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Introduction

● Me
○ ARM technology since 1987

■ ARM in UK and US
■ Bluewater Systems (NZ ARM/Linux Electronics)

○ Google Chrome OS (first ARM laptop)

● Some professional Interests
○ Great ARM devices
○ Open Source Software
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What is Chrome OS?
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Converging forces

The migration to the cloud The HTML 5 juggernaut
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Chromebook
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Integrated and streamlined

ChromebookPC
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Simplicity

Familiar UI

Same experience 
everywhere

Zero Maintenance

Forever new

"Rust" Proof

Seamless sharing
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Standard PC: Security as an afterthought
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Security for the internet age

Current Operating Systems

● Apps have the same privileges 
and power as you

Chrome OS

● Web apps and offline apps
● The OS doesn't trust any of them
● Keep them isolated and sandboxed
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Chrome OS' defense in depth

● Small list of known executables 
○ Signed and verified before each use

● Run in secured sandboxes
○ Chroot, Namespaces
○ Toolchain, Stack protection

● File system is locked down
○ Read-only root file system 
○ User data encryption

● Automatic updates for the entire OS
○ Nothing is ever perfect.
○ It's not the user's job to keep it secure.
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Why Verified Boot?

● Reduced risk of malware
● Keeps users safe
● Permits safe software updates in the field
● Known software on device

● Verified Boot does not mean the user needs to be locked out
○ E.g. See Chrome OS ‘dev mode’
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Requirements of Verified Boot

● Root of trust (static in our case)
● Every byte of code/data loaded is verified

○ Can use a sandbox where this is impractical
● Prior state must be fully validated
● Security holes plugged
● Upgradeable software
● Rollback protection
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Technology

● Hashing
● Public key cryptography
● Trusted Platform Module (TPM)
● Root of trust



Google Confidential and Proprietary

Hashing of binary images

● Reducing an image down to a very small data block (‘digest’)
● Two images can be considered:

○ Identical if their digests are the same
○ Different if their digests differ

● For a good hashing algorithm:
○ Changing just one bit in the image should completely change the 

digest
○ ‘Collision resistant’ - need to try sqrt(2^n) images
○ Infeasible to modify an image to obtain a certain digest

● Common hashing algorithms are:
○ SHA1 - 24 byte digest
○ SHA256 - 32 byte digest
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Public key cryptography

● Create a key pair to sign a hash, and later to verify its signature
○ One key is ‘private’ – used to sign images and kept secret
○ Other key is ‘public’ – widely broadcast without affecting security

● Two keys are mathematically related
○ Data encrypted by one can be decrypted by the other

● With the public key we can verify that a hash was signed by the 
associated private key

● Common public key algorithms are RSA and ECC
○ RSA 2048 bits is considered strong
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Trusted Platform Module (TPM)

● Security chip
○ Each device has a unique RSA private key
○ Can store keys, roll-back counters
○ Random number and key generation

● Commonly used on high-end laptops, or with a plug-in PCB
○ Typically I2C or LPC bus
○ Many ARM devices make use of TrustZone instead of a discrete TPM
○ Requires additional software

● TPM can check software and configuration at start-up
○ Hash each new chunk before using it
○ Pass the hash to the TPM for checking
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Root of trust

● Simple ‘static root of trust’
○ Initial code is assumed to be trusted
○ Boot ROM, U-Boot

● Can be stored in read-only memory
○ Or signed so that SoC can verify it

● Root stage holds keys for checking later stages
● From there we can load each stage of boot

○ Verify each as we go, using keys provided by the previous stage
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Verified boot in Chrome OS

● ‘Verified boot’ is the term used in Chrome OS
● Firmware

○ U-Boot and verified boot library (also Coreboot on x86)
● Kernel

○ dm-verity
○ A few drivers

● User space
○ Firmware interface, update
○ Chrome OS update

● Other
○ Signer
○ Other utilities
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Verified boot flow - firmware

