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ABSTRACT
Networks are characterized by nodes and edges. While there
has been a spate of recent work on estimating the number
of nodes in a network, the edge-estimation question appears
to be largely unaddressed. In this work we consider the
problem of estimating the average degree of a large network
using efficient random sampling, where the number of nodes
is not known to the algorithm. We propose a new estima-
tor for this problem that relies on access to node samples
under a prescribed distribution. Next, we show how to effi-
ciently realize this ideal estimator in a random walk setting.
Our estimator has a natural and simple implementation us-
ing random walks; we bound its performance in terms of
the mixing time of the underlying graph. We then show
that our estimators are both provably and practically better
than many natural estimators for the problem. Our work
contrasts with existing theoretical work on estimating aver-
age degree, which assume that a uniform random sample of
nodes is available and the number of nodes is known.

Categories and Subject Descriptors
F.2.2 [Theory of Computing]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems; G.2.2 [Mathematics of Computing]: Graph The-
ory—Graph Algorithms; G.3 [Mathematics of Comput-
ing]: Probability and Statistics—Probabilistic Algorithms

Keywords
Graph sampling; Random walks; Average degree

1. INTRODUCTION
Estimating the size of an unknown population is a clas-

sical problem in statistics. This problem arises in a variety
of fields—from estimating the number of German tanks in
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World War II to estimating animal population sizes—and
has been studied for the past many decades. Several well-
known statistical methods such as mark-and-capture, the
Lincoln–Peterson estimator, the Chapman index, have been
developed for this problem. In the last few years, such prob-
lems have also been actively considered in the World Wide
Web setting. Typical problems studied in this context in-
clude estimating the size of the web, estimating the size of a
web index, estimating certain online user populations, and
estimating the parameters of online social networks.

In this work our focus is on estimating the key parameters
of large networks. At a high-level, the motivation is clear:
to understand networks in general, and in case of social net-
works, to gain business insights and competitive advantage.
As usual, we assume the network is not available to us in its
entirety. Instead, it can only be accessed by the following
interface: one can query a node and obtain all its (publicly
visible) neighbors. This interface is quite natural and is sup-
ported by the APIs of many online networks. Queries to the
network are expensive in general (e.g., APIs are usually rate-
limited) and therefore, any estimation method has to make
only a small number of network access queries. In addition,
the estimation method also cannot assume that it can access
a uniformly random network node since generating random
network nodes is a hard problem by itself!

There has been a spate of work on estimating the num-
ber of nodes in a network. Most of the algorithms work
by using the “birthday paradox” to count collisions: the ex-
pected number of collisions in r samples from a universe of
(unknown) size n is roughly r2/n. In fact, it is easy to ob-
tain the number of nodes in a social network; in most cases,
Wikipedia has a reliable (and an almost up-to-date) answer.
However, the number of edges—hence, the average degree—
seems less reliably available for many networks.∗ This is
even more so if each edge has a type, e.g., friend, family,
coworker, etc. Our goal in this work is to develop algorithms
to efficiently estimate the average degree of a network.

One easy way to solve our problem is to estimate the num-
ber n of nodes and the number m of edges separately and
then combine them to yield an estimate for the average de-
gree. However, this method is highly inefficient since we
require roughly O(

√
n) and O(

√
m) samples if done naively;

under some assumptions, these are tight bounds. These fac-
tors along with the others demand four desirable properties

∗In fact, we became interested in the average degree prob-
lem when one of our friends from a social networking com-
pany refused to divulge the number of edges, terming it pro-
prietary and not easily revealed!
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of a good sampling algorithm for estimating the average de-
gree. The algorithm should:

(i) not need a uniform sample of nodes; as argued before,
a uniform sample of nodes can be expensive and in some
case, impossible to procure.

(ii) not assume that it knows the number of nodes in the
network, since estimating the latter is a task in itself, often
requiring a lot of samples from the network.

(iii) be conducive to be realized in practical and effective
ways of accessing the graph such as by doing a random walk.

(iv) use asymptotically fewer number of samples than that
required for separately estimating the number of edges and
the number of nodes.

Our results. In this paper we obtain a highly efficient es-
timator for the average degree. This estimator uses roughly
O(logU · log logU) samples, where U is an upper bound on
the maximum degree of the graph (typically, |U | � n). This
is much lower than the sample complexity of some obvious
methods. For example, sampling a few nodes and outputting
the average of their degrees needs Θ(

√
n) samples.

We describe two different estimators, namely, Smooth and
Guess&Smooth. The estimator Smooth assumes a crude
constant-factor approximation to the average degree and
outputs an arbitrary approximation to the average degree.
This estimator can be interpreted as doing a smoothed ran-
dom walk on a graph, where at each step, a constant number
of self-loops are added to the walk; the number of self-loops
will depend on the crude average degree estimate. The es-
timator Guess&Smooth works by successively guessing es-
timates of the average degree and returning an estimate
if it “looks right” in a statistical sense. The purpose of
Guess&Smooth is to quickly create a constant factor approxi-
mation to the average degree that Smooth can then use. The
final (theoretical) estimator Combined uses a combination of
these two. We show several properties of our estimators,
including their sample complexity and their bias. Note that
while estimators Guess&Smooth and Combined are necessary
to show the logarithmic sample size guarantees, in case an
approximate estimate of average degree is readily available
(e.g. if average degree is small, as in most real networks),
the estimator Smooth suffices by itself.

We then conduct extensive experiments on four publicly
available networks. We compare our estimators against sev-
eral baselines, including ones based on previous work and
ones based on collisions. We show that these new estima-
tors outperform other estimators on all datasets.

2. RELATED WORK
The main topics related to this paper are the following:

the theoretical work on estimating the average degree of a
graph, the large body of work on estimating the number of
nodes in a graph, and the mostly heuristic work on estimat-
ing graph parameters including the number of edges.

