
Verified Boot in Chrome OS
and

how to make it work for you
Simon Glass
Embedded Linux Conference Europe
Edinburgh, October 2013

Google Confidential and Proprietary

Agenda

● Introduction
● Chrome OS

○ Verified Boot
● Requirements
● Technology
● U-Boot + Linux Verified Boot
● Demos
● Doing More
● Resources

Google Confidential and Proprietary

Introduction

● Me
○ ARM technology since 1987

■ ARM in UK and US
■ Bluewater Systems (NZ ARM/Linux Electronics)

○ Google Chrome OS (first ARM laptop)

● Some professional Interests
○ Great ARM devices
○ Open Source Software

Google Confidential and Proprietary

What is Chrome OS?

Google Confidential and Proprietary

Converging forces

The migration to the cloud The HTML 5 juggernaut

Google Confidential and Proprietary

Chromebook

Google Confidential and Proprietary

Integrated and streamlined

ChromebookPC

Google Confidential and Proprietary

Simplicity

Familiar UI

Same experience
everywhere

Zero Maintenance

Forever new

"Rust" Proof

Seamless sharing

Google Confidential and Proprietary

Standard PC: Security as an afterthought

Google Confidential and Proprietary

Security for the internet age

Current Operating Systems

● Apps have the same privileges
and power as you

Chrome OS

● Web apps and offline apps
● The OS doesn't trust any of them
● Keep them isolated and sandboxed

Google Confidential and Proprietary

Chrome OS' defense in depth

● Small list of known executables
○ Signed and verified before each use

● Run in secured sandboxes
○ Chroot, Namespaces
○ Toolchain, Stack protection

● File system is locked down
○ Read-only root file system
○ User data encryption

● Automatic updates for the entire OS
○ Nothing is ever perfect.
○ It's not the user's job to keep it secure.

Google Confidential and Proprietary

Why Verified Boot?

● Reduced risk of malware
● Keeps users safe
● Permits safe software updates in the field
● Known software on device

● Verified Boot does not mean the user needs to be locked out
○ E.g. See Chrome OS ‘dev mode’

Google Confidential and Proprietary

Requirements of Verified Boot

● Root of trust (static in our case)
● Every byte of code/data loaded is verified

○ Can use a sandbox where this is impractical
● Prior state must be fully validated
● Security holes plugged
● Upgradeable software
● Rollback protection

Google Confidential and Proprietary

Technology

● Hashing
● Public key cryptography
● Trusted Platform Module (TPM)
● Root of trust

Google Confidential and Proprietary

Hashing of binary images

● Reducing an image down to a very small data block (‘digest’)
● Two images can be considered:

○ Identical if their digests are the same
○ Different if their digests differ

● For a good hashing algorithm:
○ Changing just one bit in the image should completely change the

digest
○ ‘Collision resistant’ - need to try sqrt(2^n) images
○ Infeasible to modify an image to obtain a certain digest

● Common hashing algorithms are:
○ SHA1 - 24 byte digest
○ SHA256 - 32 byte digest

Google Confidential and Proprietary

Public key cryptography

● Create a key pair to sign a hash, and later to verify its signature
○ One key is ‘private’ – used to sign images and kept secret
○ Other key is ‘public’ – widely broadcast without affecting security

● Two keys are mathematically related
○ Data encrypted by one can be decrypted by the other

● With the public key we can verify that a hash was signed by the
associated private key

● Common public key algorithms are RSA and ECC
○ RSA 2048 bits is considered strong

Google Confidential and Proprietary

Trusted Platform Module (TPM)

● Security chip
○ Each device has a unique RSA private key
○ Can store keys, roll-back counters
○ Random number and key generation

● Commonly used on high-end laptops, or with a plug-in PCB
○ Typically I2C or LPC bus
○ Many ARM devices make use of TrustZone instead of a discrete TPM
○ Requires additional software

● TPM can check software and configuration at start-up
○ Hash each new chunk before using it
○ Pass the hash to the TPM for checking

Google Confidential and Proprietary

Root of trust

● Simple ‘static root of trust’
○ Initial code is assumed to be trusted
○ Boot ROM, U-Boot

● Can be stored in read-only memory
○ Or signed so that SoC can verify it

● Root stage holds keys for checking later stages
● From there we can load each stage of boot