● Firmware, kernel and root disk all have an A and a B
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Verified boot components - firmware

● U-Boot 2013.06
○ Main source base
○ Drivers and subsystems
○ Vboot integration layer in cros/ subdirectory
○ Full source code here http://goo.gl/N6rhik

● Vboot library
○ Hashing
○ RSA / signature checking
○ Verified boot ‘logic flow’
○ TPM library (only used for roll-back counters)
○ Full source code here http://goo.gl/dTbkLs

http://goo.gl/N6rhik
http://goo.gl/dTbkLs
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Verified Boot Components - Kernel

● dm-verity merged to Linux in 2012

● cryptohome (not really verified boot)
○ http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data

http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data
http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data
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Verified Boot Components - User space

● crossystem
○ Allows access to firmware settings
○ Allows signals to be sent to firmware for next boot

● update_engine
○ Update the partition we did not boot

● chromeos_firmwareupdate
○ Update the firmware we did not boot

● Also a few tools
● Signer
● cros_bundle_firmware
● Image utilities
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Chromium OS is Open Source

http://git.chromium.org/gitweb/

chromium-review.googlesource.com

http://git.chromium.org/gitweb/
http://git.chromium.org/gitweb/
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DIY Verified Boot

● Can I implement verified boot on my own platform?
○ Yes

● Do I need UEFI?
○ No

● U-Boot
○ Use FIT if you don’t already
○ Imager signer is the trusty mkimage
○ Continue to use bootm
○ Will go through this in some detail

● Linux
○ dm-verity is upstream

● Firmware<->user space layer
○ Roll your own
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Introduction to FIT

/ {
description = "Simple kernel / FDT configuration (.its file)";

images {
kernel@1 {

data = /incbin/("../vmlinuz-3.8.0");
kernel-version = <1>;
hash@1 {

algo = "sha1";
};

};
fdt@1 {

description = "snow";
data = /incbin/("exynos5250-snow.dtb");
type = "flat_dt";
arch = "arm";

};
};
configurations {

default = "conf@1";
conf@1 {

kernel = "kernel@1";
fdt = "fdt@1";

};
};

};

http://goo.gl/a09ymG
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Adding a signature to a FIT

/ {
description = "Simple kernel / FDT configuration";

images {
kernel@1 {

data = /incbin/("../vmlinuz-3.8.0");
kernel-version = <1>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";

};
};
fdt@1 {

description = "snow";
data = /incbin/("exynos5250-snow.dtb");
type = "flat_dt";
arch = "arm";

};
};
configurations {

default = "conf@1";
conf@1 {

kernel = "kernel@1";
fdt = "fdt@1";

};
};

};
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Use bootm as normal

## Loading kernel from FIT Image at 00000100 ...
   Using 'conf@1' configuration
   Trying 'kernel@1' kernel subimage
     Description:  unavailable
     Type:         Kernel Image (no loading done)
     Compression:  uncompressed
     Data Start:   0x000001c8
     Data Size:    5000 Bytes = 4.9 KiB
   Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
## Loading fdt from FIT Image at 00000100 ...
   Using 'conf@1' configuration
   Trying 'fdt@1' fdt subimage
     Description:  snow
     Type:         Flat Device Tree
     Compression:  uncompressed
     Data Start:   0x0000164c
     Data Size:    4245 Bytes = 4.1 KiB
     Architecture: Sandbox
   Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
   Booting using the fdt blob at 0x00164c
   XIP Kernel Image (no loading done) ... OK
. . .
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Signing images using mkimage

mkimage -f test.its -k ../keys -K out/u-boot.dtb -r test.fit

● -k Key directory
● -K Output FDT for public keys
● -r Require verification of all keys
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How signing works

image.its image.fitmkimage

Keys

signed image.
fit

u-boot.dtb 
with public 

keys

kernels, FDTs, 
ramdisks...

