enabled, Just-
Speak will be automatically activated to take user input
after the previous stack of voice commands are all exe-
cuted. So that users are able to seamless navigate differ-
ent applications with voice commands hands-freely. To
save battery power, JustSpeak is turned off after 5 sec-
onds if it does not detect any voice.

Discussion
As discussed above, we expect that all Android users
would benefit from the convenient voice control offered

Figure 4. JustSpeak can save interaction time to complete
a sequence of touch tasks for Android power users.

by JustSpeak, therefore we have released it on Google
Play Store for free as a beta test version2. We did not
perform formal user studies or experiments because like
other voice recognition based works, the performance of
JustSpeak largely depends on the performance of ASR
service which is affected by many factors. Experiments
are difficult to control and essentially evaluating the ASR
service which is not the focus of JustSpeak, our hope is to
collect user feedback and suggestions in the real world
through channels like Play Store comments and email
lists3. Since the first beta release of JustSpeak in October
2013, we have had hundreds of users. They have given
us many meaningful suggestions, the overall feedback is
positive among users, one of them posted appraisal that
“JustSpeak is the beginning of a fine personal assistant
product” and he is “anxious to see how it progresses”.

As an accessibly service, JustSpeak is dependent on the
labeling of on-screen controls like other services such as
TalkBack. Unfortunately, application developers often
assign lower priority to accessibility than to other fea-
tures and then simply forget providing alternative text
or content descriptions to visual interface elements such
as images or icons, or rush the task roughly in the end.
Their carelessness often causes issues and obstacles for
users of screen readers and other accessibility services.
We believe that by designing and promoting JustSpeak
and other services that benefit larger user groups, we can
make application developers more aware of accessibility
needs.

2Download JustSpeak,
https://play.google.com/store/apps/details?id=
com.googlecode.eyesfree.justspeak
3JustSpeak email threads,
https://groups.google.com/forum/#!searchin/eyes-
free/justspeak/

https://play.google.com/store/apps/details?id=com.googlecode.eyesfree.justspeak
https://play.google.com/store/apps/details?id=com.googlecode.eyesfree.justspeak
https://groups.google.com/forum/#!searchin/eyes-free/justspeak/
https://groups.google.com/forum/#!searchin/eyes-free/justspeak/

Although JustSpeak is implemented on Android, simi-
lar designs can be easily applied on other platforms as
well. The essential system support required is a dele-
gate layer between system and application levels which
plays the same role that accessibility APIs plays in Just-
Speak. With permissions granted by users, this layer
has to be capable of invoking interface manipulation and
other system functions requested by applications. It also
has to be able to act as an agent that monitors interface
contents and events and passes necessary information to
registered applications. For operating systems on which
this layer is present or can be built, the same three mod-
ules architecture can be used to create a similar universal
voice control system.

FUTURE WORK
Given the feedback we received from our users, we have
updated JustSpeak several times to add new features and
fix issues. We plan to continue listening to our users
and observing their voice control behaviors. In addition
to maintaining and improving JustSpeak to increase its
usability, we would like to reach out to more users by
adding more language supports as well.

We are also exploring other techniques to activate Just-
Speak, most recently some mobile devices have been
equipped with always-listening hot words recognition,
for example, on Motorola X and Nexus 5, users can
always launch Google voice search by speaking “OK,
Google”. We are looking into the possibility of using
same technology in JustSpeak to enable real voice-only
interaction experience.

CONCLUSION
In this paper, we have presented the system designs and
use cases of JustSpeak, a universal voice control assistant
on Android operating system. The contributions of Just-
Speak are twofold. First, it is the first voice control ap-
plication that provides enhancements to all applications
running on a mobile system by synthesizing commands
set from on-screen context. Secondly, it supports chain-
ing of multiple commands in the same utterance which
enables more natural and seamless interaction experi-
ence. As an application released to public, JustSpeak
can benefit large number of users with universal eyes-
free and hands-free voice control of their mobile devices.
User feedback shows JustSpeak is welcomed by real world
users. Its framework may help to shape future voice con-
trol devices.

ACKNOWLEDGMENTS
This work was supported by National Science Founda-
tion Awards #IIS-1149709 and #IIS-1116051, and by
Google.

REFERENCES
1. Apple Inc. VoiceOver.

http://www.apple.com/accessibility

2. Apple Inc. Siri. http://www.apple.com/ios/siri/

3. Bigham, Jeffrey P., Craig M. Prince, and Richard E.
Ladner. WebAnywhere: a screen reader on-the-go. In
Proceedings of the 2008 international
cross-disciplinary conference on Web accessibility
(W4A), pp. 73-82. ACM, 2008.

4. Google Inc. Google Now. https://support.google.com
/websearch/answer/2842392?hl=en

5. Google Inc. YouTube. http://www.youtube.com

6. Google Open Source Project. TalkBack: An Open
Source Screenreader For Android. http://google-
opensource.blogspot.com/2009/10/talkback-open-
source-screenreader-for.html

7. JAWS Screen Reading Software.
http://www.freedomscientific.com/products/fs/jaws-
product-page.asp

8. Kyle Alspach. Nuance: ’Influx’ of Artificial
Intelligence Taking Voice Recognition to Next Level.
Boston Business Journal, October 2013.

9. Lamere Paul, Philip Kwok, Evandro Gouvea,
Bhiksha Raj, Rita Singh, William Walker, Manfred
Warmuth, and Peter Wolf. The CMU SPHINX-4
speech recognition system. In IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP
2003), Hong Kong, pp. 2-5. 2003.

10. Lei Xin, Andrew Senior, Alexander Gruenstein, and
Jeffrey Sorensen. Accurate and Compact Large
Vocabulary Speech Recognition on Mobile Devices.
INTERSPEECH, 2013.

11. Mackenzie, Ian Scott. Fitts’ law as a performance
model in human-computer interaction. (1992).

12. McKiel Jr, Frank A. Method and system for
enabling a blind computer user to locate icons in a
graphical user interface. U.S. Patent 5,287,102,
issued February 15, 1994.

13. Povey Daniel, Arnab Ghoshal, Gilles Boulianne,
Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann et al. The kaldi speech
recognition toolkit. In IEEE 2011 workshop on
automatic speech recognition and understanding.
2011.

14. Rabiner, Lawrence R. A tutorial on hidden Markov
models and selected applications in speech
recognition. In Proceedings of the IEEE 77.2 (1989):
257-286.

15. Raman T.V., Charles L. Chen, Tim Credo.
Leveraging Android accessibility APIs to create an
accessible experience. Google I/O, May 2011.

16. Voice Command Device.
http://en.wikipedia.org/wiki/Voice command device

http://www.apple.com/accessibility
http://www.apple.com/ios/siri/
https://support.google.com/websearch/answer/2842392?hl=en
https://support.google.com/websearch/answer/2842392?hl=en
http://www.youtube.com
http://google-opensource.blogspot.com/2009/10/talkback-open-source-screenreader-for.html
http://google-opensource.blogspot.com/2009/10/talkback-open-source-screenreader-for.html
http://google-opensource.blogspot.com/2009/10/talkback-open-source-screenreader-for.html
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://en.wikipedia.org/wiki/Voice_command_device

	Introduction
	Related Work
	Non-visual Interaction
	Speech Recognition Services
	Voice Control Systems
	Android Accessibility APIs

	JustSpeak
	System Description
	Speech Recognition
	Utterance Parsing
	Commands Execution
	Chaining of Commands

	Use Cases and Discussion
	For Blind Users
	For Sighted Users
	For Android Power Users
	Discussion

	Future work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

