Strategies for Testing Client-Server
Interactions in Mobile Applications *

How to Move Fast and not Break Things

Niranjan Tulpule

Google Inc.

niranjan@google.com

Abstract

Modern smartphone ecosystems have their unique set of constraints
which makes testing the contract between client and servers hard.
In this paper we will describe the Google+ team’s approaches
to solving this problem. We will describe our testing philosophy
followed by a couple of frameworks and test design patterns that
we have found to be really useful in a client-server testing context.

Categories and Subject Descriptors D.2.5 [Testing and Debug-

ging]
Keywords mobile;protocol testing;
Background

A vast majority of native mobile applications talk to a backend
server for various reasons. Some applications such as mobile games
only need to communicate with their servers for authentication,
downloading new levels of play and storing scores and leader-
boards while multiple player games require a constant, active in-
ternet connection. Other applications such as social networking ap-
plications, local search and discovery apps need to be connected to
the internet to function.

The Google+ server and web engineering teams release new
versions of services multiple times per week but release the na-
tive versions of the iOS and Android applications less frequently,
usually twice monthly. This mismatch in the client and server code
deployment rhythm makes it much more likely that an engineer on
the server team can make a change which breaks the client-server
contract between the mobile applications and the server. We often
encounter users running old versions of their applications requiring
that the server changes have to be backwards compatible for a few
versions.

Testing this client-server contract in an automated fashion,
which provides the right set of testing safety nets preventing code
with defects that break this contract from being committed to the

* Experience report based on the work done by the Google+ Mobile Engi-
neering Teams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MobileDeLi ’13, October 28, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2603-2/13/10. .. $15.00.
http://dx.doi.org/10.1145/2542128.2542134

19

source repository is the only way to sustain the fast development
and release cycles on the server

Testing Philosophy

Testing software at Google’s scale is a unique challenge due to
the sheer volume of code being committed to its source repository.
We routinely see more than 20 changes per minute which require
more than 75 million automated test cases to be run each day[1].
The continuous integration system uses dependency analysis to
determine all the tests a change transitively affects and then runs
only those tests for every change[2]. In spite of these optimizations,
a poorly designed test suite can result in wasteful use of resources
and more importantly can cause productivity issues for engineering
teams.

The Google+ engineering team tries to adhere to the following
guiding principles so that we can deliver high quality software at a
rapid pace.

e We prefer to prevent code changes with defects being commit-
ted to the source repository over finding these defects. Most
of our automated test infrastructure on the Google+ team is
designed to run tests as a part of the process of submitting a
change to the source repository.

e We prefer to keep our test sizes small and encourage all engi-
neers to write unit tests before they can tackle other tests. All
our functional tests are optimized for a faster turnaround time
which sets in motion a virtuous cycle of developers authoring
and sustaining more such tests and helping us achieve higher
code coverage.

e We keep all of our test environments “hermetically sealed” [3]
which means that our tests should not depend on any ancillary
servers and resources which cannot be compiled and deployed
on the same test runner.

We will now take a look at two different approaches used to test the
client-server interactions for the Google+ mobile applications for
the Android and iOS platforms.

Monolithic Test Setup for Client and Server

In our initial iteration we used a monolithic approach to develop
our client-server test framework. The test set up process works as
follows:

First We build and deploy our server stack on a remote test execu-
tion agent using a Hermetic Server configuration similar to the
one described by Narla, Salas [3].

Second The test runner processes start a specially crafted version
of the Android Emulator on the same remote test execution

Request

Google+
Frontend
Servers

Test Suite

Response

‘Golden
(JSON)

Actual Response Result

Smart
JSON
diff

Golden Responses
(JSON)

Figure 1. Google+ Mobile Client-Server Test Architecture

agent configured to divert the network traffic by the Application
Under Test (the Google+ Android application) to our local
server and also enable some options for logging and debugging.

Third The test runner processes then install our Application Under
Test on this emulator and then run our suite of functional tests
on the application.

