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Abstract

There is increasing interest in measuring the overlap and/or incremental reach of
cross-media campaigns. The direct method is to use a cross-media panel but these
are expensive to scale across all media. Typically, the cross-media panel is too small
to produce reliable estimates when the interest comes down to subsets of the popula-
tion. An alternative is to combine information from a small cross-media panel with
a larger, cheaper but potentially biased single media panel. In this article, we de-
velop a data enrichment approach specifically for incremental reach estimation. The
approach not only integrates information from both panels that takes into account
potential panel bias, but borrows strength from modeling conditional dependence of
cross-media reaches. We demonstrate the approach with data from six campaigns
for estimating YouTube video ad incremental reach over TV. In a simulation directly
modeled on the actual data, we find that data enrichment yields much greater accu-
racy than one would get by either ignoring the larger panel, or by using it in a data
fusion.

1 Incremental online reach

People are spending an increasing amount of time on the internet which mo-
tivates marketers to increase their online ad presence (The Nielsen Company,
2011). The value of online advertising is reflected not only in the reach of those
ads, but also in their incremental reach: the number of consumers reached on-
line but not reached by other media such as television. Measurement of online
incremental reach can help advertisers optimize their mixed media campaigns.
See for example Collins and Doe (2009), Doe and Kudon (2010), and Jin et al.
(2012).

The ideal instrument to measure online incremental reach is a single source
panel (SSP) of consumers for whom online and televised viewing data are both
available along with demographic information (age, gender, income group and
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so on). Such single source panels can be very expensive to recruit and may then
be unavailable or available with a smaller than desired sample size.

A common alternative is to combine two single media panels. One may mea-
sure demographics and television reach, while the other measures demographics
and online reach. This approach is variously called statistical matching or data
fusion. D’Orazio et al. (2006) provide a comprehensive overview. Data fusion
can be approached as a missing data problem (Little and Rubin, 2009), for a
merged data matrix in which data from a collection of panels are stacked one
above the other (Rässler, 2004). One can, for example fit a model for TV view-
ership in one panel and use it to impute missing TV viewership information in
the other. The output of data fusion is a synthetic table merging demographics,
with both online and television exposures.

Strictly speaking, data fusion is impossible. We cannot deduce the joint
distribution of three quantities from the joint distributions of two, or even three,
pairs of those quantities. Data fusion is usually made under a strong assumption:
the chance that a given person is exposed to an online ad may depend on
their demographics, but conditionally on their demographics, it may not also
depend on their television exposure. That is, the two exposure variables are
conditionally independent given the subject’s demographics. This is called the
conditional independence assumption, or CIA.

An alternative to data fusion is to combine a small SSP with a larger panel
measuring just one of the reach variables, such as online reach, but not televi-
sion reach. This second panel may be recruited online and can be much larger
than the SSP. We call it the broad reach panel, or BRP for short. In this set-
ting the SSP gives some information on the conditional dependence of the reach
variables given demographics, which one can use to leverage the information
from the BRP. For example, Gilula et al. (2006) make use of such a strategy,
parameterizing the conditional dependence by an odds ratio that they estimate
from the SSP. This approach requires an assumption that the conditional de-
pendence between reach variables that we estimate from the SSP be the same
as the conditional dependence in the BRP. Given demographics, the two reach
variables should have an identical distribution in SSP and BRP. We call this
the identical distribution assumption, or IDA.

In the Google context, we have an SSP and a larger BRP. We have many
campaigns to consider and both the CIA and IDA will fail for some of them,
to varying and unknown degrees. To handle this we develop four estimators for
the incremental lift in our population: an unbiased one based on the SSP alone,
one that would be unbiased if the CIA held, one that would be unbiased under
the IDA, and one that would be unbiased under both assumptions. For these
alternative estimators to be accurate their bias does not have to be zero, it just
has to be small. The difficulty is in knowing how small is small enough, when
all we have to judge by are the data at hand. We make our predictions by using
a data dependent shrinkage that pulls the potentially biased estimators towards
the unbiased one.

When we deploy our algorithm, we also split our population into subpop-
ulations and apply shrinkage within each resulting subgroup. The process of
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forming these subgroups from data induces some bias, even for the SSP only
method. This is an algorithmic bias, not a sampling bias, and it is incurred as
part of a bias-variance tradeoff.