○ Verify each as we go, using keys provided by the previous stage

Google Confidential and Proprietary

Verified boot in Chrome OS

● ‘Verified boot’ is the term used in Chrome OS
● Firmware

○ U-Boot and verified boot library (also Coreboot on x86)
● Kernel

○ dm-verity
○ A few drivers

● User space
○ Firmware interface, update
○ Chrome OS update

● Other
○ Signer
○ Other utilities

Google Confidential and Proprietary

Verified boot flow - firmware

● Firmware, kernel and root disk all have an A and a B

Google Confidential and Proprietary

Verified boot components - firmware

● U-Boot 2013.06
○ Main source base
○ Drivers and subsystems
○ Vboot integration layer in cros/ subdirectory
○ Full source code here http://goo.gl/N6rhik

● Vboot library
○ Hashing
○ RSA / signature checking
○ Verified boot ‘logic flow’
○ TPM library (only used for roll-back counters)
○ Full source code here http://goo.gl/dTbkLs

http://goo.gl/N6rhik
http://goo.gl/dTbkLs

Google Confidential and Proprietary

Verified Boot Components - Kernel

● dm-verity merged to Linux in 2012

● cryptohome (not really verified boot)
○ http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data

http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data
http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data

Google Confidential and Proprietary

Verified Boot Components - User space

● crossystem
○ Allows access to firmware settings
○ Allows signals to be sent to firmware for next boot

● update_engine
○ Update the partition we did not boot

● chromeos_firmwareupdate
○ Update the firmware we did not boot

● Also a few tools
● Signer
● cros_bundle_firmware
● Image utilities

Google Confidential and Proprietary

Chromium OS is Open Source

http://git.chromium.org/gitweb/

chromium-review.googlesource.com

http://git.chromium.org/gitweb/
http://git.chromium.org/gitweb/

Google Confidential and Proprietary

DIY Verified Boot

● Can I implement verified boot on my own platform?
○ Yes

● Do I need UEFI?
○ No

● U-Boot
○ Use FIT if you don’t already
○ Imager signer is the trusty mkimage
○ Continue to use bootm
○ Will go through this in some detail

● Linux
○ dm-verity is upstream

● Firmware<->user space layer
○ Roll your own

Google Confidential and Proprietary

Introduction to FIT

/ {
description = "Simple kernel / FDT configuration (.its file)";

images {
kernel@1 {

data = /incbin/("../vmlinuz-3.8.0");
kernel-version = <1>;
hash@1 {

algo = "sha1";
};

};
fdt@1 {

description = "snow";
data = /incbin/("exynos5250-snow.dtb");
type = "flat_dt";
arch = "arm";

};
};
configurations {

default = "conf@1";
conf@1 {

kernel = "kernel@1";
fdt = "fdt@1";

};
};

};

http://goo.gl/a09ymG

Google Confidential and Proprietary

Adding a signature to a FIT

/ {
description = "Simple kernel / FDT configuration";

images {
kernel@1 {

data = /incbin/("../vmlinuz-3.8.0");
kernel-version = <1>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";

};
};
fdt@1 {

description = "snow";
data = /incbin/("exynos5250-snow.dtb");
type = "flat_dt";
arch = "arm";

};
};
configurations {

default = "conf@1";
conf@1 {

kernel = "kernel@1";
fdt = "fdt@1";

};
};

};

Google Confidential and Proprietary

Use bootm as normal

Loading kernel from FIT Image at 00000100 ...
 Using 'conf@1' configuration
 Trying 'kernel@1' kernel subimage
 Description: unavailable
 Type: Kernel Image (no loading done)
 Compression: uncompressed
 Data Start: 0x000001c8
 Data Size: 5000 Bytes = 4.9 KiB
 Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
Loading fdt from FIT Image at 00000100 ...
 Using 'conf@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: snow
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0x0000164c
 Data Size: 4245 Bytes = 4.1 KiB
 Architecture: Sandbox
 Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
 Booting using the fdt blob at 0x00164c
 XIP Kernel Image (no loading done) ... OK
. . .