The problem of estimating the average degree of a graph
was first addressed by Feige [7]. He used uniform sampling of
the nodes to obtain a constant-factor approximation to the
degree; the main point of this result is the use of a careful
analysis that precludes the linear dependence of sample size
on n, or on the maximum degree of the graph. Goldreich
and Ron [9] presented a more involved estimator but with
a simpler proof. They also show how to extend this estima-
tor to achieve arbitrary approximations, provided they can

access a random neighbor of each node. These estimators
perform very well (and are in a sense optimal) when nodes
can be sampled uniformly at random. When such a sam-
pling is not feasible or is expensive, they are less effective.
We use these estimators as baselines in our experiments.

There have been several recent papers on estimating the
size (i.e., the number of nodes) of social networks. Katzir,
Liberty, and Somekh [11] considered the size estimation prob-
lem. Their main idea was to use collisions in order to deter-
mine the size. We also consider collisions, but more of as a
baseline since any collision-based approach requires Ω(

√
n)

many samples, which as we show, is an overkill for average
degree estimation. Hardiman and Katzir [10] use collision
among neighbors for network size estimation and show that
it has a tighter confidence interval than a simple node colli-
sion estimator. They also consider the problem of estimat-
ing the clustering coefficients. Ye and Wu [20] also consider
the social network size estimation problem; they assume the
ability to uniformly sample a node. Gjoka et al. [8] modified
the simple random walk to induce the uniform distribution
on nodes as the stationary distribution. Such a method can
be used to sample the nodes uniformly and hence estimate
the network size. However, it is unclear if the mixing time of
the modified random walk would be small, even if the orig-
inal graph has a small mixing time. Cooper, Radzik, and
Siantos [4] also used random walk methods for estimating
network parameters, but they go beyond collisions by actu-
ally using the return times for estimation. However, their
sample complexity is still bounded by that of collisions.

While many of the above techniques can be extended to
estimating the number of edges, there has been very little
work on estimating the average degree per se. Recently,
Kurant, Butts, and Markopoulou [12] addressed average de-
gree as part of their work on network size estimation. One of
their estimators is the same as that of [7]; however, they do
not provide any variance analysis of their estimators. There
have been some recent work on estimating personal network
size (i.e., degree) using techniques inspired by respondent-
driven sampling [15, 16, 17]; however, many of these results
are heuristic in nature and do not address the sample com-
plexity in a principled manner.

The general question of size estimation has been addressed
in the context of a web index. Several methods from the
theory of random walks and sampling have been used for
this purpose; see the work of Bharat and Broder [3] and the
works of Bar-Yossef and Gurevich [1, 2].

3. PRELIMINARIES
Let G = (V,E) be an undirected graph. Let n = |V |

be the number of nodes and m = |E| be the number of
edges. For a node v ∈ V , let Γ(v) = {w | (v, w) ∈ E}
be the set of its neighbors and let deg(v) = |Γ(v)| be its
degree. Let dmax = maxv∈V deg(v) be the maximum degree,
davg =

∑
v∈V deg(v)/n be the average degree, and dmin =

minv∈V deg(v) be the minimum degree.
We will focus on two models of accessing the graph. In

the first model, called the ideal model, we assume that we
can access the nodes of the graph according to a prescribed
sampling distribution. A distribution of particular inter-
est is the uniform distribution on the nodes, denoted Du.
We will also consider distributions that are proportional to
the degrees of the node. Let Dd,c denote the distribution
where the node v is chosen with probability proportional to
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deg(v) + c, where c is some fixed quantity. For simplicity,
we denote Dd = Dd,0. We will use X ∼ D to denote that X
is chosen according to the distribution D.

While the ideal model is a clean abstraction to express
various algorithms and bounds, it is very expensive in prac-
tice and in some cases, may not be possible at all. Therefore,
for practical purposes, we focus on a second model, called
the random walk model, where we assume that the graph
can be accessed by performing a random walk. Note that a
uniform random walk will generate samples according to Dd.
By adding c self-loops to each node, can generate samples
according to Dd,c; we call this the smoothed random walk.
Note that in either case, these samples are not independent.
Also note that the smoothed random walk is different from
the usual lazy random walk [13]. In a lazy random walk,
each self-loop acquires a constant fraction of the transition
probability at each node; thus it does not alter the original
stationary distribution.

In both ideal and random walk models, we will focus on
estimating davg of a graph to within (1 ± ε) accuracy, with
probability at least 1 − δ. Our bounds will be expressed in
terms of the accuracy parameter ε and the confidence pa-
rameter δ, in addition to the parameters of the graph. For
simplicity, unless stated otherwise, we will drop the depen-
dence of the sample complexity on δ, which will typically be
log 1/δ, achieved by running the algorithm this many times
and taking the median value to boost the confidence. Given
a good approximation of davg and n, it is straightforward to
estimate m, the number of edges in the graph.

We will use the following concentration inequalities:

Theorem 1 (Hoeffding’s inequality). [6] Let X1, . . .,
Xr be independent random variables with |Xi| ≤ 1 for all i.
Set µ =

∑r
i=1 E[Xi]. Then, for all t > 0, we have

Pr

[∣∣∣∣∣
r∑
i=1

Xi − µ

∣∣∣∣∣ > t

]
≤ 2 exp

(
−2t2

r

)
.

Theorem 2 (Bernstein’s inequality). [6] Let X1, . . .,
Xr be independent random variables with |Xi−E[Xi]| ≤M
for all i. Set µ =

∑r
i=1 E[Xi]. Then, for all t > 0, we have

Pr

[∣∣∣∣∣
r∑
i=1

Xi − µ

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2/2∑r

i=1 var[X2
i ] +Mt/3

)
.

4. ESTIMATION IN THE IDEAL MODEL
First we present our average degree estimator. For ease of

exposition, we describe it in the ideal model, i.e., we assume
that we can sample the nodes of the graph according to a
pre-specified distribution. We also present two other families
of estimators: the first based on a uniform sampling of nodes
and the second based on counting collisions.

