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High-Resolution Global Maps of
21st-Century Forest Cover Change
M. C. Hansen,1* P. V. Potapov,1 R. Moore,2 M. Hancher,2 S. A. Turubanova,1 A. Tyukavina,1

D. Thau,2 S. V. Stehman,3 S. J. Goetz,4 T. R. Loveland,5 A. Kommareddy,6 A. Egorov,6 L. Chini,1

C. O. Justice,1 J. R. G. Townshend1

Quantification of global forest change has been lacking despite the recognized importance of
forest ecosystem services. In this study, Earth observation satellite data were used to map global
forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from
2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to
exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s
well-documented reduction in deforestation was offset by increasing forest loss in Indonesia,
Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within
subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss
due largely to fire and forestry was second to that in the tropics in absolute and proportional terms.
These results depict a globally consistent and locally relevant record of forest change.

Changes in forest cover affect the delivery
of important ecosystem services, including
biodiversity richness, climate regulation,

carbon storage, and water supplies (1). However,
spatially and temporally detailed information on
global-scale forest change does not exist; pre-
vious efforts have been either sample-based or
employed coarse spatial resolution data (2–4).
We mapped global tree cover extent, loss, and
gain for the period from 2000 to 2012 at a spatial
resolution of 30 m, with loss allocated annually.
Our global analysis, based on Landsat data, im-
proves on existing knowledge of global forest
extent and change by (i) being spatially explicit;
(ii) quantifying gross forest loss and gain; (iii)
providing annual loss information and quantify-
ing trends in forest loss; and (iv) being derived
through an internally consistent approach that is
exempt from the vagaries of different definitions,
methods, and data inputs. Forest loss was defined
as a stand-replacement disturbance or the com-

plete removal of tree cover canopy at the Landsat
pixel scale. Forest gain was defined as the inverse
of loss, or the establishment of tree canopy from
a nonforest state. A total of 2.3 million km2 of
forest were lost due to disturbance over the study
period and 0.8 million km2 of new forest es-
tablished. Of the total area of combined loss
and gain (2.3 million km2 + 0.8 million km2),
0.2 million km2 of land experienced both loss
and subsequent gain in forest cover during the
study period. Global forest loss and gain were
related to tree cover density for global climate
domains, ecozones, and countries (refer to tables
S1 to S3 for all data references and comparisons).
Results are depicted in Fig. 1 and are viewable
at full resolution at http://earthenginepartners.
appspot.com/science-2013-global-forest.

The tropical domain experienced the greatest
total forest loss and gain of the four climate
domains (tropical, subtropical, temperate, and
boreal), as well as the highest ratio of loss to
gain (3.6 for >50% of tree cover), indicating
the prevalence of deforestation dynamics. The
tropics were the only domain to exhibit a statis-
tically significant trend in annual forest loss, with
an estimated increase in loss of 2101 km2/year.
Tropical rainforest ecozones totaled 32% of
global forest cover loss, nearly half of which oc-
curred in South American rainforests. The trop-
ical dry forests of South America had the highest
rate of tropical forest loss, due to deforestation

dynamics in the Chaco woodlands of Argentina,
Paraguay (Fig. 2A), and Bolivia. Eurasian rain-
forests (Fig. 2B) and dense tropical dry forests
of Africa and Eurasia also had high rates of
loss.

Recently reported reductions in Brazilian
rainforest clearing over the past decade (5) were
confirmed, as annual forest loss decreased on
average 1318 km2/year. However, increased an-
nual loss of Eurasian tropical rainforest (1392
km2/year), African tropical moist deciduous forest
(536 km2/year), South American dry tropical for-
est (459 km2/year), and Eurasian tropical moist
deciduous (221 km2/year) and dry (123 km2/year)
forests more than offset the slowing of Brazilian
deforestation. Of all countries globally, Brazil
exhibited the largest decline in annual forest loss,
with a high of over 40,000 km2/year in 2003 to
2004 and a low of under 20,000 km2/year in
2010 to 2011. Of all countries globally, Indonesia
exhibited the largest increase in forest loss
(1021 km2/year), with a low of under 10,000 km2/year
from 2000 through 2003 and a high of over
20,000 km2/year in 2011 to 2012. The converging
rates of forest disturbance of Indonesia and Brazil
are shown in Fig. 3. Although the short-term
decline of Brazilian deforestation is well docu-
mented, changing legal frameworks governing
Brazilian forests could reverse this trend (6). The
effectiveness of Indonesia’s recently instituted
moratorium on new licensing of concessions in
primary natural forest and peatlands (7), initiated
in 2011, is to be determined.

Subtropical forests experience extensive for-
estry land uses where forests are often treated as a
crop and the presence of long-lived natural for-
ests is comparatively rare (8). As a result, the
highest proportional losses of forest cover and the
lowest ratio of loss to gain (1.2 for >50% of tree
cover) occurred in the subtropical climate do-
main. Aggregate forest change, or the proportion
of total forest loss and gain relative to year-2000
forest area [(loss+gain)/2000 forest], equaled 16%,
or more than 1% per year across all forests within
the domain. Of the 10 subtropical humid and dry
forest ecozones, 5 have aggregate forest change
>20%, three >10%, and two >5%. North Amer-
ican subtropical forests of the southeastern United
States are unique in terms of change dynamics
because of short-cycle tree planting and harvest-
ing (Fig. 2C). The disturbance rate of this eco-
zone was four times that of South American

1Department of Geographical Sciences, University of Maryland,
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Fig. 1. (A) Tree cover, (B) forest loss, and (C) forest gain. A color com-
posite of tree cover in green, forest loss in red, forest gain in blue, and
forest loss and gain in magenta is shown in (D), with loss and gain en-

hanced for improved visualization. All map layers have been resampled
for display purposes from the 30-m observation scale to a 0.05° geo-
graphic grid.

Fig. 2. Regional subsets of 2000 tree cover and 2000 to 2012 forest loss and gain. (A) Paraguay, centered at 21.9°S, 59.8°W; (B) Indonesia,
centered at 0.4°S, 101.5°E; (C) the United States, centered at 33.8°N, 93.3°W; and (D) Russia, centered at 62.1°N, 123.4°E.
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rainforests during the study period; over 31% of
its forest cover was either lost or regrown. Areas
of colocated loss and gain (magenta tones in Fig.
1D), indicating intensive forestry practices, are
found on all continents within the subtropical
climate domain, including South Africa, central
Chile, southeastern Brazil, Uruguay, southern
China, Australia, and New Zealand.

The temperate climatic domain has a forestry-
dominant change dynamic and a relatively low
ratio of loss to gain (1.6 for >50% of tree cover).
Oceanic ecozones, in particular, are similar to the
subtropics in the intensity of indicated forest land
use. The northwest United States is an area of
intensive forestry, as is the entire range of tem-
perate Canada. The intermountain West of North
America exhibits a loss dynamic, largely due to
fire, logging, and disease [for example, large-scale
tree mortality due to mountain pine bark beetle
infestation, most evident in British Colombia,
Canada (9)]. Temperate Europe has a forestry
dynamic with Estonia and Latvia exhibiting a
high ratio of loss to gain. Portugal, which strad-
dles the temperate and subtropical domains, has a
complicated dynamic of forestry and forest loss
due to fire; the resulting aggregate change dy-
namic is fourth in intensity globally. Elevated
loss due to storm damage is indicated for a few
areas. For example, a 2005 extratropical cyclone
led to a historic blowdown of southern Sweden
temperate forests, and a 2009 windstorm lev-
eled extensive forest areas in southwestern
France (10).

Fire is the most significant cause of forest loss
in boreal forests (11), and it occurred across a
range of tree canopy densities. Given slower
regrowth dynamics, the ratio of boreal forest loss
to gain is high over the study period (2.1 for >50%
of tree cover). Boreal coniferous and mountain
ecozones are similar in terms of forest loss rates,
with North America having a higher overall rate

and Eurasia a higher absolute area of loss. Forest
gain is substantial in the boreal zone, with Eur-
asian coniferous forests having the largest area
of gain of all global ecozones during the study
period, due to forestry, agricultural abandonment
(12), and forest recovery after fire [as in Euro-
pean Russia and the Siberia region of Russia
(Fig. 2D)]. Russia has the most forest loss glob-
ally. Co-located gain and loss are nearly absent in
the high-latitude forests of the boreal domain,
reflecting a slower regrowth dynamic in this cli-
matic domain. Areas with loss and gain in close
proximity, indicating forestry land uses, are found
within nearly the entirety of Sweden and Finland,
the boreal/temperate transition zone in eastern
Canada, parts of European Russia, and along the
Angara River in central Siberia, Russia.

A goal of large-area land cover mapping is to
produce globally consistent characterizations that
have local relevance and utility; that is, reliable
information across scales. Figure S1 reflects this
capability at the national scale. Two measures of
change, (i) proportion of total aggregate forest
change relative to year-2000 forest area [(loss +
gain)/2000 forest], shown in column q of table
S3; and (ii) proportion of total change that is loss
[loss/(loss + gain)], calculated from columns b
and c in table S3, are displayed. The proportion
of total aggregate forest change emphasizes coun-
tries with likely forestry practices by including
both loss and gain in its calculation, whereas the
proportion of loss to gain measure differentiates
countries experiencing deforestation or another
loss dynamic without a corresponding forest re-
covery signal. The two ratio measures normal-
ize the forest dynamic in order to directly compare
national-scale change regardless of country size
or absolute area of change dynamic. In fig. S1,
countries that have lost forests without gain are
high on the y axis (Paraguay, Mongolia, and
Zambia). Countries with a large fraction of forest

area disturbed and/or reforested/afforested are
high on the x axis (Swaziland, South Africa, and
Uruguay). Thirty-one countries have an aggre-
gate dynamic >1% per year, 11 have annual loss
rates >1%, and 5 have annual gain rates of >1%.
Figure S2 compares forest change dynamics dis-
aggregated by ecozone (http://foris.fao.org/static/
data/fra2010/ecozones2010.jpg).