Google Confidential and Proprietary

Signing images using mkimage

mkimage -f test.its -k ../keys -K out/u-boot.dtb -r test.fit

● -k Key directory
● -K Output FDT for public keys
● -r Require verification of all keys

Google Confidential and Proprietary

How signing works

image.its image.fitmkimage

Keys

signed image.
fit

u-boot.dtb
with public

keys

kernels, FDTs,
ramdisks...

mkimage

New Signing Flow

Google Confidential and Proprietary

Signed image.fit
images {

kernel@1 {
data = <3.4MB of stuff>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
timestamp = <0x50e4b667>;
signer-version = "2013.01";
signer-name = "mkimage";
value = <0x32e48cf4 0xa72b7504 0xe805aeff 0xe1afb2e8 0x24c5313f

0xb4b3d41b 0x3cf03e60 0x309553a2 0xc1a0a557 0x3e103a1c ...
0xc293395e 0x06cfa9e5 0x1cda41e1 0xb0a10e97 0xa92d8d61>;

};
};

fdt@1 {
description = "snow";
data = <12KB of stuff>;
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
timestamp = <0x50e4b667>;
signer-version = "2013.01”;
signer-name = "mkimage";
value = <0x32e48cf4 0xa72b7504 0xe805aeff 0xe1afb2e8 0x24c5313f

0xb4b3d41b 0x3cf03e60 0x309553a2 0xc1a0a557 0x3e103a1c ...
0xc293395e 0x06cfa9e5 0x1cda41e1 0xb0a10e97 0xa92d8d61>;

};
};

Google Confidential and Proprietary

u-boot.dtb with public keys

/ {
 model = "Google Link";
 compatible = "google,link", "intel,celeron-ivybridge";
 signature {
 key-dev {
 algo = "sha1,rsa2048";
 required;
 rsa,r-squared = <0x0a1ed909 0xf564a4e6 0x539e6791 0x9d9b4a7e 0x2a7788cf
0x89f9cb7a 0x7cd7a2c3 0xdb02b925 0x97f6cd15 0x76c86fb0 0x16b7b120 0x5825dc2c ...
0x0e9e736a 0x852372bd 0x13a08e33>;
 rsa,modulus = <0xc1ad79b6 0x52ef561b 0x2c8b2a54 0x13436fa4 0xcabce1b9
0x64c6e1c8 0xbfebf9a2 0x1e3d974c 0x14a67ada 0x4ecc3648 0xa7fee936 0xb53cc0a8 ...
0xabe4f37f 0xdcc15a79 0xfcd530a5>;
 rsa,n0-inverse = <0x75a89dbf>;
 rsa,num-bits = <0x00000800>;
 key-name-hint = "dev";
 };
 };
...

Google Confidential and Proprietary

In-place signing

● FIT is a very flexible format
● No need to write the signature to a separate place/file

○ Just update the FIT
○ Multiple signatures can be added later without affecting previous

signing
● Hashing algorithm supports hashing portions of the FIT

Google Confidential and Proprietary

Signing configurations

Nodes to hash:

 /
 /configurations/conf@1
 /images/kernel@1
 /images/kernel@1/hash@1
 /images/fdt@1
 /images/fdt@1/hash@1

/ {
images {

kernel@1 {
data = /incbin/("test-kernel.bin");
type = "kernel_noload";
hash@1 {

algo = "sha1";
};

};
fdt@1 {

description = "snow";
data = /incbin/("sandbox-kernel.dtb");
hash@1 {

algo = "sha1";
};

};
};
configurations {

conf@1 {
kernel = "kernel@1";
fdt = "fdt@1";
signature@1 {

algo = "sha1,rsa2048";
key-name-hint = "dev";
sign-images = "fdt", "kernel";

};
};

};
};

Google Confidential and Proprietary

Using bootm with configuration signing

Loading kernel from FIT Image at 00000100 ...
 Using 'conf@1' configuration
 Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
 Trying 'kernel@1' kernel subimage
 Description: unavailable
 Type: Kernel Image (no loading done)
 Compression: uncompressed
 Data Start: 0x000001c8
 Data Size: 5000 Bytes = 4.9 KiB
 Verifying Hash Integrity ... sha1+ OK
Loading fdt from FIT Image at 00000100 ...
 Using 'conf@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: snow
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0x0000164c
 Data Size: 4245 Bytes = 4.1 KiB
 Architecture: Sandbox
 Verifying Hash Integrity ... sha1+ OK
 Booting using the fdt blob at 0x00164c
 XIP Kernel Image (no loading done) ... OK