4.1 Our estimators
Our estimators will sample nodes using Dd,c for some

specified value c. Even though such a sampling looks con-
trived in the ideal model, as we will see later, it is very nat-
ural in a random walk model. Furthermore, our estimators
also do not need to know the number n of nodes.

A priori, it is not obvious that estimating average degree is
a much easier problem than estimating the number of nodes
or edges. In fact, depending on the sampling model, it is
possible to reduce the problem of estimating average degree

to one of estimating the number of nodes to within a con-
stant factor. Feige’s [7] lower bound shows, under uniform
sampling alone, with o(n) samples cannot hope to do bet-
ter than a 2-approximation to estimate the average degree;
this is true even if we assume the number of nodes to be
known—a star with n nodes is a simple example. On the
other hand, if sampling proportional to degrees is the only
sampling method available to the algorithm, it become hard
to estimate the number of nodes that have low degree. As
an example, consider a graph that has a clique of size n/4
and other 3n/4 nodes of degree 1 each—using o(n) degree
proportional samples, we will not see a node of degree 1.

Our main intuition is to show that using a sampling distri-
bution Dd,c that is a combination of the above two schemes,
uniform and degree proportional, we can do exponentially
better in theory, and also in practice.

Informally, our first estimator Guess&Smooth works by
successively guessing estimates of the average degree and
returning an estimate if it “looks right,” i.e., if the number
of nodes in the sample whose degree is more than the current
estimate is a constant fraction of the sample itself. As we
will show in Section 5.4 later, Guess&Smooth is able to give
the estimate of average degree to a small constant factor.

Algorithm 1 Guess&Smooth(G,L,U, δ)

Input: Graph G, lower and upper bounds L and U for davg,
probability of failure δ > 0
ε0 ← 1/12
for c ∈ L · {1, 2, 22, . . . , U/L} do
N ← 0
for r = log((2/δ) log2(U/L))

2ε20
steps do

v ∼ Dd,c // sample with replacement
if deg(v) ≤ c then
N ← N + 1

if N/r ≥ 1/2− ε0 then
return c

return U

We next present another estimator Smooth, which as-
sumes that a crude estimate of the average degree is avail-
able, and outputs a more accurate estimate. In the follow-
ing, the value c can be thought of as a crude estimate of the
degree. The reason we present this alternate estimator are
two-fold: it makes our analysis easier to describe and this
simpler version works quite well in practice.

Algorithm 2 Smooth(G, r, c)

Input: Graph G, sample size r, c > 0
S ← ∅
for r steps do
v ∼ Dd,c // sample with replacement
S ← S ∪ {v}

return (
∑
u∈S

deg(u)
deg(u)+c

)/(
∑
u∈S

1
deg(u)+c

)

Finally, we give a third, combined, estimator that is capa-
ble of efficiently estimating the average degree with arbitrary
precision without the assumption that a crude estimate is al-
ready available. This estimator essentially functions by first
obtaining a crude estimate using Guess&Smooth, which is
then refined using Smooth.

The analysis of our estimators and some of their statistical
properties will be presented in Section 5.
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Algorithm 3 Combined(G,L,U, ε, δ)

Input: Graph G, lower and upper bounds L and U for davg,
accuracy 0 < ε ≤ 1/2, probability of failure δ > 0

d̃← Guess&Smooth(G,L,U, δ/2)

r̃ ← 36 log(8/δ)

ε2

return Smooth(G, r̃, d̃)

4.2 Other sampling-based estimators
Here we present three other sampling-based estimators in

the ideal model. All these estimators obtain the degree of a
chosen node and use this information (sometimes, in less ob-
vious ways) in order to estimate the average degree. All the
estimators assume that n is known to the algorithm. These
estimators are based on prior work (some not necessarily de-
signed for the average degree) and will serve as baselines for
experimental purposes.

The first estimator is straightforward. It is based on sam-
pling nodes uniformly at random, i.e., according to Du. Let
x1, . . . , xr be the node samples. The estimator is given by

d̂Feige =
1

r

r∑
i=1

deg(xi).

Even though one can prove a weak bound on this estimator
that will depend on dmax, a much stronger sample complex-
ity bound was proved by Feige [7].

Theorem 3. [7] If r = O(
√
n/L/ε), where L is a lower

bound on davg, then d̂Feige is a (2 + ε)-approximation to davg.

Our second estimator is an improvement obtained by Gol-
dreich and Ron [9] to d̂Feige. The assumptions are the same

as for d̂Feige except that an additional minor assumption is
made: for any node v, we can obtain one of its random
neighbors. This estimator (called d̂GR) is a bit more in-
volved: roughly, the idea is to bucket the nodes by their
degrees into logarithmically many buckets and then discards
buckets that are small; the latter step is done to reduce the
variance. Using the nodes in the remaining buckets and ob-
taining a random neighbor for each such node, an estimate
for the average degree is output. The readers are referred
to [9] for more details.

Theorem 4. [9] If r = O(
√
n/L ·poly(logn, 1/ε)), where

L is a known lower bound on davg, then d̂GR is a (1 + ε)-
approximation to davg.

Our third estimator is based on the work on estimating
sums of n variables when we can sample variables propor-
tional to their values (i.e., weighted sampling). Motwani,
Panigrahy, and Xu [18] obtained an algorithm that uses a
clever combination of weighted sampling and uniform sam-
pling to approximate the sum; their algorithm uses an opti-
mal bound of O(n1/3) samples. The main idea in their algo-
rithm is to bucket the variables depending on their weight
and use weighted sampling to estimate the contribution of
the heavy buckets and uniform sampling to estimate the con-
tribution of the light buckets; the readers are referred to [18]
for the precise details. Note that in our ideal setting, the
weighted sampling is given by Dd and the uniform sampling
given by Du and hence we can apply their algorithm to es-

timate m and hence davg (since we assumed n is known to

the algorithm); we call this estimate d̂MPX.