Brazil is a global exception in terms of forest
change, with a dramatic policy-driven reduction
in Amazon Basin deforestation. Although Bra-
zilian gross forest loss is the second highest glob-
ally, other countries, includingMalaysia, Cambodia,
Cote d’Ivoire, Tanzania, Argentina, and Paraguay,
experienced a greater percentage of loss of forest
cover. Given consensus on the value of natural
forests to the Earth system, Brazil’s policy inter-
vention is an example of how awareness of forest
valuation can reverse decades of previous wide-
spread deforestation. International policy ini-
tiatives, such as the United Natons Framework
Convention of Climate Change Reducing Emis-
sions from Deforestation and forest Degradation
(REDD) program (13), often lack the institutional
investment and scientific capacity to begin im-
plementation of a program that can make use of
the global observational record; in other words,
the policy is far ahead of operational capabilities
(14). Brazil’s use of Landsat data in documenting
trends in deforestation was crucial to its policy
formulation and implementation. To date, only
Brazil produces and shares spatially explicit
information on annual forest extent and change.
The maps and statistics we present can be used as
an initial reference for a number of countries
lacking such data, as a spur to capacity building
in the establishment of national-scale forest ex-
tent and change maps, and as a basis of com-
parison in evolving national monitoringmethods.

Global-scale studies require systematic global
image acquisitions available at low or no direct

Fig. 3. Annual forest loss totals for Brazil and Indonesia from 2000 to 2012. The forest loss annual increment is the slope of the estimated
trend line of change in annual forest loss.
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cost and the preprocessing of geometric and ra-
diometric corrections of satellite imagery, exempli-
fied by theLandsat program.Given such progressive
data policies and image processing capabilities, it
is now possible to use advanced computing sys-
tems, such as the Google cloud, to efficiently
process and characterize global-scale time-series
data sets in quantifying land change. There are
several satellite systems in place or planned for
collecting data with similar capabilities to Land-
sat. Similar free and open data policies would
enable greater use of these data for public good
and foster greater transparency of the development,
implementation, and reactions to policy initia-
tives that affect the world’s forests.

The information content of the presented data
sets, which are publicly available, provides a
transparent, sound, and consistent basis on which
to quantify critical environmental issues, includ-
ing (i) the proximate causes of the mapped forest
disturbances (15); (ii) the carbon stocks and asso-
ciated emissions of disturbed forest areas (16–18);
(iii) the rates of growth and associated carbon
stock gains for both managed and unmanaged
forests (19); (iv) the status of remaining intact
natural forests of the world and threats to bio-
diversity (20, 21); (v) the effectiveness of existing
protected-area networks (22); (vi) the economic
drivers of natural forest conversion to more in-
tensive land uses (23); (vii) the relationships be-
tween forest dynamics and social welfare, health,

and other relevant human dimensions data; (viii)
forest dynamics associated with governance and
policy actions—andmany other regional-to-global–
scale applications.
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Changes in Cytoplasmic Volume Are
Sufficient to Drive Spindle Scaling
James Hazel,1 Kaspars Krutkramelis,2 Paul Mooney,1 Miroslav Tomschik,1 Ken Gerow,3

John Oakey,2 J. C. Gatlin1*

The mitotic spindle must function in cell types that vary greatly in size, and its dimensions
scale with the rapid, reductive cell divisions that accompany early stages of development. The
mechanism responsible for this scaling is unclear, because uncoupling cell size from a developmental
or cellular context has proven experimentally challenging. We combined microfluidic technology
with Xenopus egg extracts to characterize spindle assembly within discrete, geometrically defined
volumes of cytoplasm. Reductions in cytoplasmic volume, rather than developmental cues or
changes in cell shape, were sufficient to recapitulate spindle scaling observed in Xenopus
embryos. Thus, mechanisms extrinsic to the spindle, specifically a limiting pool of cytoplasmic
component(s), play a major role in determining spindle size.

Organelles and other intracellular struc-
tures must scale with cell size in order to
function properly. Maintenance of these

dimensional relationships is challenged by the
rapid and reductive cell divisions that character-
ize early embryogenesis in many organisms. The
cellular machine that drives these divisions, the

mitotic spindle, functions to segregate chromo-
somes in cells that vary greatly in size while also
adapting to rapid changes in cell size. The issue
of scale is epitomized during Xenopus embryo-
genesis, where a rapid series of divisions reduces
cell size 100-fold: from the 1.2-mm-diameter fer-
tilized egg to ~12-mm-diameter cells in the adult
frog (1). In large blastomeres, spindle length reaches
an upper limit that is uncoupled from changes in
cell size. However, as cell size decreases, a strong
correlation emerges between spindle length and
cell size (2). Although this scaling relationship
has been characterized in vivo for several differ-

ent organisms, little is known about the direct
regulation of spindle size by cell size or the under-
lying mechanism(s) (2–4). Spindle size may be
directly dictated by the physical dimensions of a
cell, perhaps through microtubule-mediated in-
teraction with the cell cortex [i.e., boundary sensing
(5–7)]. Alternatively, cell size could constrain spin-
dle size by providing a fixed and finite cytoplasmic
volume and, therefore, a limiting pool of resources
such as cytoplasmic spindle assembly or length-
determining components [i.e., component limi-
tation (8, 9)]. Last, mechanisms intrinsic to the
spindle could be actively tuned in response to
systematic changes in cytoplasmic composition
occurring during development [i.e., developmen-
tal cues (10, 11)].

To elucidate the responsible scalingmechanism(s),
we developed amicrofluidic-based platform to con-
fine spindle assembly in geometrically defined vol-
umes ofXenopus egg extract (12). Interphase extract
containing Xenopus sperm nuclei was induced
to enter mitosis and immediately pumped into a
microfluidic droplet-generating device before
nuclear envelope breakdown and the onset of
spindle assembly. At the same time, a fluorinated
oil/surfactant mixture was pumped into the de-
vice through a second inlet. These two discrete,
immiscible phases merged at a T-shaped junction
within the device to produce stable emulsions of
extract droplets in a continuous oil phase (Fig. 1,
A and C). Changing the T-junction channel di-
mensions and relative flow rates of the two phases
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Materials and Methods 
The study area included all global land except for Antarctica and a number of Arctic 

islands, totaling 128.8Mkm2, or the equivalent of 143 billion 30m Landsat pixels.  For 
this study, trees were defined as all vegetation taller than 5m in height.  Forest loss was 
defined as a stand-replacement disturbance.  Results were disaggregated by reference 
percent tree cover stratum (e.g. >50% crown cover to ~0% crown cover) and by year.  
Forest degradation (24), for example selective removals from within forested stands that 
do not lead to a non-forest state, was not included in the change characterization.  Gain 
was defined as the inverse of loss, or a non-forest to forest change; longer-lived 
regrowing stands of tree cover that did not begin as non-forest within the study period 
were not mapped as forest gain.   Gain was related to percent tree crown cover densities 
>50% and reported as a twelve year total.  In this study, the term “forest” refers to tree 
cover and not land use unless explicitly stated, e.g. “forest land use”. 

The global Landsat analysis was performed using Google Earth Engine, a cloud 
platform for earth observation data analysis that combines a public data catalog with a 
large-scale computational facility optimized for parallel processing of geospatial data.   
Google Earth Engine contains a nearly complete set of imagery from the Landsat 4, 5, 7, 
and 8 satellites downloaded from the USGS Earth Resources Observation and Science 
archive (25).  For this study, we analyzed 654,178 growing season Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) scenes from a total of 1.3 million available at the time of 
the study.  Growing season data are more appropriate for land cover mapping than 
imagery captured during senescence or dormant seasonal periods (26).  Automated 
Landsat pre-processing steps included: (i) image resampling, (ii) conversion of raw 
digital values (DN) to top of atmosphere (TOA) reflectance, (iii) cloud/shadow/water 
screening and quality assessment (QA), and (iv) image normalization.  All pre-processing 
steps were tested at national scales around the globe using a method prototyped for the 
Democratic Republic of Congo (27). The stack of QA layers was used to create a per-
pixel set of cloud-free image observations which in turn was employed to calculate time-
series spectral metrics. Metrics represent a generic feature space that facilitates regional-
scale mapping and have been used extensively with MODIS and AVHRR data (2,4) and 
more recently with Landsat data in characterizing forest cover loss (27,28).  Three groups 
of per-band metrics were employed over the study interval: (i) reflectance values 
representing maximum, minimum and selected percentile values (10, 25, 50, 75 and 90% 
percentiles); (ii) mean reflectance values for observations between selected percentiles 
(for the max-10%, 10-25%, 25-50%, 50-75%, 75-90%, 90%-max, min-max, 10-90%, and 
25-75% intervals); and (iii) slope of linear regression of band reflectance value versus 
image date.  Training data to relate to the Landsat metrics were derived from image 
interpretation methods, including mapping of crown/no crown categories using very high 
spatial resolution data such as Quickbird imagery, existing percent tree cover layers 
derived from Landsat data (29), and global MODIS percent tree cover (30), rescaled using 
the higher spatial resolution percent tree cover data sets.  Image interpretation on-screen 
was used to delineate change and no change training data for forest cover loss and gain.  