mkimage

New Signing Flow



Google Confidential and Proprietary

Signed image.fit
images {

kernel@1 {
data = <3.4MB of stuff>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
timestamp = <0x50e4b667>;
signer-version = "2013.01";
signer-name = "mkimage";
value = <0x32e48cf4 0xa72b7504 0xe805aeff 0xe1afb2e8 0x24c5313f

0xb4b3d41b 0x3cf03e60 0x309553a2 0xc1a0a557 0x3e103a1c ...
0xc293395e 0x06cfa9e5 0x1cda41e1 0xb0a10e97 0xa92d8d61>;

};
};

fdt@1 {
description = "snow";
data = <12KB of stuff>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
timestamp = <0x50e4b667>;
signer-version = "2013.01”;
signer-name = "mkimage";
value = <0x32e48cf4 0xa72b7504 0xe805aeff 0xe1afb2e8 0x24c5313f

0xb4b3d41b 0x3cf03e60 0x309553a2 0xc1a0a557 0x3e103a1c ...
0xc293395e 0x06cfa9e5 0x1cda41e1 0xb0a10e97 0xa92d8d61>;

};
};
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u-boot.dtb with public keys

/ {
    model = "Google Link";
    compatible = "google,link", "intel,celeron-ivybridge";
    signature {
        key-dev {
            algo = "sha1,rsa2048";
            required;
            rsa,r-squared = <0x0a1ed909 0xf564a4e6 0x539e6791 0x9d9b4a7e 0x2a7788cf 
0x89f9cb7a 0x7cd7a2c3 0xdb02b925 0x97f6cd15 0x76c86fb0 0x16b7b120 0x5825dc2c ... 
0x0e9e736a 0x852372bd 0x13a08e33>;
            rsa,modulus = <0xc1ad79b6 0x52ef561b 0x2c8b2a54 0x13436fa4 0xcabce1b9 
0x64c6e1c8 0xbfebf9a2 0x1e3d974c 0x14a67ada 0x4ecc3648 0xa7fee936 0xb53cc0a8 ... 
0xabe4f37f 0xdcc15a79 0xfcd530a5>;
            rsa,n0-inverse = <0x75a89dbf>;
            rsa,num-bits = <0x00000800>;
            key-name-hint = "dev";
        };
    };
...



Google Confidential and Proprietary

In-place signing

● FIT is a very flexible format
● No need to write the signature to a separate place/file

○ Just update the FIT
○ Multiple signatures can be added later without affecting previous 

signing
● Hashing algorithm supports hashing portions of the FIT
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Signing configurations

Nodes to hash:

   /
   /configurations/conf@1
   /images/kernel@1
   /images/kernel@1/hash@1
   /images/fdt@1
   /images/fdt@1/hash@1

/ {
images {

kernel@1 {
data = /incbin/("test-kernel.bin");
type = "kernel_noload";
hash@1 {

algo = "sha1";
};

};
fdt@1 {

description = "snow";
data = /incbin/("sandbox-kernel.dtb");
hash@1 {

algo = "sha1";
};

};
};
configurations {

conf@1 {
kernel = "kernel@1";
fdt = "fdt@1";
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
sign-images = "fdt", "kernel";

};
};

};
};
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Using bootm with configuration signing

## Loading kernel from FIT Image at 00000100 ...
   Using 'conf@1' configuration
   Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
   Trying 'kernel@1' kernel subimage
     Description:  unavailable
     Type:         Kernel Image (no loading done)
     Compression:  uncompressed
     Data Start:   0x000001c8
     Data Size:    5000 Bytes = 4.9 KiB
   Verifying Hash Integrity ... sha1+ OK
## Loading fdt from FIT Image at 00000100 ...
   Using 'conf@1' configuration
   Trying 'fdt@1' fdt subimage
     Description:  snow
     Type:         Flat Device Tree
     Compression:  uncompressed
     Data Start:   0x0000164c
     Data Size:    4245 Bytes = 4.1 KiB
     Architecture: Sandbox
   Verifying Hash Integrity ... sha1+ OK
   Booting using the fdt blob at 0x00164c
   XIP Kernel Image (no loading done) ... OK
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U-Boot code size