Theorem 5. [18] If r = O(n1/3/ε9/2·poly(logn, log 1/ε)),

then d̂MPX is a (1 + ε)-approximation to davg.

4.3 Collision-based estimators
Here we present two estimators that utilize the collisions

into account. Informally, collision-based estimators are based
on the “birthday paradox” and work by counting the num-
ber of collisions: with r independent uniform samples, the
expected number of collisions is roughly r2/n. Hence, the
number of samples needed is roughly the square root of the
quantity to be estimated. Such an idea was used to esti-
mate the number of nodes in a network [11]; we show how
to estimate the average degree using similar ideas. These
estimators will serve as baselines for our purposes.

The first estimator is based on counting node collisions:
we assume the ideal model where nodes are sampled with
probability proportional to degree, i.e., according to Dd,0

and we assume that n is known. Let x1, . . . , xr be the nodes
sampled. Let Xu

ij be the indicator variable for the event
“ith and the jth nodes are both node u”, i.e., “xi = u = xj .”
Then, the estimator for average degree is

d̂nCol =
r2

2n
∑
j>iX

u
ij/deg(u)

.

By a Hoeffding bound, the following is immediate.

Theorem 6. If r = O(
√
ndavg/dmin/ε

2), then d̂nCol is a
(1 + ε)-approximation to davg.

The second estimator is based on counting edge collisions;
we assume the ideal model where edges are sampled uni-
formly at random and the total number of nodes n is known.
Let e1, . . . , er be the edges sampled. Let Yij be the indica-
tor variable for the event “ei = ej”. Then, the estimator for
average degree is

d̂eCol =
r2

2n
∑
j>i Yij

.

By a Hoeffding bound, the following is immediate.

Theorem 7. If r = O(
√
m/ε2), then d̂eCol is a (1 + ε)-

approximation to davg.

5. PROPERTIES OF OUR ESTIMATORS
In this section we prove the correctness of our estima-

tors Smooth and Guess&Smooth. We first show the estima-
tor Smooth, when provided with a “reasonable” value for c,
one that is close to the average degree davg itself, does an
excellent job of estimating davg to within a very accurate
multiplicative factor. Theorem 8 characterizes the number
of samples from Dd,c needed to obtain a (1± ε) multiplica-
tive approximate of davg. Proving concentration bounds on
the Smooth estimator is nontrivial since it is a ratio of two
random variables. Hence the result of Theorem 8 does not
provide a complete trade off between the number of sam-
ples used and the bias (or variance) of the Smooth estima-
tor. Theorem 11 uses an alternate method, based on ratio
estimators, to bound the bias and variance of the Smooth
estimator—this result is more instructive when the number
of samples used is smaller than what Theorem 8 requires.
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5.1 Sample complexity of Smooth

We first show that if we already have a reasonable approx-
imation of davg, then we need to use only a constant number
of samples from Dd,c in order to get a (1± ε)-approximation
to davg. Since the Smooth estimator is a ratio of two random
variables, proving that it gives a (1± ε)-approximation with
high probability requires more care.

Theorem 8. Let 0 < ε ≤ 1/2, δ ∈ (0, 1), and α > 0 be

constants. Let f = dmin
davg

be the ratio of minimum to average

degree in this graph. If Algorithm Smooth is provided with
the value c = αdavg and the target number of samples r =

max
(

1 + α, 1+α
f+α

)
3 log(4/δ)

ε2
, then, with probability 1− δ, the

estimate d̂ returned satisfies (1−2ε)davg ≤ d̂ ≤ (1 + 4ε)davg.

In particular, r = max
(
α, 1

α

) 6 log(4/δ)

ε2
samples are sufficient

to get this approximation with probability 1− δ.

Proof. Let D = ndavg denote the total degree of graph
G. Let D′ = D + nc. Define N =

∑
s∈[1,r] Ns, where Ns is

a random variable that takes on value du
du+c

with probabil-

ity du+c
D′ . Also define Q =

∑
s∈[1,r] Qs where Qs takes the

value 1
du+c

with probability du+c
D′ . Recall that the estimator

Smooth is d̂ = N
Q

and davg = E[N ]
E[Q]

. We will show that N

and Q are individually concentrated, the concentration of d̂
will follow from this. We will achieve the former by using
Bernstein’s inequality, stated in Theorem 2.

We first start with analyzing N . The Ns are i.i.d. random
variables, with expectation E[Ns] = D

D′ and second moment

E(N2
s ) =

∑
u

d2
u

(du + c)2

du + c

D′
≤ D

D′
. (1)

Also, the maximum deviation of each Ns can be bounded as

|Ns − E[Ns]| = max
u

∣∣∣∣ du
du + c

− D

D′

∣∣∣∣ ≤ 1,

as both du
du+c

, D
D′ ∈ (0, 1). Since N is the sum of r i.i.d. ran-

dom variables, we have that E[N ] = rD
D′ and var(N) =

r · var(Ns) ≤ rE[N2
s ] ≤ r D

D′ . Plugging these values into

Theorem 2, and choosing t = εrD
D′ , it follows that

Pr

[
|N − E[N ]| > εrD

D′

]
≤ 2 exp

(
−

0.5( εrD
D′ )2

r D
D′ + εrD

3D′

)
.

Choosing r = 3D′

ε2D
log(4/δ) is thus enough for the above

probability to be less than δ/2.
Similarly, in order to bound Q, we first start with the

Qs i.i.d. random variables. The expectation is E[Qs] = n
D′

while the second moment satisfies

E[Q2
s] =

∑
u

1

(du + c)2

du + c

D′
≤ n

D′(dmin + c)
. (2)

Thus, E[Q] = rn
D′ and the variance is at most

var(Q) = r · var(Qs) ≤ rE[Q2
s] ≤

rn

D′(dmin + c)
.