We take advantage of recent theoretical results in Chen et al. (2013) showing
that even biased data sets can always be used to improve regression models as
long as there are at least 5 regression coefficients to estimate and at least 10
degrees of freedom for error. This is similar to the well known result of Stein
(1956) in which the sample mean is inadmissible in 3 or more dimensions as an
estimator of the center of a Gaussian distribution.

An outline of this paper is as follows. We describe the data sources, the
notation and our problem formulation in Section 2. Section 3 shows the potential
for variance reduction available from using the CIA, IDA or both. The potential
variance reductions carry the risk of increased bias. Section 5 adapts the data
enrichment procedure to the incremental reach setting in order to make a data
driven bias-variance tradeoff. Section 6 shows in a realistic simulation that data
enrichment improves the accuracy of incremental reach estimates over the main
alternatives of ignoring the larger data set and using it for data fusion. Some
technical arguments are placed in the Appendix.

2 Notation and example data sets

We begin with our notation. For person i in the target population, the vector Xi

contains their demographic variables. These typically include gender, age, edu-
cation, and so on. Age and education are usually coded as ordered categorical
variables.

The variable Yi equals 1 if person i was reached by a television campaign,
and 0 otherwise. Similarly, the variable Zi is 1 if person i was reached by the
corresponding online campaign, and 0 otherwise. The derived variable Vi =
Zi(1− Yi) takes the value 1 if and only if person i is an incremental reach.

Given values (X,Y, Z) for everybody in the population, we would know the
online and televised reach as well as the incremental reach for every demographic
grouping. In particular, a person contributes to the incremental reach if and
only if V = 1, that is, the person saw the ad online but not on TV.

We use census data to get the proportions of people at each level of X in
the target population, such as a whole country, region or a demographic subset,
such as adults in New York state. We write p(x) for the fraction of people in the
target population with X = x. The possible values for x are given by the set X .
The census data has no information on Y and Z. If we did not know p(x) then
there would be some bias from the X distribution within the SSP and BRP
being different from the population. Our analyses use p-weighted combinations
of the data to remove this source of bias allowing us to focus on biases from
CIA or IDA not holding.

Our goal is to estimate incremental reach for arbitrary subsets of the popu-
lation, e.g. each demographic sector, that is IR(x) = Pr(V = 1|X = x) for some
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or all x ∈ X . We may factor IR(x) as

IR(x) = Pr(Z = 1 | X = x) Pr(Y = 0 | X = x, Z = 1). (1)

Both samples bear on the first factor in (1), while the second factor can only be
estimated from the SSP.

The SSP has a sample size of n and the BRP has a sample size of N . It is
useful to keep track of the fraction of our data values coming from each of these
two samples. These are f = n/(n+N) and F = N/(n+N) = 1−f respectively.

For our example, we study the incremental reach of online advertising over
television advertising for six household products. The SSP has 6322 panelists
recruited based on a probability sample from the target population. In addition
to Y and Z we measure the following demographic variables: age, gender, ed-
ucation and occupation. The age variable is ordinal with six levels: under 20,
21–30, 31–40, 41–50, 51–60, and over 60. We label these 1 through 6. The edu-
cation variable is also ordinal with 4 levels: below middle school, middle school,
high school, and beyond high school. Gender was coded as 1 for female and 2
for male. Occupation was coded as 1 for employed and 0 for not employed.

In addition to the SSP, there is a larger panel of 12,821 panelists for whom
we have the same demographic variables X, the online viewership Z, but not
the television viewership Y . In many Google contexts, the second data set
comes from logs or a panel recruited online. In this instance our BRP was
from a second probability sample. As such it might have somewhat smaller bias
relative to the BRP than what we would see in those other contexts. Our setting
is similar to that of Singh et al. (1993), except that in their case the (X,Y, Z)
sample is of lower fidelity to the population than the (X,Z) survey. Our data
structure is different from Gilula et al. (2006) in that we do not have a TV-only
panel which contains (X,Y ).

We track six advertising campaigns for these two panels. Three of the cam-
paigns are for laundry detergents. The others are a beer, a kind of salt and
Google’s own Chrome browser.

Table 2.1 summarizes overall web reach, TV reach and incremental reach
statistics for each campaign based on both SSP and BRP separately. Web
reach is much lower than TV reach, but the proportion of incremental reach
among web reach is quite high from 20% to 50%.