This approach made it easy for engineers to author tests, es-
pecially for engineers who were new to mobile app development
but had a background in developing web services such as Gmail,
Google Maps, etc. After running these tests for a few months we
realized that they were very costly in practice as they were quite
flaky and hard to debug and isolate the cause of failures. They were
being used to validate server behavior as well as client functional-
ity.

Through analysis of our test usage and defects, we realized that
almost 99% of the changes being made by the developers were
either purely server changes or purely client changes and protocol
inconsistencies accounted for a vast majority of the defects. We
were consuming too much time and resources testing server code
when only the client code changed and vice versa.

Testing the Protocol

We decided to try a new approach in which rather than installing
every supported version of the application and having to maintain
a separate test suite for them, we decided to replace the application
by a lightweight stub and use it as a source of requests to the server,
which the test suites could then use to verify the correct behavior
of the protocol for the given version. Figure 1 shows a simplified
view of this test setup. This approach has three major components:

Test Generator or ’Record Mode”

We instrumented the Google+ mobile applications on iOS and
Android to log the contents of each requests to our server and
the corresponding responses. The data contained in requests and
responses is serialized using the JavaScript Object Notation (JSON)
format. We added a special ”"Record Mode” option to the versions
of these applications used for testing. When we run our application
in the "Record Mode” all the requests and responses get stored
within the application and can be easily extracted out and used for
testing. We call these stored requests and responses as ”Golden”.

Test Suites or ”Replay Mode”

We then launch our Servers under Test using the Hermetic Servers
configuration. They are configured to use the same user accounts

20

and data stores, which were used to generate the "Golden” re-
sponses. This ensures that there is consistency of test data. We
then launch our test suite which uses the JSON data stored in these
”Golden Requests” to send request to the Server under Test and
when the server responds, it compares the data in those responses
to the "Golden” responses using a JSON comparison tool.

Smart JSON diffing

This tool does a smart comparison of the JSON files. There are a
few reasons why the actual responses sometimes differ from the
stored ”Golden Responses” and to account for these nuances we
developed a smart JSON diff tool.

First Actual response has an extra field. This is usually harmless
as our wire formats are designed to be extended and mobile
clients will not fail. If a server developer’s change gets flagged
then they can easily update the ”golden” JSON responses.

Second Value of a field is different in actual and golden responses.
There are fields that have dynamic data such as timestamps
which are usually harmless for the tests. When we store the
golden responses using the “Record Mode” we annotate it to
ignore values of those dynamic fields. On the other hand if the
field contains a static data and the value has changed it means
that this change might break mobile clients if they using this
field. This will cause the test suite to fail.

Third Actual response doesnt have a field that is expected by
”golden” response. This usually indicates that the mobile clients
will break and hence the test suite will fail.

Conclusions

This approach has improved the quality and coverage of our tests
dramatically. The running time for tests was cut down from over 30
minutes for every supported version of the application to less than
5 minutes. Over a six month period, the replay tests exhibited less
than 1% flakiness over 1000 daily invocations of the tests. These
test have prevented many server defects which would have affected
the Google+ mobile applications.

Acknowledgments

I would like to thank the engineers who have designed, developed
and evangelized the testing solutions described above: Eduardo
Bravo, Matthew DeVore, Grygorii Luchytskyi and Sreevidya Tan-
gellamudi.

We owe a huge amount of gratitude to all the talented engineers
across Google who have contributed towards building an amazing
developer productivity ecosystem.

References

[1] John Micco. Continuous Integration at Google Scale At the
EclipseCon 2013, Boston, MA. URL eclipsecon.org/2013/sites/
eclipsecon.org.2013/files/Continuous\%20Integration\
%20at\%20Google\’20Scale.pdf

[2] Pooja Gupta, Mark Ivey and Jon Penix. Testing at the
speed and scale of Google On the Google Engineering Tools
Blog URL google-engtools.blogspot.com/2011/06/
testing-at-speed-and-scale-of-google.html

[3] Chaitali Narla and Diego Salas. Hermetic Servers On the
Google Testing Blog URL googletesting.blogspot.com/2012/
10/hermetic-servers.html