● OpenSSL is only used in mkimage
○ Produces pre-processed public key parameters for U-Boot run-time
○ Modulus (n), r-squared, n0-inverse and num-bits

● U-Boot simply has to do exponential mod n
● Code size is very efficient

○ RSA verification code is only 2149 bytes (Thumb 2)
● Entire RSA FIT code adds 6.2KB code/data

○ If you don’t already use FIT, then that adds an additional 20KB
○ Both FIT and RSA add only ~12.5KB to gzip-compressed U-Boot size

$ ./tools/buildman/buildman -b talk snow  -Ss
Summary of 3 commits for 1 boards (1 thread, 32 jobs per thread)
01: Merge branch 'master' of git://git.denx.de/u-boot-mmc
02: enable fit
       arm: (for 1/1 boards)  all +20437.0  bss +60.0  data +504.0  rodata +1953.0  text +17920.0
03: Enable verified boot
       arm: (for 1/1 boards)  all +6337.0  bss -40.0  data +16.0  rodata +697.0  text +5664.0
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U-Boot performance

● Time to check FIT configuration with 2048-bit RSA signature
○ <6ms on Beaglebone (1GHz Cortex-A8)
○ Note: if you care about performance, turn on the cache

■ With cache off it is 290ms
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Nice Properties of U-Boot’s verified boot

● Small 6.2KB code on Thumb 2
● Faster - 6ms on 1GHz Cortex-A8
● Uses existing FIT format

○ No need for multiple files - data and signatures are in the FIT
● Can sign and re-sign existing images

○ Signing uses the existing mkimage tool
● No new boot flow - works with existing scripts that use bootm
● Supports multiple stages, sub-keys, etc.
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Using bootm

● Verified boot still uses bootm
○ No change in syntax

● Signature verification plumbed into existing image-checking code
● Image check just sits along existing hash/CRC checking
● Configuration check happens before this

○ As soon as the configuration is selected



Google Confidential and Proprietary

Demo time
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Doing more

● Accelerated hashing
○ U-Boot and Linux have a framework

● Auto-update
● Recovery mode
● Other root of trust options
● Performance
● TPM for roll-back
● Trusted boot using TPM extend
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Conclusion

● Verified boot can be enabled in most embedded systems
○ Main new requirement is a verified root of trust

● Available in mainline U-Boot
○ Adds just 6.2KB code and a small run-time penalty

● U-Boot TPM library provides roll-back protection
○ ‘Extend’ functionality also available if desired

● Read-only root filesystem can be protected with dm-verity
○ Chrome OS uses this approach
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Thank you

● U-Boot verified boot
○ http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt

● dm-verity
○ https://lwn.net/Articles/459420/
○ https://code.google.com/p/cryptsetup/wiki/DMVerity

● Chrome OS
○ http://www.chromium.org/chromium-os/chromiumos-design-docs

● Other ideas:
○ http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
○ https://github.com/theopolis/sboot

● Email me sjg@chromium.org
○ cc u-boot@lists.denx.de

http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt
https://lwn.net/Articles/459420/
https://lwn.net/Articles/459420/
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://code.google.com/p/cryptsetup/wiki/DMVerity
http://www.chromium.org/chromium-os/chromiumos-design-docs
http://www.chromium.org/chromium-os/chromiumos-design-docs
http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
https://github.com/theopolis/sboot
https://github.com/theopolis/sboot
mailto:sjg@chromium.org
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Additional slides
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U-Boot’s TPM Support

● TPM library
○ tpm_startup()
○ tpm_self_test_full()
○ tpm_nv_define_space()

■ tpm_nv_read_value()
■ tpm_nv_write_value()

○ tpm_extend()
○ tpm_oiap()...

● Drivers for common TPMs
○ Infineon (I2C and LPC), Atmel, STM

● ‘tpm’ command
○ Provides full access to TPM library for scripts