3 Potential gains from assumptions

In this section, we analyze the potential variance reductions available using
either the CIA, the IDA, or both of them at once. Making these assumptions
brings more data to bear on the problem and reduces variance. To the extent
that the assumptions are violated they introduce a bias. We will trade off bias
versus variance using cross-validation.

Our goal throughout is to estimate θ = Pr(V = 1) for an aggregate such as
the entire target population, or a subset thereof. We do not attempt to predict
which specific individuals have Vi = 1 when that is unknown. In our experience
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Campaign WEBS TVS IRS WEBB (IR/WEB)S

Soap 1 0.63 67.67 0.30 0.67 0.47
Soap 2 0.65 70.69 0.27 0.55 0.42
Soap 3 1.95 64.41 0.78 1.83 0.40
Beer 0.86 56.87 0.37 0.85 0.43
Salt 2.12 77.49 0.49 1.91 0.23
Chrome 11.87 67.87 3.49 12.32 0.29

Tab. 2.1: Summary statistics for 6 campaigns: web reach in SSP, TV reach in
SSP, incremental reach in SSP, and web reach in BRP, as percent-
ages. The final column shows the fraction of web reaches which are
incremental.

it is very hard to make reliable predictions for individuals, and moreover, the
marketing questions of interest have to do with aggregates.

Using the SSP alone we can estimate θ by θ̂S = V S, the average of Vi for
i ∈ S. This is the baseline method against which improvements will be measured.
The variance using the SSP alone is θ(1− θ)/n. Here, and below, we sometimes
abbreviate SSP to S and BRP to B which also have helpful mnemonics, S for
small data set and B for big data set.

Our methods for improvement are based on the decomposition

θ = Pr(Z = 1) Pr(Y = 0 | Z = 1).

Under the IDA, we can use the BRP data to get a better estimate of the first
factor, Pr(Z = 1). Under the CIA, we can get a better estimate of the second
factor Pr(Y = 0 | Z = 1).

3.1 Gain from the IDA alone

If the IDA holds, then we can estimate Pr(Z = 1) by the pooled average (nZ̄S +
NZ̄B)/(N + n) = fZ̄S + FZ̄B. Here Z̄S and Z̄B are averages of Zi over i ∈ S
and i ∈ B respectively. The IDA does not help us with Pr(Y = 0 | Z = 1)
because there are no Y values in the BRP. We estimate that factor by V̄S/Z̄S,
the fraction of online reaches in the SSP that are incremental reaches, arriving
at the estimate

θ̂I = (fZ̄S + FZ̄B)
V̄S
Z̄S
.

We adopt the convention that V̄S/Z̄S = 0 in those cases where Z̄S = 0. Such
cases automatically have V̄S = 0 too. This event has negligible probability when
n is large enough and θ is not too small. When the data are partitioned into
small subsamples (e.g., demographic groups) we may get some such 0s. In that
case our convention biases what is usually a small number down to zero. This
small bias is conservative.
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We use the delta method (Taylor expansion) to derive an approximation

ṽar(θ̂I) to var(θ̂I), in Section A.1 of the Appendix. The result is that

ṽar(θ̂I)

var(θ̂S)
= 1− F 1− pz

pz

θ

1− θ
,

where pz = PrS(Z = 1) = PrB(Z = 1). The IDA then affords us a big gain to
the extent that the BRP is large (so F is large), incremental reach is high (so
θ/(1− θ) is large) and online reach is small (so pz/(1− pz) is large).

Incremental reaches must also be online reaches, and so θ 6 pz. Therefore

ṽar(θ̂I)

var(θ̂S)
> 1− F θ

pz
> 1− F.

The first inequality will be close to an equality when pz and hence θ is small. For
our applications 1−Fθ/pz is a reasonable approximation to the variance ratio.
The second inequality reflects the fact that pooling the data cannot possibly be
better than what we would get with an SSP of size n+N .

From ṽar(θ̂I)/var(θ̂S) ≈ 1 − Fθ/pz we see that using the BRP is effectively
like multiplying the SSP sample size n by 1/(1−Fθ/pz). Our greatest precision
gains come when a high fraction of online reaches are incremental, that is, when
θ/pz is largest. In our application this proportion ranges from 20% to 50% when
aggregated to the campaign level. See Table 2.1 in Section 2.