Percent tree cover, forest loss and forest gain training data were related to the time-
series metrics using a decision tree.  Decision trees are hierarchical classifiers that predict 
class membership by recursively partitioning a data set into more homogeneous or less 
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varying subsets, referred to as nodes (31).  For the tree cover and change products, a 
bagged decision tree methodology was employed.  Forest loss was disaggregated to 
annual time scales using a set of heuristics derived from the maximum annual decline in 
percent tree cover and the maximum annual decline in minimum growing season 
Normalized Vegetation Difference Index (NDVI).  Trends in annual forest loss were 
derived using an ordinary least squares slope of the regression of y=annual loss versus 
x=year.  Outputs per pixel include annual percent tree cover, annual forest loss from 2000 
to 2012, and forest gain from 2000 to 2012.  To facilitate processing, each continent was 
characterized individually: North America, South America, Eurasia, Africa, and 
Australia.  

Earth Engine uses a lazy computation model in which a sequence of operations may 
be executed either interactively on-the-fly or in bulk over a complete data set. We used 
the former mode during development and debugging, and the latter mode during the 
computation of the final data products.  In both cases all image processing operations 
were performed in parallel across a large number of computers, and the platform 
automatically handled data management tasks such as data format conversion, 
reprojection and resampling, and associating image metadata with pixel data.  Large-
scale computations were managed using the FlumeJava framework (32).  A total of 20 
terapixels of data were processed using one million CPU-core hours on 10,000 computers 
in order to characterize year 2000 percent tree cover and subsequent tree cover loss and 
gain through 2012.  

Supplementary Text 
Comparison with FAO data 

The standard reference for global scale forest resource information is the UNFAO’s 
Forest Resource Assessment (FRA) (33), produced at decadal intervals.  There are several 
limitations of the FRA reports that diminish their utility for global change assessments, 
including (i) inconsistent methods between countries; (ii) defining “forest” based on land 
use instead of land cover thereby obscuring the biophysical reality of whether tree cover 
is present; (iii) forest area changes reported only as net values; and (iv) forest definitions 
used in successive reports have changed over time (34).       

Several discrepancies exist between FAO and earth observation-derived forest area 
change data. For example, the large amount of tree cover change observed in satellite 
imagery in Canada and the USA does not conform to the land use definitions applied in 
the FRA for these countries.  While there is significant forest change from a biophysical 
perspective (i.e., forest cover), there is little or no land use change, the main criterion 
used in the FRA report.  Additionally, China, and to a lesser extent India, report 
significant forest gains that are not readily observable in time-series satellite imagery, 
including this analysis (Fig. S3).   Large country change area discrepancies such as these 
preclude a significant correlation between FAO and Landsat-based country data at the 
global scale.  However, regional differences in strength of agreement exist, and examples 
are illustrated in Fig. S3 and Tab. S4.  The region with the highest correlation between 
FAO and Landsat net change is Latin America.  Deforestation is the dominant dynamic, 
and a number of countries, including Brazil, employ earth observation data in estimating 
forest area change for official reporting.  There is much less agreement for African 
countries, though the correlation improves when lowering the tree cover threshold to 
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include more change.  The lack of agreement in Africa reflects the difficult nature of 
mapping change in environments with a range of tree cover as well as the lack of 
systematic forest inventories and mapping capabilities for many African countries.  
Southeast Asian countries exhibit changes primarily in dense canopy forests.   However, 
there is little correlation between Landsat-based change estimates and FAO data.  The 
forestry dynamics and differing governance and development contexts within this region 
may lead to inconsistencies between countries.  European data have the least correlation 
of the regions examined, with comparatively little net area change reported in either our 
Landsat analysis or in the FAO FRA. 

The importance of forest definition and its impact on change area estimation is seen 
for countries located in boreal and dry tropical climates.  Our estimate of Canada’s net 
change from the Landsat-based study doubled when including forest loss across all tree 
cover strata, largely due to extensive burning in open boreal woodlands.  Countries such 
as Australia, Paraguay and Mozambique have similar outcomes related to disturbances 
occurring within a range of tropical forest, woodland and parkland environments. 

Gross forest area gain and loss for >50% tree cover were also compared to FAO 
roundwood production data summed by country from 2000 to 2011 (Fig. S4).  FAO data 
are available at http://faostat.fao.org/.   The national coniferous and non-coniferous 
"total roundwood" production data (in cubic meters) were multiplied by 0.225MgC/m^3 
and 0.325 MgC/m^2 respectively, and then added together to give national total 
roundwood production in Megatons of carbon.  Tab. S4 illustrates the strength of the 
relationship between FRA roundwood production and Landsat-derived gross forest area 
gain and loss for selected regions.  While Africa and Southeast Asia have extremely poor 
correlations, Landsat-derived forest area gain for Latin America and both forest gain and 
loss for Europe exhibit strong correlations.  The FRA roundwood production data 
correlate well with satellite-based tree cover change area estimation for forestry land use-
dominated countries.   

The FAO comparison reflects the confusion that results when comparing tabular 
data that apply differing criteria in defining forest change.  Deforestation is the 
conversion of natural forests to non-forest land uses; the clearing of the same natural 
forests followed by natural recovery or managed forestry is not deforestation and often 
goes undocumented, whether in the tropical or boreal domains.  Understanding where 
such changes occur is impossible given the current state of knowledge, i.e. the FAO FRA.  
While countries such as Canada and Indonesia both clear natural forests without 
conversion to non-forest land uses, Indonesia reports over 5,000km2 per year of forest 
area loss in the FRA while Canada reports no change.  Consistent, transparent and spatio-
temporally explicit quantification of natural and managed forest change is required to 
fully understand forest change from a biophysical and not solely forest land use 
perspective.   
Recent global forest mapping research 

The FAO and others have turned to earth observation data, specifically Landsat 
imagery, to provide a more consistent depiction of global forest change. Sample-based 
methods have enabled national to global scale estimation of forest extent and change 
(35,2,3).  Such methods result in tabular aggregated estimates for areas having sufficient 
sampling densities, but do not allow for local-scale area estimation or spatially explicit 
representation of extent and change.  While exhaustive land cover mapping using Landsat 

http://faostat.fao.org/
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data has been prototyped using single best-date image methods (36,37) based on the 
National Aeronautics and Space Administration (NASA)-United States Geological 
Survey (USGS) Global Land Survey data set (38), data mining of the Landsat archive to 
quantify global forest cover change has not been implemented until this study.   
Validation  

The validation exercise was performed independently of the mapping exercise.  Areas 
of forest loss and gain were validated using a probability-based stratified random sample 
of 120m blocks per biome. Boreal forest, temperate forest, humid tropical forest and dry 
tropical forest biomes and other land constituted the five major strata, and were taken 
from our previous study on global forest cover loss (2). The map product was used to 
create three sub-strata per biome: no change, loss and gain. The sample allocation for 
each biome was 150 blocks for no change, 90 for change and 60 for gain (1,500 blocks 
total). Each 120m sample block was interpreted into quartiles of reference change as gain 
or loss (i.e., the proportion of gain or loss was interpreted as 0, 0.25, 0.50, 0.75, or 1), 
where reference change was obtained as follows.  Image interpretation of time-series 
Landsat, MODIS and very high spatial imagery from GoogleEarth, where available, was 
performed in estimating reference change for each sample block.  Forest loss estimated 
from the validation reference data set totaled 2.2Mkm2 (SE of 0.3Mkm2) compared to the 
map total of 2.3Mkm2. Forest gain estimated from the validation sample totaled 0.9Mkm2 
(SE of 0.2 Mkm2) compared to the map total of 0.8Mkm2.  Fig. S5 shows the results as 
mean map and validation change per block for the globe and per FAO climate domain.   
Fig. S6 illustrates the mean per block difference of the map and reference loss and gain 
estimates.  Comparable map and reference loss and gain results were achieved at the 
global and climate domain scales.   

Estimated error matrices and accuracy summary statistics are shown in Tab. S5.  For 
loss, user’s and producer’s accuracies are balanced and greater than 80% per climate 
domain and the globe as a whole.   Results for forest gain indicate a possible 
underestimate of tropical forest gain with a user’s accuracy of 82% and a producer’s 
accuracy of 48%.  However, the 95% confidence interval for the bias of tropical forest 
gain (expressed as a % of land area) is 0.01% to 0.35%, indicating high uncertainty in the 
validation estimate.  A possible overestimate of boreal forest gain is also indicated.  
Overall, the comparison of individually interpreted sample sites with the algorithm output 
illustrates a robust product at the 120m pixel scale.   

The annual allocation of change was validated using annual growing season NDVI 
imagery from the MODIS sensor.   All validation sample blocks were interpreted and if a 
single, unambiguous drop in NDVI was observed in the MODIS NDVI time series, a year 
of disturbance was assigned.   Only 56% of the validation sample blocks were thus 
assigned.  The sample blocks interpreted represented 46% of the total forest loss mapped 
with the Landsat imagery, a fraction similar to the 50% ratio of MODIS to Landsat-
detected change in a previous global forest cover loss study (39).  For the interpreted 
blocks, the mean deviation of the loss date was 0.06 years and the mean absolute 
deviation was 0.29 years.  The year of disturbance matched for 75.2% of the forest loss 
events and 96.7% of the loss events occurred within one year before or after the estimated 
year of disturbance. 