Google Confidential and Proprietary

U-Boot code size

● OpenSSL is only used in mkimage
○ Produces pre-processed public key parameters for U-Boot run-time
○ Modulus (n), r-squared, n0-inverse and num-bits

● U-Boot simply has to do exponential mod n
● Code size is very efficient

○ RSA verification code is only 2149 bytes (Thumb 2)
● Entire RSA FIT code adds 6.2KB code/data

○ If you don’t already use FIT, then that adds an additional 20KB
○ Both FIT and RSA add only ~12.5KB to gzip-compressed U-Boot size

$./tools/buildman/buildman -b talk snow -Ss
Summary of 3 commits for 1 boards (1 thread, 32 jobs per thread)
01: Merge branch 'master' of git://git.denx.de/u-boot-mmc
02: enable fit
 arm: (for 1/1 boards) all +20437.0 bss +60.0 data +504.0 rodata +1953.0 text +17920.0
03: Enable verified boot
 arm: (for 1/1 boards) all +6337.0 bss -40.0 data +16.0 rodata +697.0 text +5664.0

Google Confidential and Proprietary

U-Boot performance

● Time to check FIT configuration with 2048-bit RSA signature
○ <6ms on Beaglebone (1GHz Cortex-A8)
○ Note: if you care about performance, turn on the cache

■ With cache off it is 290ms

Google Confidential and Proprietary

Nice Properties of U-Boot’s verified boot

● Small 6.2KB code on Thumb 2
● Faster - 6ms on 1GHz Cortex-A8
● Uses existing FIT format

○ No need for multiple files - data and signatures are in the FIT
● Can sign and re-sign existing images

○ Signing uses the existing mkimage tool
● No new boot flow - works with existing scripts that use bootm
● Supports multiple stages, sub-keys, etc.

Google Confidential and Proprietary

Using bootm

● Verified boot still uses bootm
○ No change in syntax

● Signature verification plumbed into existing image-checking code
● Image check just sits along existing hash/CRC checking
● Configuration check happens before this

○ As soon as the configuration is selected

Google Confidential and Proprietary

Demo time

Google Confidential and Proprietary

Doing more

● Accelerated hashing
○ U-Boot and Linux have a framework

● Auto-update
● Recovery mode
● Other root of trust options
● Performance
● TPM for roll-back
● Trusted boot using TPM extend

Google Confidential and Proprietary

Conclusion

● Verified boot can be enabled in most embedded systems
○ Main new requirement is a verified root of trust

● Available in mainline U-Boot
○ Adds just 6.2KB code and a small run-time penalty

● U-Boot TPM library provides roll-back protection
○ ‘Extend’ functionality also available if desired

● Read-only root filesystem can be protected with dm-verity
○ Chrome OS uses this approach

Google Confidential and Proprietary

Thank you

● U-Boot verified boot
○ http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt

● dm-verity
○ https://lwn.net/Articles/459420/
○ https://code.google.com/p/cryptsetup/wiki/DMVerity

● Chrome OS
○ http://www.chromium.org/chromium-os/chromiumos-design-docs

● Other ideas:
○ http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
○ https://github.com/theopolis/sboot

● Email me sjg@chromium.org
○ cc u-boot@lists.denx.de

http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=blob;f=doc/uImage.FIT/verified-boot.txt
https://lwn.net/Articles/459420/
https://lwn.net/Articles/459420/
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://code.google.com/p/cryptsetup/wiki/DMVerity
http://www.chromium.org/chromium-os/chromiumos-design-docs
http://www.chromium.org/chromium-os/chromiumos-design-docs
http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
http://selinuxproject.org/~jmorris/lss2013_slides/safford_embedded_lss_slides.pdf
https://github.com/theopolis/sboot
https://github.com/theopolis/sboot
mailto:sjg@chromium.org

Google Confidential and Proprietary

Additional slides

Google Confidential and Proprietary

U-Boot’s TPM Support

● TPM library
○ tpm_startup()
○ tpm_self_test_full()
○ tpm_nv_define_space()

■ tpm_nv_read_value()
■ tpm_nv_write_value()

○ tpm_extend()
○ tpm_oiap()...

● Drivers for common TPMs
○ Infineon (I2C and LPC), Atmel, STM

● ‘tpm’ command
○ Provides full access to TPM library for scripts