Since E[Qs] = n/D′ = 1/(davg + c), it holds that

|Qs − E[Qs]| ≤ max
u

∣∣∣∣ 1

du + c
− 1

davg + c

∣∣∣∣ ≤ 1

dmin + c
.

Thus, again using Theorem 2, this time for the Qs random
variables, and setting t = εrn

D′ , we have that

Pr
[
|Q− E[Q]| > εrn

D′

]
≤ 2 exp

(
−

0.5( εrn
D′ )2

rn
D′(dmin+c)

+ εrn
3D′(dmin+c)

)
.

Again, choosing r = 3D′

ε2n(dmin+c)
log(4/δ) is sufficient to set

the above probability to be less than δ/2.

Combining the two results, with r = max(D
′

D
, D′

n(dmin+c)
)

3 log 4
δ

ε2
,

both N and Q are close to their corresponding expectations
with probability 1− δ. Hence the estimate d̂ satisfies

1− ε
1 + ε

E[N ]

E[Q]
≤ d̂ ≤ 1 + ε

1− ε
E[N ]

E[Q]
.

Since davg = E[N ]
E[Q]

and ε ≤ 1/2, we have that d̂ is a 1 ± 4ε

approximation to davg.
In order to bound the number of samples r, note that

choosing c = αdavg sets D′ = D(1 + α). It is sufficient then

to set r = max
(

1 + α, 1+α
f+α

)
3 log(4/δ)

ε2
.

An interesting case for the sample size guarantee occurs
when the average degree davg is small.

Remark 9. Consider setting c = 1 in Theorem 8, i.e., set-
ting α = 1

davg
. Then it is sufficient to draw

r = max

(
1 +

1

davg
, 1 + davg

)
3 log(4/δ)

ε2

samples from the distribution Dd,c in order to estimate davg.
In virtually all real world networks davg = Θ(1), and hence
the number of samples required in practice is a modest r =

Θ( log(1/δ)

ε2
).

Relation to existing lower bounds. The result of The-

orem 8 uses O( log(1/δ)

ε2
) samples from the Dd,c model if c =

Θ(davg). It does not make any assumption on the type of
network or the degree distribution. Given this strong bound,
it is useful to contrast it with the existing theoretical lower
bounds on estimating average degree. Feige [7] and Goldre-
ich and Ron [9] show a lower bound of Ω(

√
n) to approxi-

mate average degree to any constant factor in the uniform
sampling model, even when the total number of nodes n is
known. We use samples from Dd,c instead, which is a strictly
stronger model (but efficiently implementable in practice, as
we show in Section 5.3). Motwani, Panigrahy, and Xu [18]

present an Ω(n1/3) lower bound on the number of samples
for estimating the sum (and hence average, since they as-
sume n is known) of n elements using a general weighted
sampling scheme. In their model elements can be sampled
with probability proportional to f(x) where x is the weight
of the element (which is the degree in our case) and f(·) is
any function. However, their lower bound specifically applies
only to the case when the function f satisfies the condition
f(1)
f(0)

= Θ(1). This condition is violated for the sampling

probabilities generated by our Dd,Θ(davg) distribution.

5.2 Bias and variance of Smooth

In this section we show that the bias and variance of the
Smooth estimator is small provided that parameter c is not
far from the true average degree davg. We will use the follow-
ing result bounding the bias and variance of ratio estimators.
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Theorem 10 (Bar-Yossef, Gurevich [2]). Suppose N

and Q are two estimators such that E[N ]
E[Q]

= I and that

var(N) and var(Q) are finite and Q > 0. Let N1, . . . , Nr
be independent copies of N and Q1, . . . , Qr be independent
copies of Q. Define N(r) =

∑
iNi, Q(r) =

∑
iQi, and

REr = N(r)
Q(r)

. Then, the bias of REr is

E[REr]− I =
1

r

(
I

var(Q)

E2[Q]
+

cov(N,Q)

E2[Q]

)
+ o(1/r),

and the variance of REr is

var(REr) =
I2

r

(
var(N)

E2[N ]
+

var(Q)

E2[Q]
− cov(N,Q)

E[N ]E[Q]

)
+ o(1/r).

Theorem 11. For the estimator Smooth, using r sam-
ples, and using c = αdavg, the bias of the estimator Smooth

is at most
α+ 1/α

r
davg + o(1/r) and its variance does not

exceed
1 + α+ 1/α

r
d2

avg + o(1/r).

Proof. We use the same notation as, and calculations
from Theorem 8. In particular, for a specific s, recall that
E[Ns] = D/D′ and E[Qs] = n/D′, where D = ndavg and
D′ = n(davg + c). Now observe that Qs ≥ 0 and 0 ≤
Ns ≤ 1 and hence E[NsQs] ≤ E[Qs] holds. By defini-
tion cov(Ns, Qs) = E[NsQs] − E[Ns]E[Qs], and therefore
it follows that

cov(Ns, Qs)

E2[Qs]
≤ E[Qs]− E[Ns]E[Qs]

E2[Qs]
=

1−D/D′

n/D′
= c.

From inequality (2) we know that E[Q2
s] ≤ n

D′(dmin+c)
and

thus

var(Qs)

E2[Qs]
≤

n
D′(dmin+c)

(n/D′)2
− 1 =

davg + c

dmin + c
− 1 ≤ davg

c
. (3)

Substituting the bounds above into Theorem 10, we obtain

E

[
N(r)

Q(r)

]
− davg − o(1/r) ≤

1

r

(
d2

avg

c
+ c

)
=

1

r
davg

(
1

α
+ α

)
,

establishing our first claim.
From inequality (1) we also know that E[N2

s ] ≤ D/D′ and
therefore we have that

var(Ns)

E2[Ns]
=

E[N2
s ]

E2[Ns]
− 1 ≤ D′

D
− 1 =

c

davg
.