A second evaluation of forest change was made using LiDAR (light detection and 
ranging) data from NASA’s GLAS (Geoscience Laser Altimetry System) instrument 
onboard the IceSat-1 satellite.  Global GLAS release 28 (L1A Global Altimetry Data and 
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the L2 Global Land Surface Altimetry Data) data were screened for quality and viable 
GLAS shots used to calculate canopy height (40).  For forest loss, GLAS shots co-located 
with Landsat forest loss by pixel were identified.  The Landsat-estimated year of 
disturbance was subtracted from the year of the GLAS shots and populations of ‘year 
since disturbance’ created.  Significant differences in height before and after Landsat-
derived forest loss indicate both a reasonable approximation of forest loss and year of 
disturbance.  Fig. S7 shows the results by ecozone, all of which passed Wilcoxon-Mann-
Whitney significance tests (non-parametric alternative of t-test) for pairs of +1\-1 and 
+2\-2 years. 

Forest gain was not allocated annually, but over the entire study period.  To compare 
GLAS-derived change in height with Landsat-derived gain, gain-identified pixels with no 
tree cover for year 2000 and co-located with GLAS data were analyzed.  Additionally, 
only clustered gain was analyzed, specifically sites where six out of nine pixels within a 
3x3 kernel were labeled as forest gain. Fig. S8 illustrates the results.  All climate domains 
except for the boreal passed Wilcoxon-Mann-Whitney significance tests for 2004 and 
2008, the beginning and end years for GLAS data collection.  The growth-limiting 
climate of the boreal domain would preclude the observation of regrowth over such a 
short period. 

 



Table S1. Climate domain tree cover extent, loss and gain summary statistics (km2), ranked by total loss. 
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Total 
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Treecover 2000 Loss within treecover Total loss 
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land area 
(excluding 
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>25% tree 
cover loss 
/ year 
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>25% tree 
cover (%) 
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>50% tree 
cover loss 
/ year 
2000 
>50% tree 
cover (%) 
 
n) 

>75% tree 
cover loss 
/ year 
2000 
>75% tree 
cover (%) 
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Total gain 
/ year 
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>50% tree 
cover (%) 
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>50% loss 
+ total 
gain / 
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>50% tree 
cover (%) 
 
q) 

Previous 
column less 
double 
counting 
pixels with 
both loss 
and gain (%)   
r) 

<25% 
 
 
 
 
d) 

26-50% 
 
 
 
 
e) 

51-75% 
 
 
 
 
f) 

76-100% 
 
 
 
 
g) 

<25% 
 
 
 
 
h) 

26-50% 
 
 
 
 
i) 

51-75% 
 
 
 
 
j) 

76-100% 
 
 
 
 
k) 

Tropical 1105786 247233 35866276 4175597 3524230 13241470 85479 125921 180106 714278 1.9 4.9 5.3 5.4 1.5 6.8 6.3 
Boreal 606841 207100 11066215 2988449 3782283 4360312 51285 114990 147631 292935 2.7 5.0 5.4 6.7 2.5 8.0 7.9 
Subtropical 305835 194103 19087918 769954 829023 1830148 37924 28761 32363 206787 1.4 7.8 9.0 11.3 7.3 16.3 13.8 
Temperate 273390 155989 20938580 676500 1195036 4080868 7856 11588 25881 228064 1.0 4.5 4.8 5.6 3.0 7.8 7.5 
                  
Total 2291851 804425 86958989 8610500 9330573 23512797 182544 281261 385982 1442065 1.8 5.1 5.6 6.1 2.4 8.0 7.5 



Table S2.  Ecozone tree cover extent, loss and gain summary statistics (km2), ranked by total loss. 

 

Ecozones by vegetation realm 
AFR – Africa 
AUS – Australia/Oceania 
EAS –Eurasia 
NAM – North America 
SAM – South America 
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Total 
Loss 
 
 
 
 
b) 

Total 
Gain 
 
 
 
 
c) 

Treecover 2000 Loss within treecover Total loss 
/ total 
land area 
(excluding 
water) (%) 
 
 
l) 

>25% tree 
cover loss 
/ year 
2000 
>25% tree 
cover (%) 
 
m) 

>50% tree 
cover loss 
/ year 
2000 
>50% tree 
cover (%) 
 
n) 

>75% tree 
cover loss 
/ year 
2000 
>75% tree 
cover (%) 
 
o) 

Total gain 
/ year 
2000 
>50% tree 
cover (%) 
 
 
p) 

>50% loss 
+ total 
gain / 
2000 
>50% tree 
cover (%) 
 
q) 

Previous 
column less 
double 
counting 
pixels with 
both loss 
and gain (%)   
r) 

<25% 
 
 
 
 
d) 

26-50% 
 
 
 
 
e) 

51-75% 
 
 
 
 
f) 

76-100% 
 
 
 
 
g) 

<25% 
 
 
 
 
h) 

26-50% 
 
 
 
 
i) 

51-75% 
 
 
 
 
j) 

76-100% 
 
 
 
 
k) 

SAM   Tropical rainforest 253435 33042 678685 100431 131817 5607324 2125 3847 10919 236544 3.9 4.3 4.3 4.2 0.6 4.9 4.7 
EAS   Boreal coniferous forest 229331 124488 1774827 904244 1577094 1831760 15280 29602 50285 134164 3.8 5.0 5.4 7.3 3.7 9.1 9.0 
EAS   Tropical rainforest 228011 104488 563048 116976 275092 1661696 2666 2856 15050 207438 8.7 11.0 11.5 12.5 5.4 16.9 14.4 
SAM   Tropical moist deciduous 
forest 162095 33615 2456904 379932 404571 1003315 17675 25214 36530 82676 

3.8 8.1 8.5 8.2 2.4 10.9 10.2 

EAS   Boreal mountain system 143573 36555 2266444 756678 1000381 1048086 23000 30952 38751 50869 2.8 4.3 4.4 4.9 1.8 6.2 6.1 
NAM   Subtropical humid forest 122915 103420 399595 55264 65639 522260 854 1582 6486 113993 11.8 19.0 20.5 21.8 17.6 38.1 31.2 
NAM   Boreal coniferous forest 120804 39978 314668 264683 474734 917683 3223 21444 22386 73751 6.1 7.1 6.9 8.0 2.9 9.8 9.5 
AFR   Tropical rainforest 96848 24575 511549 752270 742393 1941290 2272 10590 28693 55293 2.5 2.8 3.1 2.8 0.9 4.0 3.7 
SAM   Tropical dry forest 88784 3032 898296 382134 231661 150647 10581 30683 29104 18416 5.3 10.2 12.4 12.2 0.8 13.2 13.1 
AFR   Tropical moist deciduous 
forest 84719 3649 2370104 1331743 845218 40070 27852 28032 25474 3361 

1.8 2.6 3.3 8.4 0.4 3.7 3.5 

NAM   Temperate mountain system 82998 39105 791649 107937 153970 891664 2385 4274 6475 69864 4.3 7.0 7.3 7.8 3.7 11.0 10.7 
NAM   Boreal tundra woodland 63370 4342 924788 659389 405281 284991 3266 21744 20580 17779 2.8 4.5 5.6 6.2 0.6 6.2 6.2 
EAS   Temperate continental forest 63068 48939 3126680 210065 500447 1003265 1118 2023 9041 50886 1.3 3.6 4.0 5.1 3.3 7.2 7.1 
NAM   Temperate continental 
forest 56749 26139 731687 80291 131018 1000282 216 549 2045 53939 

2.9 4.7 4.9 5.4 2.3 7.3 6.9 

EAS   Subtropical humid forest 44693 17066 989723 193841 339619 469305 1208 1962 10323 31200 2.2 4.3 5.1 6.6 2.1 7.2 6.6 
NAM   Boreal mountain system 39485 1332 568948 180517 189178 233314 1145 8887 13879 15573 3.4 6.4 7.0 6.7 0.3 7.3 7.3 
AFR   Tropical dry forest 33259 3298 3076095 412938 125125 19520 11240 11866 7820 2332 0.9 3.9 7.0 11.9 2.3 9.3 8.2 
EAS   Tropical moist deciduous 
forest 28166 7837 739252 91874 189904 298608 1829 1938 6724 17674 

2.1 4.5 5.0 5.9 1.6 6.6 6.2 

NAM   Tropical moist deciduous 
forest 25169 8174 284373 55814 73719 247384 737 1413 3932 19087 

3.8 6.5 7.2 7.7 2.5 9.7 9.4 

NAM   Tropical rainforest 22777 2641 97950 23299 36653 253265 202 470 1770 20334 5.5 7.2 7.6 8.0 0.9 8.5 8.4 
EAS   Temperate oceanic forest 19089 13471 929909 40517 84314 216456 379 640 2583 15488 1.5 5.5 6.0 7.2 4.5 10.5 10.0 
EAS   Temperate mountain system 19037 8892 4100378 101904 174080 568263 995 1449 2534 14058 0.4 2.1 2.2 2.5 1.2 3.4 3.4 
NAM   Subtropical mountain system 18861 5631 370255 56439 45414 117601 2137 2207 2500 12018 3.2 7.6 8.9 10.2 3.5 12.4 11.5 
SAM   Subtropical humid forest 17149 25269 971549 38429 40670 132183 491 648 1350 14660 1.4 7.9 9.3 11.1 14.6 23.9 20.5 
SAM   Tropical mountain system 15624 4700 1154706 64730 90321 559185 561 799 1303 12961 0.8 2.1 2.2 2.3 0.7 2.9 2.7 
EAS   Tropical mountain system 14459 5388 301136 34772 93240 350957 304 495 2473 11189 1.9 3.0 3.1 3.2 1.2 4.3 3.9 
EAS   Tropical dry forest 13952 1755 1181479 74787 75701 67938 1575 1586 3699 7093 1.0 5.7 7.5 10.4 1.2 8.7 8.5 
AFR   Tropical mountain system 12236 4813 1098346 176193 80558 107352 1040 2161 3400 5635 0.8 3.1 4.8 5.2 2.6 7.4 6.8 
EAS   Subtropical dry forest 10987 5120 734840 62992 48342 87437 1515 1729 2677 5066 1.2 4.8 5.7 5.8 3.8 9.5 8.7 