3.2 Gain from the CIA alone

Here we evaluate the variance reduction that would follow from the CIA. In
that case, we could take advantage of the Z–Y independence, and estimate θ
by

θ̂C = Z̄S(1− ȲS).

It is shown in the Appendix that the delta method variance of θ̂C satisfies

ṽar(θ̂C)

var(θ̂S)
= 1− py(1− pz)

1− θ
> 1− py, (2)

when the CIA holds. This can represent a dramatic improvement, when the
online reach pz and incremental reach θ are both small while the TV reach py is
large. If the CIA holds, our application data suggest the variance reduction can
be from 50% to 80%. The reverse setting with tiny TV reach and large online
reach would not be favorable to θ̂C, but our data are not of that type.

3.3 Gain from the CIA and IDA

Finally, suppose that both the CIA and IDA hold. If we apply both assumptions,
we can get the estimator θ̂I,C = (fZ̄S + FZ̄B)(1 − ȲS). We already gain a lot
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from the CIA, so it is interesting to see how much more the IDA adds when the
CIA holds. We show in the Appendix that under both assumptions,

ṽar(θ̂I,C)

ṽar(θ̂C)
=
f(1− py)(1− pz) + pypz

(1− py)(1− pz) + pypz
.

If both reaches are high then we gain little, but if both reaches are small then
we reduce the variance by almost a factor of f , when adding the IDA to the
CIA. In our case we expect that the television reach is large but the online reach
is small, fitting neither of these extremes. Consider a campaign with f = 1/3,
py = 2/3 and pz = 99/100, similar to the soap campaigns. For such a campaign,

ṽar(θ̂I,C)

ṽar(θ̂C)
=

(1/9)× .99 + (2/3)× .01

(1/3)× .99 + (2/3)× .01

.
= .34,

so the combined assumptions then allow a nearly three-fold variance reduction
compared to CIA alone.

4 Example campaigns

Our data enrichment scheme is described in Section 5. Here we illustrate the
results from that scheme on six marketing campaigns and discuss the differences
among different algorithms.

In addition to data enrichment, we also show results from tree structured
models. Those split the data into groups and recursively split the groups. More
about tree fitting is in Section 5. One model fits a tree to the SSP data alone
and another one works with the pooled SSP and BRP data.

For all three of those methods we have aggregated the predictions over the
age variable, which takes six levels. In addition, we show the empirical results
for age, which amount to recording the percentage of incremental reaches, that
is, data with Z(1− Y ) = 1, at each unique level of age in the SSP. There is no
corresponding empirical prediction fully disaggregated by age, gender, income
and education, because of the great many empty cells that would cause.

We found the age related patterns of incremental reach particularly inter-
esting. Figure 4.1 shows estimated incremental reach for all three models and
the empirical counts, on all six campaigns, averaged over age groups. The beer
campaign is particularly telling. The empirical data show a decreasing trend of
incremental reach with age. The tree fit to SSP-only data yields a fit that is
constant in age. The tree model had to explore splitting the data on all four
variables without a prior focus on age. There were only 23 incremental reach
events for beer in the SSP data set. With such a small number of events and
four predictors, there is considerable possibility of overfitting. Cross-validation
lead to a model that grouped the entire SSP into one set, that is, the tree had
no splits. Both pooling and data enrichment were able to borrow strength from
the BRP as well as take advantage of approximate independence of television
and web exposure. They then recover the trend with age.
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Fig. 4.1: Estimated incremental reach by age, for six campaigns and three mod-
els: SSP, Pooling and DEIR as described in the text. Empirical counts
are marked by Emp.

The Salt campaign had a similarly small number of incremental reaches and
once again the SSP only tree was constant. Fitting a tree to the SSP data
always gave a flatter fit versus age than did DEIR which in turn was flatter
than what we would get simply pooling the data. Section 6 gives simulations in
which DEIR has greater accuracy than using pooling or SSP only.

5 Data enrichment for incremental reach

For a given sample we would like to combine incremental reach estimates θ̂S ,
θ̂I , θ̂C and θ̂I,C whose assumptions are: none, IDA, CIA and IDA+CIA, respec-
tively. The latter three add some value if their corresponding assumptions are
nearly true, but our information about how well those assumptions hold comes
from the same data we are using to form the estimates.