Lastly, −cov(Ns, Qs) = E[Ns]E[Qs]−E[NsQs] ≤ E[Ns]E[Qs]
as both Ns and Qs are non-negative. We conclude the proof
by combining the last two inequalities and inequality (3)
with Theorem 10 and observing that

var

(
N(r)

Q(r)

)
− o(1/r) ≤

d2
avg

r

(
c

davg
+
davg

c
+ 1

)
.

5.3 Random walk version of Smooth

In the ideal setting, we assume that we can sample from
the distribution Dd,c for any given c. In reality however, ob-
taining a sample from the set of nodes of a large network is
computationally expensive. On the other hand, if the social
network can be accessed through an API, it is often easier
to conduct a random walk on the network. In this section,
we show how to efficiently sample from the Dd,c distribution

by using a random walk on the original graph G. We will
assume that the graph G is connected. We show a different
random-walk than the Metropolis–Hastings walk [13] in or-
der to implement Dd,c as the stationary distribution on G.
We will bound the mixing time of this new random walk in
terms of the walk on the original graph.

Random walk for Smooth. Let A be the adjacency ma-
trix of the graph G and D be the diagonal matrix such that
Duu = du, the degree of node u. Let Ã = A + cI and
D̃ = D + cI. We first claim that P̃ = ÃD̃−1 is a transi-
tion matrix of a random walk whose stationary probability
is the distribution Dd,c. Furthermore, if the original tran-
sition matrix P = AD−1 is irreducible and aperiodic, so is
ÃD̃−1. Furthermore, as outlined in [2], since the number of

steps the random walk for P̃ stays at node is a geometric
random variable, we can easily simulate it by sampling from
the appropriate geometric distribution (without making any
more queries to G).

We conjecture that for the above random walk it is possi-
ble to bound the number of queries needed to reach ε close
to stationary distribution, in terms of the mixing time of
the original walk. For now, we show that this random walk
mixes fast if the original does so, and if c is small.

Lemma 12. If τ be the mixing time of the simple random
walk using P . Then, the mixing time of P̃ is bounded by

O
(

(1 + c
dmin

)2τ2 logn
)

.

Proof. Recall that conductance of a set is defined as
φ(S) = e(S,S̄)

d(S)
, where e(S, S̄) is the number of edges from

S to S̄, the complement of S, and d(S) is the total degree
of the set S. The conductance of the graph G, denoted by
say φ, is the minimum conductance over all sets S. The
following relation between conductance of G and the mixing
time τ is well-known (e.g., from [19])

Θ

(
1

φ

)
≤ τ ≤ Θ

(
φ−2 logn

)
.

Our strategy is to show that conductance of any set of nodes
in the graph G does not change by much, and hence the
mixing time does not either. Consider the graph G̃ whose
adjacency matrix is Ã defined above. The conductance φ̃(S)
of any set of nodes is

φ̃(S) =
e(S, S̄)

d(S) + c|S| ,

since in G̃, there are c self loops on every node. Since c|S| ≤
cd(S)
dmin

, we have that

φ̃(S) =
e(S, S̄)

d(S) + c|S| ≥
e(S, S̄)

d(S)(1 + c/dmin)
= φ(S)(1+

c

dmin
)−1.

where φ(S) is the conductance in the original graph G.
Hence, the above conductance bound on mixing time, if φ
and φ̃ are the conductances of G and G̃, and τ and τ̃ the

mixing times, then τ ≥ Θ( 1
φ

) whereas τ̃ ≤ Θ
(
φ̃−2 logn

)
.

Plugging in the relation between φ̃ ≥ φ(1 + c
dmin

)−1, we get

the above statement.

Sample complexity. In order to show concentration prop-
erties of the random walk based sampler of Smooth, we will
use the following result.
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Theorem 13 (Lezaud [14]). Let P be a transition ma-
trix of a irreducible and reversible Markov chain on a finite
set V , having a stationary distribution π. Let (P, π) be a
irreducible and reversible Markov chain on a finite set V .
Let f : V → < be such that Eπ[f ] = 0, ‖f‖∞ ≤ 1 and
0 < Eπ[f2] ≤ b2. Then, for any initial distribution q, any
positive integer r and all 0 < γ ≤ 1,

Pr
q

[
r−1

r∑
i=1

f(Xi) ≥ γ

]
≤ e−ε(P )/5Sq exp

(
− nγ2ε(P )

4b2(1 + h(5γ/b2))

)
,

where ε(P ) = 1 − λ1(P ), λ1(P ) being the second largest
eigenvalue of P , Sq = ‖q/π‖2 and

h(x) =
1

2
(
√

1 + x− (1− x/2)).

If γ � b2 and ε(P )� 1, the bound is

(1 + o(1))Sq exp

(
− rγ2ε(p)

4b2(1 + o(1))

)
.

Using the expectation and second moment calculations from
Theorem 8, we can derive the following result about the
random walk based Smooth estimator. The proof is omitted.

Corollary 14. Let ε(P̃ ) denote the gap between the first

and second eigenvalues of the transition matrix P̃ of the aug-
mented graph G̃. Suppose c = αdavg. If the random walk
is assumed to start from the stationary distribution itself,

then by using r = Θ
(

1

ε(P̃ )
max

(
α, 1

α

) log(1/δ)

ε2

)
samples, the

Smooth estimate is a (1±ε)-approximation of davg with prob-
ability 1− δ.

5.4 Sample complexity of Guess&Smooth

In this section we prove that Algorithm 1 (Guess&Smooth)

computes a constant factor approximation d̂. We begin with
showing that the probability of sampling a low degree node
in Dd,c is closely related to the ratio of c/davg.

Lemma 15. Let β > 0 and c = βdavg, then it holds that

β − 1

1 + β
≤ Pr
u∼Dd,c

[deg(u) ≤ c] ≤ 2β

1 + β
.