AUS   Tropical rainforest 9972 3374 48615 20176 30783 687847 65 97 345 9465 1.3 1.3 1.4 1.4 0.5 1.8 1.7 
EAS   Subtropical mountain system 9695 4213 3012481 116266 177782 285763 726 1155 2571 5243 0.3 1.5 1.7 1.8 0.9 2.6 2.5 
EAS   Boreal tundra woodland 8300 286 1081882 150336 86494 15996 4393 1951 1432 524 0.6 1.5 1.9 3.3 0.3 2.2 2.2 
SAM   Subtropical dry forest 8256 10797 57044 5787 6298 30265 49 84 269 7854 8.3 19.4 22.2 26.0 29.5 51.7 42.5 
AUS   Subtropical humid forest 6488 5983 130692 22580 30269 90635 82 206 394 5806 2.4 4.5 5.1 6.4 4.9 10.1 8.5 
AUS   Temperate oceanic forest 5439 5786 108801 6052 13996 82774 24 54 216 5146 2.6 5.3 5.5 6.2 6.0 11.5 9.6 
AFR   Subtropical mountain system 5180 5137 390362 9522 6115 5316 295 536 1898 2451 1.3 23.3 38.0 46.1 44.9 83.0 58.1 
AUS   Subtropical dry forest 4234 3902 81757 17375 10024 12111 417 1037 886 1894 3.5 9.7 12.6 15.6 17.6 30.2 25.4 
AUS   Temperate mountain system 4220 2269 94608 14214 21282 60561 35 68 257 3860 2.2 4.4 5.0 6.4 2.8 7.8 6.8 
SAM   Temperate oceanic forest 3292 3510 107543 8332 23900 90484 41 15 45 3192 1.4 2.6 2.8 3.5 3.1 5.9 4.9 
NAM   Tropical dry forest 3177 870 142817 31827 25026 22140 283 616 1151 1127 1.4 3.7 4.8 5.1 1.8 6.7 6.6 
NAM   Temperate oceanic forest 2854 2317 14521 1511 1900 20962 7 12 35 2801 7.3 11.7 12.4 13.4 10.1 22.5 20.1 
NAM   Tropical mountain system 2832 522 123244 30126 31947 72471 113 236 448 2035 1.1 2.0 2.4 2.8 0.5 2.9 2.8 
AFR   Subtropical dry forest 1864 880 308429 10588 7605 8179 224 341 526 772 0.6 6.2 8.2 9.4 5.6 13.8 12.9 
NAM   Subtropical dry forest 1717 723 67075 3801 3009 12153 128 170 238 1181 2.0 8.4 9.4 9.7 4.8 14.1 13.0 
AFR   Subtropical humid forest 1556 1229 58127 14101 8704 3540 74 160 517 805 1.8 5.6 10.8 22.7 10.0 20.8 15.0 
AUS   Tropical mountain system 751 317 7778 3977 7622 101354 4 9 46 691 0.6 0.7 0.7 0.7 0.3 1.0 0.9 
AUS   Tropical dry forest 707 379 414034 31011 7067 8741 312 222 82 91 0.2 0.8 1.1 1.0 2.4 3.5 2.1 
AUS   Tropical moist deciduous 
forest 375 94 10919 7706 10154 25954 4 7 46 317 

0.7 0.8 1.0 1.2 0.3 1.3 1.2 

SAM   Temperate mountain system 248 142 52497 1603 3662 17420 15 3 8 221 0.3 1.0 1.1 1.3 0.7 1.8 1.7 
SAM   Subtropical mountain system 147 119 226487 2143 1706 7185 8 3 7 129 0.1 1.3 1.5 1.8 1.3 2.9 2.6 
 



Table S3.  Country tree cover extent, loss and gain summary statistics (km2), ranked by total loss. 
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Total 
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d) 
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e) 
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f) 

76-100% 
 
 
 
 
g) 

<25% 
 
 
 
 
h) 

26-50% 
 
 
 
 
i) 

51-75% 
 
 
 
 
j) 

76-100% 
 
 
 
 
k) 

Russia 365015 162292 8414687 1846554 2707260 3304608 43907 62789 88346 169972 2.2 4.1 4.3 5.1 2.7 7.0 7.0 
Brazil 360277 75866 3118579 509317 464530 4292417 23699 30816 43577 262185 4.3 6.4 6.4 6.1 1.6 8.0 7.5 
United States 263944 138082 6294153 424662 462709 1982786 9274 17956 30306 206408 2.9 8.9 9.7 10.4 5.6 15.3 13.4 
Canada 263943 91071 4141357 1068282 1074635 2167262 6860 44780 46295 166007 3.1 6.0 6.5 7.7 2.8 9.4 9.1 
Indonesia 157850 69701 252964 68334 141996 1411892 1558 1611 8887 145795 8.4 9.6 10.0 10.3 4.5 14.4 12.4 
China 61130 22387 7565646 387994 694764 618901 2250 3955 17457 37469 0.7 3.5 4.2 6.1 1.7 5.9 5.5 
DRCongo 58963 13926 175163 469228 453121 1190506 917 4863 12362 40821 2.6 2.7 3.2 3.4 0.8 4.1 3.8 
Australia 58736 14142 7209820 209287 79484 177890 28168 17318 2335 10915 0.8 6.6 5.1 6.1 5.5 10.6 9.1 
Malaysia 47278 25798 32061 5538 17263 272365 289 309 1818 44862 14.4 15.9 16.1 16.5 8.9 25.0 20.6 
Argentina 46958 6430 2352414 170266 125227 105950 5039 14574 14378 12966 1.7 10.4 11.8 12.2 2.8 14.6 13.9 
Paraguay 37958 510 146165 110139 64482 75473 1230 12592 11751 12385 9.6 14.7 17.2 16.4 0.4 17.6 17.6 
Bolivia 29867 1736 424460 75142 96512 478387 464 1340 4295 23768 2.8 4.5 4.9 5.0 0.3 5.2 5.1 
Sweden 25533 15281 130774 42494 85855 153996 95 302 1790 23346 6.2 9.0 10.5 15.2 6.4 16.9 16.6 
Colombia 25193 5516 302224 41544 61240 721695 315 619 1943 22315 2.2 3.0 3.1 3.1 0.7 3.8 3.7 
Mexico 23862 6333 1391412 131003 126317 294988 1919 2013 4042 15887 1.2 4.0 4.7 5.4 1.5 6.2 6.0 
Mozambique 21552 1446 403453 266480 101514 3414 3078 10181 7818 476 2.8 5.0 7.9 13.9 1.4 9.3 8.8 
Tanzania 19903 3041 544450 243832 84708 12320 5111 7880 5740 1173 2.2 4.3 7.1 9.5 3.1 10.3 9.5 
Finland 19516 10849 85929 36353 78775 104264 74 263 1684 17496 6.4 8.9 10.5 16.8 5.9 16.4 16.3 
Angola 19320 638 612241 314210 281472 37883 4423 6556 6579 1762 1.6 2.4 2.6 4.7 0.2 2.8 2.8 
Peru 15288 1910 498646 14200 23555 744591 80 101 245 14863 1.2 1.9 2.0 2.0 0.2 2.2 2.1 
Myanmar 14958 3149 227580 37863 123465 274434 556 896 3991 9514 2.3 3.3 3.4 3.5 0.8 4.2 3.9 
Cote d'Ivoire 14889 2298 139172 116351 58468 5111 2893 3830 6953 1213 4.7 6.7 12.8 23.7 3.6 16.5 15.5 
Madagascar 14659 4051 402077 64144 63773 58637 1382 2490 4900 5888 2.5 7.1 8.8 10.0 3.3 12.1 10.8 
Zambia 13163 181 419962 224188 91539 429 3460 5562 3918 223 1.8 3.1 4.5 52.0 0.2 4.7 4.7 
Venezuela 12958 1910 328461 33724 43779 493663 695 993 2389 8881 1.4 2.1 2.1 1.8 0.4 2.5 2.4 
Cambodia 12595 1096 86064 16785 16401 58431 484 748 2478 8884 7.1 13.2 15.2 15.2 1.5 16.6 16.1 
Vietnam 12289 5643 152816 22284 40869 106971 660 637 2247 8744 3.8 6.8 7.4 8.2 3.8 11.3 10.5 
Laos 12084 3379 34908 11904 36244 144908 384 422 1861 9417 5.3 6.1 6.2 6.5 1.9 8.1 7.2 
Thailand 12049 4992 301598 25899 69216 110454 1402 1050 2985 6612 2.4 5.2 5.3 6.0 2.8 8.1 7.7 
Chile 11879 14611 546019 17728 36107 142031 112 107 331 11329 1.6 6.0 6.5 8.0 8.2 14.7 12.2 