The circumstances are similar to those in data enriched linear regression (Chen
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et al., 2013). In that problem there is a regression model Yi = XT
i β + εi which

holds in the SSP and a biased regression model Yi = XT
i (β + γ) + εi holds in

the BRP. The estimates are found by minimizing

S(λ) =
∑
i∈S

(Yi −XT
i β)2 +

∑
i∈B

(Yi −XT
i (β + γ))2 + λ

∑
i∈S

(XT
i γ)2, (3)

over β and γ for a nonnegative penalty factor λ. The εi are independent with
mean 0 and variance σ2

S in the SSP and σ2
B in the BRP.

Taking λ = 0 amounts to fitting regressions separately in the two samples
yielding an estimate β̂ that does not use the BRP at all. The limit λ → ∞
corresponds to pooling the two data sets, which would be optimal if there were
no bias, i.e., if γ = 0. The specific penalty in (3) discourages the estimated γ
from making large changes to the SSP; it is one of several penalties considered
in that paper.

Varying λ from 0 to ∞ gives a family of estimators that weight the SSP
to varying degrees. The optimal λ is unknown. An oracle that knew γ and
the error variance in the two data sets would be able to compute the optimal
λ under a mean squared error loss. Chen et al. (2013) get a formula for the
oracle’s λ and then plug estimates of γ and the variances into that formula.
They show, under conditions, that the resulting plugin estimate gives better
estimates of β than using the SSP only would. The conditions are that the Y
values are normally distributed, and that the model have at least 5 regression
parameters and 10 error degrees of freedom. The normality assumption allows
a technical lemma due to Stein (1981) to be used and we believe that gains from
using the BRP do not require normality.

In principle we might multiply the sum of squared errors in the BRP by
τ = σ2

S/σ
2
B if that ratio is known. If σ2

BRP > σ2
SSP then we should put less

weight on the BRP sample relative to the SSP sample. However the same effect
is gained by increasing λ. Since the algorithm searches for optimal λ over a wide
range it is less important to precisely specify τ . Chen et al. (2013) took τ = 1,
simply summing all squared errors, and we will generalize that approach.

For the present setting we must modify the method. First our responses
are binary, not Gaussian. Second we have four estimators to combine, not two.
Third, those estimators are dependent, being fit to overlapping data sets.

5.1 Modification for binary response

To address the binary response there are two reasonable choices. One is to
employ logistic regression. The other is to use tree-structured regression and
then pool the estimators at the leaves of the tree. Regarding prediction accuracy,
there is no unique best algorithm. There will be data sets for which simple
logistic regression outperforms tree based classifiers and vice versa.

For this paper we have adopted trees. Tree structured models have two
practical advantages. First, the resulting cells that they select correspond to
empirically determined market segments, which are then interpretable. Sec-
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Data set Source Imputed V Assumptions

D0 SSP ZS(1− YS) none

D1 BRP ZB(1− ŶSSP(XB , ZB)) IDA

D2 SSP ẐSSP(XS)(1− ŶSSP(XS)) CIA

D3 SSP ẐSSP+BRP(XS)(1− ŶSSP(XS)) CIA & IDA

Tab. 5.1: Four incremental reach data sets and their imputed incremen-
tal reaches. The hats denote model-imputed values. For example
ŶSSP(XB , ZB) is a predictive model for Y based on values X and Z
fit using data from SSP and evaluated at X = XB and Z = XB (from
BRP).

ond, within any of those cells, the model is intercept-only. Then both logistic
regression and least squares reduce to a simple average.

Each leaf of the regression tree defines a subset of the data that we call a
cell. There are cells 1, . . . , C. The SSP has nc observations in cell c and the
BRP has Nc observations there.

For each cell and each set of assumptions we use a linear regression model
relating an incremental reach quantity like Ṽi to an intercept. When there are
no assumptions then Ṽi is the observed incremental reach for i ∈ S. Otherwise
we may take advantage of the assumptions to impute values Ṽi using more of
the data. The incremental reach values for each set of assumptions are given in
Table 5.1. The predictive models shown there are all fit using rpart.

For k = 0, 1, 2, 3 let Ṽk be vector of imputed responses under any of the as-
sumptions from Table 5.1 and X̃k their corresponding predictors. The regression
framework minimizes

‖Ṽ0 − X̃0β‖2 +

3∑
k=1

‖Ṽk − X̃k(β + γk)‖2 +

3∑
k=1

λk‖X̃0γk‖2. (4)

over β and γk for penalties λk. In our setting each X̃k is a column vector of
ones of length mk. For cell c, m1k = Nc and m0k = m2k = m3k = nc.