Proof. Observe that
∑

deg(u)≤c(deg(u) + c) ≤ n(c + c).

Therefore it holds that Pr [deg(u) ≤ c] ≤ 2nc
n(davg+c)

= 2β
1+β

.

Also note that from Markov’s inequality with the uniform
measure it follows that

|{u : deg(u) ≥ βdavg}| ≤ n/β.

Therefore
∑

deg(u)≤c(deg(u) + c) ≥ (n− n/β)c and we have

that Pr [deg(u) ≤ c] ≥ (n−n/β)c
n(davg+c)

= β−1
1+β

.

Theorem 16. For d̂ returned by Algorithm 1 (Guess&Smooth)

with probability at least 1−δ it holds that davg/3 ≤ d̂ < 6davg.

Proof. Let p(c) = Pr [deg(v) ≤ c]. From the Hoeffding
bound, Theorem 1, combined with the choice of r and the
union bound it follows that with probability at 1 − δ in all
log2(U/L) iterations it holds that

|N/r − p(c)| ≤ ε0. (4)

If c < davg/3, then from Equation (4) and from the r.h.s. of
Lemma 15 it follows that N/r ≤ p(c) + ε0 < 1/2 + ε0, i.e.,

Network n m davg

Skitter 1696415 11095298 13.1
DBLP 317080 1049866 6.62

LiveJournal 3997962 34681189 17.34
Orkut 3072441 117185083 76.28

Table 1: Description of datasets.

the algorithm never returns in these iterations. On the other
hand, if c ≥ 3davg, then from Equation (4) and from the
l.h.s. of Lemma 15 it follows that N/r ≥ p(c)−ε0 ≥ 1/2−ε0,
i.e., the algorithm always returns in these iterations. There-
fore the lowest d̂ the algorithm returns is davg/3 and in the
worst case it doubles c from slightly below 3davg to almost
6davg in the last iteration.

5.5 Sample complexity of Combined

The following theorem demonstrates that by bootstrap-
ping Algorithm 2, that requires a rough estimate of the av-
erage degree, with the constant factor approximation of Al-
gorithm 1, we are able to estimate davg with high precision
and few samples in any scenario.

Theorem 17. Let 0 < ε ≤ 1/2 and 0 < δ < 1 and

L ≤ davg ≤ U . Then the estimate d̂ returned by Algo-

rithm 3 (Combined) satisfies (1− 2ε)davg ≤ d̂ ≤ (1 + 4ε)davg

with probability at least 1 − δ. Furthermore, the number of

samples used is O
(

log(1/δ)

ε2
+ log(U

L
)
(
log( 1

δ
) + log log(U

L
)
))

.

Proof. From Theorem 16 it follows that davg/6 ≤ d̃ ≤
6davg holds with probability at least 1− δ/2. Assuming the
latter, from Theorem 8 and the choice of r̃ by Combined,
with probability at least 1− δ/2 we have that (1−2ε)davg ≤
d̂ = Smooth(G, r̃, d̃) ≤ (1 + 4ε)davg. Thus the first claim
follows from the union bound.

To count the total number of samples, observe that in

addition to the r̃ = O( log(1/δ)

ε2
) samples used by Smooth,

Guess&Smooth executes at most log2(U/L) iterations, each
with Θ(log(1/δ) + log log(U/L)) samples.

6. EXPERIMENTS
In this section we compare the performance of the dif-

ferent degree estimators empirically using four datasets of
undirected networks. All the datasets were obtained from
SNAP (http://snap.stanford.edu). Table 1 summarizes
the basic statistics of the datasets. While the datasets Live-
Journal and Orkut are explicit social networks, the dataset
DBLP is the co-authorship network between 3.1 million au-
thors of computer science research papers. Skitter, on
the other hand, represents an autonomous system (AS) net-
work, where the edges denote which AS exchanges traffic
with whom using the border gateway protocol.

Algorithms and metrics. We test the following baseline
algorithms in our experiments: Feige’s algorithm (d̂Feige) that
relies on uniform sampling, the variant of it by Goldreich and
Ron [9], denoted by d̂GR, the algorithm by Motwani, Pani-

grahy, and Xu [18] denoted by d̂MPX that utilizes n1/2 sam-
ples but has better behavior (than the theoretically best al-
gorithm in [18]) in terms of ε and is suggested as the one suit-
able for practical implementation. We also test two collision-
based estimators, referred to in Section 4. Finally, we also
examine the variants of our Smooth algorithms. Rather than
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run the guessing version Guess&Smooth, we run our Smooth
estimator using a small number of different values of the
parameter c. Since the degree of the networks examined
were small enough constants, we set c ∈ {0, 1, 5, 50} (c = 0
represents the usual random walk on the network).

We present two different set of plots characterizing the
performance of the estimators. The first is the normalized
mean absolute error (MAE), measured as |d̂ − davg|/davg.
For each sample size, we compute 100 different experiments,
and then compute the average mean absolute error, averaged
over these 100 experiments. In order to characterize the vari-
ability of the estimates, we also compute the 10% and 90%
estimates, normalized by the ground truth, for each sample
size, also empirically computed over these 100 experiments.