Nigeria 10239 603 772371 82016 44023 3125 5987 2670 1435 147 1.1 3.3 3.4 4.7 1.3 4.6 4.4 
South Africa 9526 8313 1145626 39602 20818 10826 678 1074 3365 4411 0.8 12.4 24.6 40.7 26.3 50.8 36.2 
India 8971 2549 2703530 112692 136677 167827 810 855 2117 5189 0.3 2.0 2.4 3.1 0.8 3.2 3.0 
Guatemala 8883 1094 29734 8709 11952 57571 105 323 1097 7357 8.2 11.2 12.2 12.8 1.6 13.7 13.4 
Nicaragua 8225 662 39402 8527 12384 58289 109 230 650 7236 6.9 10.2 11.2 12.4 0.9 12.1 12.0 
France 7664 5062 373705 19842 37021 115684 209 330 1149 5977 1.4 4.3 4.7 5.2 3.3 8.0 7.6 
Spain 6908 4482 386553 36472 28533 52468 676 982 1698 3552 1.4 5.3 6.5 6.8 5.5 12.0 11.4 
New Zealand 6883 7102 149606 5653 14375 93838 24 22 126 6711 2.6 6.0 6.3 7.2 6.6 12.9 10.7 
Papua New Guinea 6337 2308 27933 11647 23295 396660 29 35 197 6076 1.4 1.5 1.5 1.5 0.5 2.0 1.9 
Philippines 6227 2726 102570 15788 33051 141108 84 90 485 5569 2.1 3.2 3.5 3.9 1.6 5.0 4.7 
Poland 5829 5041 201808 11013 30655 64857 79 163 814 4773 1.9 5.4 5.8 7.4 5.3 11.1 10.7 
Ukraine 5657 3529 470946 19510 28312 68474 150 234 900 4372 1.0 4.7 5.4 6.4 3.6 9.1 8.8 
Ghana 5406 1345 153157 36659 40464 2074 911 1099 2863 533 2.3 5.7 8.0 25.7 3.2 11.1 10.3 
Ecuador 5246 1027 62024 12832 20737 158764 58 118 373 4697 2.1 2.7 2.8 3.0 0.6 3.4 3.3 
Portugal 4987 2866 64476 8726 6753 9147 459 784 1246 2497 5.6 18.4 23.5 27.3 18.0 41.6 36.1 
Germany 4890 2585 226231 10219 25175 91960 61 79 457 4294 1.4 3.8 4.1 4.7 2.2 6.3 6.1 
Honduras 4860 582 32713 11870 14297 52664 84 238 560 3978 4.4 6.1 6.8 7.6 0.9 7.6 7.6 
Cameroon 4816 651 120385 90110 77877 174702 548 691 1595 1981 1.0 1.2 1.4 1.1 0.3 1.7 1.6 
Mongolia 4779 103 1508028 26031 15552 3080 857 1514 1485 922 0.3 8.8 12.9 29.9 0.6 13.5 13.5 
Central African Republic 4719 395 101812 209547 238922 68765 226 910 1869 1714 0.8 0.9 1.2 2.5 0.1 1.3 1.3 
Japan 4303 2570 102902 9616 22119 233863 71 57 253 3924 1.2 1.6 1.6 1.7 1.0 2.6 2.5 
Belarus 4167 3755 112240 8835 25820 57913 26 89 547 3504 2.0 4.5 4.8 6.1 4.5 9.3 9.1 
Latvia 4120 1857 27713 2742 7086 26126 10 32 253 3825 6.5 11.4 12.3 14.6 5.6 17.9 17.6 
Liberia 3955 1084 1221 3783 54435 36117 7 96 2305 1547 4.1 4.2 4.3 4.3 1.2 5.5 4.9 
Guinea 3933 296 130230 91912 19736 1821 1251 1604 923 155 1.6 2.4 5.0 8.5 1.4 6.4 6.1 
Zimbabwe 3869 486 362829 21175 2132 799 2284 1018 353 214 1.0 6.6 19.3 26.8 16.6 35.9 29.2 
Uganda 3654 685 105539 67065 24230 8489 154 703 1118 1679 1.8 3.5 8.5 19.8 2.1 10.6 10.2 
Norway 3520 1729 187652 21453 35282 62297 18 37 214 3252 1.1 2.9 3.6 5.2 1.8 5.3 5.3 
Turkey 3426 1783 664081 24543 23040 59104 535 488 706 1697 0.4 2.7 2.9 2.9 2.2 5.1 4.7 
Benin 3307 69 108992 5962 81 8 2835 405 59 8 2.9 7.8 75.3 100.0 77.5 152.8 143.8 
Chad 3306 1 1257866 9549 72 0 2914 382 10 0 0.3 4.1 13.9 - 1.4 15.3 15.3 
Kenya 3059 1005 530692 20815 9271 9636 732 587 612 1129 0.5 5.9 9.2 11.7 5.3 14.5 13.8 
Republic of Congo 2993 467 52860 46265 25236 214202 101 272 803 1819 0.9 1.0 1.1 0.8 0.2 1.3 1.2 
Ethiopia 2821 625 968731 100537 33866 20399 375 947 828 671 0.3 1.6 2.8 3.3 1.2 3.9 3.8 
United Kingdom 2689 2111 203651 8793 14394 15185 84 167 478 1960 1.1 6.8 8.2 12.9 7.1 15.4 14.9 
Panama 2675 323 16563 3089 4854 49687 35 69 262 2308 3.6 4.6 4.7 4.6 0.6 5.3 5.2 
Romania 2307 1530 154828 7088 10939 62836 20 25 103 2158 1.0 2.8 3.1 3.4 2.1 5.1 5.0 
Estonia 2179 894 16601 2052 5085 19569 5 11 126 2036 5.0 8.1 8.8 10.4 3.6 12.4 12.3 
Uruguay 2027 4985 157077 3568 5359 8522 26 73 282 1646 1.2 11.5 13.9 19.3 35.9 49.8 45.2 
Austria 2015 658 39299 2743 7205 33933 11 22 130 1853 2.4 4.6 4.8 5.5 1.6 6.4 6.3 
Burkina Faso 1993 0 274158 11 0 0 1987 5 0 0 0.7 45.5 - - - - - 
Sierra Leone 1967 451 11320 24844 33463 2424 24 240 1231 472 2.7 3.2 4.7 19.5 1.3 6.0 5.6 
Dominican Republic 1929 393 21365 4064 4619 17744 72 120 276 1462 4.0 7.0 7.8 8.2 1.8 9.5 9.4 



Gabon 1891 391 11898 8112 10885 230775 27 110 285 1469 0.7 0.7 0.7 0.6 0.2 0.9 0.8 
Lithuania 1845 1226 40296 1889 5303 16472 9 20 160 1655 2.9 7.8 8.3 10.0 5.6 14.0 13.7 
Cuba 1725 2271 68008 4982 7388 28775 90 126 295 1214 1.6 4.0 4.2 4.2 6.3 10.5 10.4 
Mali 1694 0 1247103 1007 3 0 1650 40 3 0 0.1 4.3 100.0 - 0.0 100.0 100.0 
Costa Rica 1653 382 11327 2752 5663 31183 28 68 200 1356 3.2 4.1 4.2 4.3 1.0 5.3 5.1 
Czech Republic 1646 1331 46934 2445 6429 22264 14 25 197 1410 2.1 5.2 5.6 6.3 4.6 10.2 10.0 
South Sudan 1635 38 460581 128358 39278 1773 567 629 356 83 0.3 0.6 1.1 4.7 0.1 1.2 1.1 
North Korea 1605 137 67695 12808 31773 9164 96 262 837 411 1.3 2.8 3.0 4.5 0.3 3.4 3.4 
Italy 1603 898 201331 13199 19020 64805 113 105 244 1142 0.5 1.5 1.7 1.8 1.1 2.7 2.5 
Greece 1566 356 91341 10219 8443 21132 188 181 311 886 1.2 3.5 4.0 4.2 1.2 5.3 5.1 
South Korea 1463 271 43787 9776 28496 16694 230 215 560 458 1.5 2.2 2.3 2.7 0.6 2.9 2.8 
Malawi 1290 103 71949 19030 2967 163 399 540 309 43 1.4 4.0 11.2 26.4 3.3 14.5 13.8 
Slovakia 1237 523 24608 1245 2814 20170 6 11 67 1153 2.5 5.1 5.3 5.7 2.3 7.6 7.4 
Belize 1206 128 4073 437 675 16434 5 10 35 1155 5.6 6.8 7.0 7.0 0.7 7.7 7.5 
Hungary 1107 1350 71070 2658 3705 14263 12 19 84 992 1.2 5.3 6.0 7.0 7.5 13.5 13.0 
Sri Lanka 985 264 24684 4952 9285 26177 64 77 294 551 1.5 2.3 2.4 2.1 0.7 3.1 3.0 
Guyana 915 114 18733 1096 1319 187681 4 6 14 890 0.4 0.5 0.5 0.5 0.1 0.5 0.5 
Senegal 832 2 192538 1723 20 1 806 23 3 0 0.4 1.5 14.3 0.0 9.5 23.8 23.8 
Kazakhstan 828 239 2628744 13973 13954 17598 329 196 125 178 0.0 1.1 1.0 1.0 0.8 1.7 1.7 
Bulgaria 779 678 68662 3910 6653 32070 18 20 71 670 0.7 1.8 1.9 2.1 1.8 3.7 3.4 
Ireland 778 1238 60220 2358 3492 2899 26 38 122 592 1.1 8.6 11.2 20.4 19.4 30.5 29.0 
Togo 768 24 48707 6809 1270 5 383 333 50 2 1.4 4.8 4.1 40.0 1.9 6.0 5.8 
Swaziland 747 603 11310 3962 1386 597 48 84 204 412 4.3 11.8 31.1 69.0 30.4 61.5 41.9 
Algeria 743 325 2294657 4212 3989 4967 67 136 211 329 0.0 5.1 6.0 6.6 3.6 9.7 9.5 
Suriname 724 70 4791 420 567 138564 2 4 9 708 0.5 0.5 0.5 0.5 0.1 0.6 0.5 
Guinea-Bissau 676 65 18081 11875 3106 35 164 315 186 11 2.0 3.4 6.3 31.4 2.1 8.3 7.9 
Solomon Islands 630 203 528 122 441 26825 3 1 5 621 2.3 2.3 2.3 2.3 0.7 3.0 2.8 
Belgium 601 373 21609 1139 2011 5756 7 11 59 524 2.0 6.7 7.5 9.1 4.8 12.3 11.9 
El Salvador 567 86 9961 2231 3309 4710 25 56 206 280 2.8 5.3 6.1 5.9 1.1 7.1 7.1 
Bangladesh 543 70 108675 5560 8449 6965 15 23 116 389 0.4 2.5 3.3 5.6 0.5 3.7 3.7 
Denmark 533 322 35730 1281 2506 3105 8 13 68 444 1.3 7.6 9.1 14.3 5.7 14.9 14.5 
Croatia 454 265 31487 2890 3396 18892 53 35 40 326 0.8 1.6 1.6 1.7 1.2 2.8 2.8 
French Guiana 441 42 928 110 216 81317 1 1 4 435 0.5 0.5 0.5 0.5 0.1 0.6 0.6 
Equatorial Guinea 439 56 199 251 1864 24513 2 12 76 349 1.6 1.6 1.6 1.4 0.2 1.8 1.7 
Nepal 434 134 94352 9930 21761 21318 67 65 106 195 0.3 0.7 0.7 0.9 0.3 1.0 1.0 
Jamaica 329 68 3185 479 753 6545 7 9 28 285 3.0 4.1 4.3 4.4 0.9 5.2 5.2 
Morocco 315 196 405884 2870 2251 2110 58 65 85 107 0.1 3.6 4.4 5.1 4.5 8.9 8.8 
Albania 311 74 21128 1719 1711 3642 20 25 55 212 1.1 4.1 5.0 5.8 1.4 6.4 6.3 
Macedonia 296 104 16148 1234 1600 5359 11 11 31 244 1.2 3.5 4.0 4.6 1.5 5.4 5.0 
Haiti 286 48 17810 2494 2238 4334 19 42 76 148 1.1 2.9 3.4 3.4 0.7 4.1 4.1 
Serbia 267 356 49076 3338 5852 19132 5 4 13 245 0.3 0.9 1.0 1.3 1.4 2.5 2.4 
Taiwan 267 61 12174 1158 2368 20098 6 7 27 227 0.7 1.1 1.1 1.1 0.3 1.4 1.4 
Switzerland 227 104 24221 1255 3120 11363 3 3 19 201 0.6 1.4 1.5 1.8 0.7 2.2 2.2 