6.1 Results

Ideal setting. Our first experiments are in the ideal set-
ting, where we sample nodes from the corresponding dis-
tributions directly. Figure 1 presents the results for MAE
in this setting for four of the algorithms first, on each of
the four datasets. The names ideal.feige and ideal.gr

are self explanatory, ideal.sr.1 denotes the Smooth with
c = 1 and ideal.mpx the d̂MPX estimator. The first observa-
tion is that the number of samples required is indeed small.
In order to get average MAE of less than 0.1, it is enough
to work with number of samples as only 0.1% of the total
number of nodes. The maximum sample size used in all the
experiments was 2048, and the minimum (averaged) error
in each case drops to less than 2%. Beyond this sample size,
the algorithms become virtually indistinguishable. The al-
gorithms Smooth (denoted by ideal.sr.1), d̂Feige and d̂MPX

perform essentially similarly for the datasets DBLP, Live-
Journal, and Orkut, with possibly a very slight edge to
Smooth. The d̂GR algorithm performs worse than the oth-
ers for smaller sample sizes, but its performance improves
rapidly with same size. Note that the performance of d̂Feige is
indeed much better than what Theorem 3 predicts. Also, it
is indeed pleasantly surprising that d̂GR does perform reason-
ably accurately, since the algorithm relies on an exponential
degree bucketing scheme that seems tailored to theoretical
bounds, not practical implementations. The Smooth estima-
tor, with c = 1, is the best, with a clear edge over the others
in the Skitter dataset. This is possibly because of the
more heavy-tailed nature of the autonomous system degree
distribution, where a larger fraction of the total volume is
tied up in large degree nodes than in social networks, and so
sampling from the combined distribution Dd,c is beneficial.

The confidence intervals plots in Figure 2 have two lines
per algorithm, corresponding to the (normalized) 10% and
90% estimates over the multiple iterations. Again, the con-
fidence interval for Smooth is almost as tight, or strictly
tighter, than the intervals generated from the other algo-
rithms. The comparative advantage of Smooth is again best
observed in the Skitter dataset.

Random walk-based implementation. Next, in Fig-
ures 3 and 4 we observe the empirical behavior of the same
set of algorithms where the samples were taken from an ap-
propriate random walk. For uniform sampling, we used the
Metropolis–Hastings method with corresponding stationary
distribution. In order to sample from Dd,1, we used the walk
described in Section 5.3. In each case, the first 100 nodes
of the walk were discarded as a “burn-in” period, and were

not accounted for in the sampling cost. Since our aim is
to actually calibrate the performance against the number of
queries made to the graph, we added in samples from con-
secutive steps rather than choosing a node only after every
“mixing-time” intervals. This introduces higher correlation
among the samples, and is reflective of the setting that The-
orem 13 formulates. Using this setting, the Smooth algo-
rithm comes out as a more definitive winner in the MAE
error metric. The confidence intervals of the different al-
gorithms are more or less comparable, again with Smooth
being marginally better than the rest.

6.2 Comparison with collision-based algorithms
In Figure 5 we compare the collision based estimators

d̂eCol, d̂nCol, and d̂hit (described in Section 4), along with our
candidate Smooth. Note that these collision estimators are
really trying to estimate the number of edges, which is a
harder problem, and we assume that they all know n, the
number of nodes. Therefore, it is not a surprise that these
estimators are unsuitable for the task of estimating aver-
age degree, since, at the range of sample sizes that Smooth
already provides 1% error-rate, we rarely observe any colli-
sions among the samples.

6.3 Comparison among variants of Smooth

Finally, in the random walk setting we compare among 4
different variants of the Smooth algorithm, for c ∈ {0, 1, 5, 50}
in Figures 6 and 7. The performance of the Smooth variants,
both in terms of the normalized MAE, as well as the confi-
dence intervals, are more or less similar for for this range of
c. It is important to note that, as mentioned in Section 5,
c = 0 itself produces a good estimate. Note that there is a
inherent tension here between the mixing time of the walk,
and the appropriate value of c—increasing c to make the
stationary distribution closer to the Dd,Θ(davg) ideal distri-
bution might also potentially increases the mixing time, and
the resulting effect on the required number of samples for a
target accuracy is unclear. But based on the performances in
Figures 6 and 7, we suggest using Dd,c with a small constant
c as an practically viable algorithm with small mixing-time
and theoretically guaranteed accuracy.

7. CONCLUSIONS
In this paper we considered the natural problem of effi-

ciently estimating the average degree of a network. We ob-
tain estimators that provably use very few samples despite
producing an arbitrary approximation to the average degree,
outperforming other natural estimators for this problem.
The experimental results on large real-world social networks
confirm our theoretical findings. It will be interesting to see
if neighbor of neighbors can be used to improve the perfor-
mance further as was observed in social sampling [5]. It will
also be interesting to see whether for directed graphs the in
and out-degrees can be estimated using sampling distribu-
tions that are efficiently implementable by random walks.
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Figure 1: Normalized MAE in the ideal implementation of four algorithms for 1) Skitter 2) DBLP 3) Live-
Journal and 4) Orkut datasets. X-axis is sample size normalized by number of nodes. ideal.sr.1 is Smooth
with c = 1.
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Figure 2: 10% and 90% confidence intervals in the ideal implementation of four algorithms for 1) Skitter
2) DBLP 3) LiveJournal and 4) Orkut datasets. X-axis is sample size normalized by number of nodes.
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Figure 3: Normalized MAE in the random walk implementation of four algorithms for 1) Skitter 2) DBLP
3) LiveJournal and 4) Orkut datasets. X-axis is sample size normalized by number of nodes. rw.sr.1 is
Smooth with random walk with c = 1.
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Figure 4: 10% and 90% confidence intervals in the random walk implementation of four algorithms for
1) Skitter 2) DBLP 3) LiveJournal and 4) Orkut datasets. X-axis is sample size normalized by number of
nodes.
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Figure 5: Normalized MAE in the random walk implementation of four collision based algorithms for 1) Skit-

ter 2) DBLP 3) LiveJournal and 4) Orkut datasets. rw.ecol is d̂eCol, rw.ncol is d̂nCol and rw.hit is d̂hit. rw.sr.1

is Smooth with c = 1, using random walk.
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Figure 6: Normalized MAE in the random walk implementation of four Smooth variants for 1) Skitter 2) DBLP
3) LiveJournal and 4) Orkut datasets.
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Figure 7: 10% and 90% confidence intervals of four random walk based Smooth variants for 1) Skitter 2) DBLP
3) LiveJournal and 4) Orkut datasets.
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