Burundi 204 36 16600 6956 1189 222 43 86 65 11 0.8 1.9 5.4 5.0 2.6 7.9 7.7 
Bosnia and Herzegovina 198 265 23549 2532 4225 20546 26 15 38 120 0.4 0.6 0.6 0.6 1.1 1.7 1.7 
Fiji 194 119 2205 1834 1857 12339 1 2 17 174 1.1 1.2 1.3 1.4 0.8 2.2 2.1 
East Timor 185 61 7265 1467 1871 4296 4 5 20 156 1.2 2.4 2.9 3.6 1.0 3.8 3.7 
Rwanda 178 71 16805 4966 1171 889 22 65 63 27 0.7 2.2 4.4 3.0 3.4 7.8 7.4 
Brunei 171 88 434 68 157 5066 2 1 7 161 3.0 3.2 3.2 3.2 1.7 4.9 4.3 
Netherlands 166 71 28258 1503 1896 2866 6 8 32 121 0.5 2.6 3.2 4.2 1.5 4.7 4.7 
Slovenia 162 35 6851 612 1304 11166 3 3 16 140 0.8 1.2 1.3 1.3 0.3 1.5 1.5 
Trinidad and Tobago 154 16 1188 111 168 3664 2 2 9 140 3.0 3.8 3.9 3.8 0.4 4.3 4.2 
Puerto Rico 141 64 3591 397 539 4381 10 7 19 105 1.6 2.5 2.5 2.4 1.3 3.8 3.8 
Bhutan 129 22 13772 2471 7040 16652 9 13 35 73 0.3 0.5 0.5 0.4 0.1 0.5 0.5 
Namibia 128 0 822966 122 5 1 104 21 3 0 0.0 18.8 50.0 0.0 0.0 50.0 50.0 
New Caledonia 125 57 3883 4303 3261 7254 7 24 37 57 0.7 0.8 0.9 0.8 0.5 1.4 1.4 
Gambia 111 0 10221 213 0 0 99 11 0 0 1.1 5.2 - - - - - 
Tunisia 103 115 152233 568 712 1074 13 12 20 58 0.1 3.8 4.4 5.4 6.4 10.8 10.6 
Pakistan 100 8 861788 4077 3320 3349 9 11 35 46 0.0 0.9 1.2 1.4 0.1 1.3 1.3 
Bahamas 95 8 8628 571 575 1995 3 6 10 75 0.8 2.9 3.3 3.8 0.3 3.6 3.6 
Syria 91 16 184360 319 366 455 10 10 17 54 0.0 7.1 8.6 11.9 1.9 10.6 10.5 
Georgia 90 48 37436 2601 4558 25006 5 3 11 71 0.1 0.3 0.3 0.3 0.2 0.4 0.4 
Kosovo 90 56 7064 494 959 2388 3 3 7 76 0.8 2.2 2.5 3.2 1.7 4.2 4.0 
Montenegro 77 70 6683 899 1309 4194 5 6 16 51 0.6 1.1 1.2 1.2 1.3 2.5 2.5 
Azerbaijan 76 9 71829 2175 2938 8193 9 8 17 43 0.1 0.5 0.5 0.5 0.1 0.6 0.6 
Somalia 76 3 631245 1191 146 11 44 22 9 1 0.0 2.4 6.4 9.1 1.9 8.3 8.3 
Sudan 69 0 1868187 2471 12 0 55 13 1 0 0.0 0.6 8.3 - 0.0 8.3 8.3 
Botswana 56 1 577110 529 13 0 47 9 0 0 0.0 1.7 0.0 - 7.7 7.7 7.7 
Iran 44 11 1600192 2553 5459 9996 10 5 13 15 0.0 0.2 0.2 0.2 0.1 0.3 0.3 
Luxembourg 44 27 1543 59 149 808 1 1 4 39 1.7 4.3 4.5 4.8 2.8 7.3 7.1 
Vanuatu 41 14 227 211 630 10997 0 0 2 38 0.3 0.3 0.3 0.3 0.1 0.5 0.5 
Moldova 41 63 29783 625 1033 2099 4 4 7 26 0.1 1.0 1.1 1.2 2.0 3.1 3.0 
Kyrgyzstan 35 5 185261 2969 2220 2085 12 4 6 12 0.0 0.3 0.4 0.6 0.1 0.5 0.5 
Lebanon 32 18 9695 268 249 191 8 5 8 11 0.3 3.4 4.3 5.8 4.1 8.4 8.2 
Reunion 31 31 673 489 573 742 1 3 15 12 1.3 1.7 2.1 1.6 2.4 4.4 4.1 
Israel 29 19 21626 149 104 77 9 4 7 9 0.1 6.1 8.8 11.7 10.5 19.3 19.3 
Mauritius 25 30 1020 326 216 292 2 5 8 11 1.3 2.9 3.7 3.8 5.9 9.6 9.1 
Egypt 24 50 974071 3726 140 6 9 8 6 1 0.0 0.4 4.8 16.7 34.2 39.0 39.0 
Cyprus 24 2 8057 572 385 231 8 5 5 7 0.3 1.4 1.9 3.0 0.3 2.3 2.3 
Martinique 22 5 351 45 81 629 1 1 2 19 2.0 2.9 3.0 3.0 0.7 3.7 3.5 
Armenia 21 13 24882 519 698 2252 2 1 3 15 0.1 0.5 0.6 0.7 0.4 1.1 1.1 
Afghanistan 20 3 641182 1064 729 755 2 4 8 6 0.0 0.7 0.9 0.8 0.2 1.1 1.1 
Guadeloupe 20 12 673 59 84 818 2 1 3 14 1.2 1.9 1.9 1.7 1.3 3.2 3.1 
Uzbekistan 15 5 433865 712 309 205 5 3 4 4 0.0 0.9 1.6 2.0 1.0 2.5 2.5 
Comoros 7 4 236 350 369 690 0 1 3 4 0.4 0.6 0.7 0.6 0.4 1.0 1.0 
Tajikistan 7 1 140238 507 131 63 4 1 1 1 0.0 0.4 1.0 1.6 0.5 1.5 1.5 



 Turkmenistan 7 3 466423 69 33 25 2 2 1 2 0.0 3.9 5.2 8.0 5.2 10.3 10.3 
Libya 7 4 1615869 55 16 3 5 1 0 0 0.0 1.4 0.0 0.0 21.1 21.1 21.1 
Cape Verde 4 20 3862 41 13 24 3 0 0 1 0.1 1.3 2.7 4.2 54.1 56.8 56.8 
Iraq 3 3 442709 133 58 8 2 0 0 0 0.0 0.0 0.0 0.0 4.5 4.5 4.5 
Hong Kong 2 3 436 117 242 280 0 0 1 1 0.2 0.3 0.4 0.4 0.6 1.0 1.0 
Lesotho 2 2 30302 110 5 0 1 0 0 0 0.0 0.0 0.0 - 40.0 40.0 40.0 
Palestina 1 1 6019 5 2 1 1 0 0 0 0.0 0.0 0.0 0.0 33.3 33.3 33.3 
Oman 1 0 309101 0 0 0 1 0 0 0 0.0 - - - - - - 
Yemen 1 0 452043 2 0 0 1 0 0 0 0.0 0.0 - - - - - 
Niger 1 0 1183525 0 0 0 1 0 0 0 0.0 - - - - - - 
Mauritania 1 0 1040803 0 0 0 0 0 0 0 0.0 - - - - - - 
Eritrea 0 0 119719 0 0 0 0 0 0 0 0.0 - - - - - - 
Jordan 0 0 88670 9 11 5 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
United Arab Emirates 0 0 79190 0 0 0 0 0 0 0 0.0 - - - - - - 
Djibouti 0 0 21514 0 0 0 0 0 0 0 0.0 - - - - - - 
Saudi Arabia 0 0 1908357 0 0 0 0 0 0 0 0.0 - - - - - - 
Qatar 0 0 11214 0 0 0 0 0 0 0 0.0 - - - - - - 
Falkland Islands 0 0 11977 0 0 0 0 0 0 0 0.0 - - - - - - 
Kuwait 0 0 17384 0 0 0 0 0 0 0 0.0 - - - - - - 
Iceland 0 0 99299 0 0 0 0 0 0 0 0.0 - - - - - - 
Western Sahara 0 0 267282 0 0 0 0 0 0 0 0.0 - - - - - - 
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Fig. S1. 
National and climate-domain scale intercomparisons using ratio measures of aggregate 
forest change ((loss+gain)/2000 forest) versus percent of aggregate forest change that is 
forest loss (loss/(loss+gain)).  Countries exhibiting a statistically significant trend in 
forest loss during the study period are indicated (e.g. *** for p<0.05).  Only countries 
with >1000km2 of year 2000 >50% tree cover are shown.  For this figure, forest is 
defined as tree cover >50%.  Regional groupings are highlighted, with magenta= USA 
and Canada, green=Latin America, blue=Europe, red=Africa, brown=South Asia, 
purple=Southeast Asia, orange=East Asia, and cyan=Australia and Oceania.  Refer to 
Tab. S1 and S3 for values.  
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Fig. S2 
Ecozone and climate-domain scale intercomparisons using ratio measures of aggregate 
forest change ((loss+gain)/2000 forest) versus percent of aggregate forest change that is 
forest loss (loss/(loss+gain)).  Ecozones exhibiting a statistically significant trend in 
forest loss during the study period are indicated (e.g. *** for p<0.05).  For this figure, 
forest is defined as tree cover >50%.  Colors refer to climate domains; NAM=North 
America; SAM=South America; EAS=Eurasia; AFR=Africa; AUS=Australia and 
Oceania.  Refer to Tab. S1 and S2 for values. 
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Fig. S3 
FAO FRA net forest area change, 2000 to 2010, versus Landsat-derived net change, 2000 
to 2012.  Colors denote regional groupings of Fig. S2. 
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Fig. S4 
FAO FRA roundwood production in megatons of carbon totaled per country from 2000 
through 2011 versus total Landsat-derived forest area loss and gain from 2000 to 2012.  
Colors denote regional groupings of Fig. S2. 
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Fig. S5 
Sample-based estimation of forest cover loss and gain, including all tree cover strata in 
loss estimation.  Map is from the Landsat-derived map product.  Reference is from 
validation data derived from multi-source image interpretation.  Mean and two standard 
error range are shown at global and climate domain scales. 
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Fig. S6 
Sample-based difference of map minus reference forest loss and gain per block, including 
all tree cover strata in loss estimation.  Map is from the Landsat-derived map product.  
Reference is from validation data derived from multi-source image interpretation.  Mean 
and two standard error range are shown at global and climate domain scales. 
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Fig. S7 
GLAS-derived vegetation heights for Landsat-derived forest loss pixels.  GLAS median 
and quartiles are displayed by number of years from Landsat-estimated year of 
disturbance. 
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Fig. S8 
Median and quartile GLAS-derived vegetation heights for areas of Landsat-derived zero 
percent tree cover in 2000 that were mapped as forest gain within the 2000 to 2012 study 
period. 
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Table S4. 
Regression results for selected regions comparing 2000-2010 FAO FRA net change and 
2000-2011 FAO roundwood production versus 2000-2012 global Landsat-derived gross 
forest area gain minus gross forest area loss for two tree cover thresholds (>1% and 
>50%). 
 
 
Net area change    FRA vs. >1%  FRA vs. >50% 
      r2 slope  r2 slope 
Latin America (excluding Brazil)  0.63 0.68  0.70 0.91 
Africa (excluding DRC)   0.37 0.45  0.17 0.23 
Southeast Asia (excluding Indonesia)  0.28 0.19  0.26 0.18 
Europe (excluding Russia)   0.06 -0.16  0.02 -0.09 
 
Roundwood production   FRA vs. gain area FRA vs. loss area 
      r2   r2  
Latin America (excluding Brazil)  0.70   0.26  
Africa (excluding DRC)   0.15   0.11  
Southeast Asia (excluding Indonesia)  0.03   0.03  
Europe (excluding Russia)   0.69   0.68  
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Table S5.  
Accuracy assessment of 2000 to 2012 forest loss and gain at global and climate domain 
scales. 

 
Global (n=1500) 
 
Loss error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Loss  No Loss        Total  User’s (SE) 
Map   Loss  1.48    0.22           1.70  87.0 (2.8) 
 No Loss 0.20  98.10      98.30   99.8 (0.1) 
 Total  1.68   98.32  
 Producer’s 87.8 (2.8) 99.8 (0.1%)  
 
Overall accuracy = 99.6% (0.7%) 
 
 
Gain error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Gain  No Gain        Total  User’s (SE) 
Map   Gain  0.41    0.13           0.54  76.4 (0.6) 
 No Gain 0.14  99.32       99.46   99.9 (0.0) 
 Total  0.55  99.45  
 Producer’s 73.9 (0.7) 99.9 (0.0) 
 
Overall accuracy = 99.7% (0.6%) 
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Climate domains 
 
Tropical (n=628) 
 
Loss error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Loss  No Loss      Total  User’s (SE) 
Map   Loss  1.50    0.22           1.72  87.0 (4.7) 
 No Loss 0.30  97.98       98.28  99.7 (0.1)  
 Total  1.80  98.20 
 Producer’s 83.1 (5.3) 99.8 (0.1)  
 
Overall accuracy = 99.5 (0.1) 
 
 
Gain error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Gain  No Gain         Total  User’s (SE) 
Map   Gain  0.19    0.04              0.23  81.9 (8.8) 
 No Gain 0.21  99.56          99.77  99.8 (0.1) 
 Total  0.40  99.60 
 Producer’s 48.0 (8.6) 99.9 (0.1) 
 
Overall accuracy = 99.7 (0.1) 
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Subtropical (n=295) 
 
Loss error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Loss  No Loss       Total  User’s 
Map   Loss  0.56    0.15          0.70  79.3 (8.6) 
 No Loss 0.14  99.16      99.30  99.8 (0.1) 
 Total  0.70  99.30   
 Producer’s 79.4 (7.4) 99.8 (0.1) 
 
Overall accuracy = 99.7 (0.1) 
 
 
 
Gain error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Gain  No Gain         Total  User’s (SE) 
Map   Gain  0.71    0.12              0.83  85.5 (8.9) 
 No Gain 0.15  99.02          99.17  99.8 (0.1) 
 Total  0.86  99.14 
 Producer’s 82.4 (5.1) 99.9 (0.1) 
 
Overall accuracy = 99.7 (0.1) 
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Temperate  (n=298) 
 
Loss error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Loss  No Loss       Total  User’s (SE) 
Map   Loss  1.01    0.14          1.15  88.2 (5.4) 
 No Loss 0.07  98.79      98.85  99.9 (0.1) 
 Total  1.08  98.92   
 Producer’s 93.9 (4.1) 99.9 (0.1) 
 
Overall accuracy = 99.8 (0.1) 
 
 
 
Gain error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Gain  No Gain         Total  User’s (SE) 
Map   Gain  0.36    0.22              0.58  62.0 (15.0) 
 No Gain 0.11  99.31          99.42  99.9 (0.1) 
 Total  0.47  99.53 
 Producer’s 76.5 (14.5) 99.8 (0.1)  
 
Overall accuracy = 99.7 (0.1) 
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Boreal  (n=258) 
 
Loss error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Loss  No Loss       Total  User’s (SE) 
Map   Loss  3.47    0.47          3.94  88.0 (4.7) 
 No Loss 0.23  95.83      96.06  99.8 (0.1) 
 Total  3.70  96.30   
 Producer’s 93.9 (1.7) 99.5 (0.1) 
 
Overall accuracy = 99.3 (0.2) 
 
 
Gain error matrix expressed as percent of area (selected standard errors are shown in 
parentheses) 
    Reference 
   Gain  No Gain         Total  User’s (SE) 
Map   Gain  0.87    0.26              1.13  76.7 (11.8) 
 No Gain 0.01  98.85          98.86  99.9 (0.1) 
 Total  0.88  99.11 
 Producer’s 98.4 (1.1) 99.7 (0.1) 
 
Overall accuracy = 99.7 (0.1) 
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