5.2 Search for λk

It is very convenient to search for suitable weights in the simplex

∆(K) = {(ω0, ω1, . . . , ωK) | ωk > 0,

K∑
k=0

ωk = 1}

because it is a bounded set, unlike the set [0,∞]K of usable vectors λ =
(λ1, . . . , λK). Chen et al. (2013) remark that it is more reasonable to use a
common set of λk over all cells, stemming from unequal sample sizes. The
search we use combines the advantages of both approaches.
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Our search strategy for the simplex is to choose a grid of weight vectors

ωg = (ωg0, ωg1, . . . , ωgK) ∈ ∆(K), g = 1, . . . , G.

For each vector ωg we find a vector λg = (λ1, . . . , λK) such that

C∑
c=1

pcωk,c = ωgk, k = 0, 1, . . . ,K,

where pc is the proportion of our target population in cell c. That is, the
population average weight of ωk,c matches ωgk. These weights give us the vector
λg = (λg1, . . . , λgK). Using λg in the penalty criterion (4) specifies the weights
we use within each cell.

Our algorithm chooses the tree and the vector ω jointly using cross-validation.
It is computationally expensive to make high dimensional searches. With K fac-
tors there is a K − 1 dimensional space of weights to search. Adding in the tree
size gives a K’th dimension. As a result, combining all of our estimators requires
us to search a 4 dimensional grid of values.

We have chosen to set one of the ωk to 0 to reduce the search space from 4
dimensions to 3. We always retained the unbiased estimate θ̂S along with two
others. In some computations reported in section A.4 of the Appendix we find
only small differences among setting ω1 = 0, or ω2 = 0 or ω3 = 0. The best
outcome was setting ω1 = 0. That has the effect of removing the estimate based
on IDA only. As we saw in section 3, the IDA-only model had the least potential
to improve our estimate. As a bonus, all three of the retained submodels have
the same sample sizes and then common λ over cells coincides with common ω
over cells.

In the special case with ω1 = 0 we find after some calculus that the minimizer
of (4) has

β̂c =
V̄0c +

∑
k∈{2,3}

λk

1+λk
V̄kc

1 +
∑
k∈{2,3}

λk

1+λk

≡
∑

k∈{0,2,3}

ωkc(λ)Vkc (5)

where V̄kc is the simple average of Ṽk over i ∈ S for cell c.
Our default grid takes all values of ω whose coefficients are integer multiples

of 10%. Populations D0, D2 and D3 all have the sample size n and of these
only D0 is surely unbiased. An observation in D0 is worth at least as much as
an observation in D2 or D3 and so we require ω0 > max{ω2, ω3}. Figure 5.1
shows this region and the set of 24 weight combinations that we use.

5.3 Search for tree size

Here we give a brief review of regression trees in order to define our algorithm.
For a full description see the monograph by Breiman et al. (1985). The version
we use is the function rpart (Therneau and Atkinson, 1997) in the R program-
ming language (R Core Team, 2012).
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Fig. 5.1: The left panel shows the simplex of weights applied to data sets D0,
D2 and D3 with the unbiased data set D0 in the lower left. The shaded
region has the valid weights. The right panel shows that region with
points for the 24 weights we use in our algorithm.

Regression trees are built from splits of the set of subjects. A split uses
one of the features in X and creates two subsets based on the values of that
feature. For example it might split males from females or it might split those
with the two smallest education levels from the others. Such a split defines two
subpopulations of our target population and it equally defines two subsamples
of our sample.

A regression tree is a recursively defined set of splits. After the subjects are
split into two groups based on one variable, each of those two groups may then
be split again, using the same or different variables. Recursive splitting of splits
yields a tree structure with subsets of subjects in the leaf nodes. Given a tree,
we predict for subjects by a rule based on the leaf to which they belong. That
rule uses the average within the subject’s leaf node.

The tree is found by a greedy search that minimizes a measure of prediction
error. In our case, the measure R(T ), is the sum of squared prediction errors.
By construction any tree with more splits than T has lower error and this brings
a risk of overfitting. To counter overfitting, rpart adds a penalty proportional
to the number |T | of leaves in tree T . The penalized criterion is R(T ) + α|T |
where the parameter α > 0 is chosen by M -fold cross-validation. This reduces
the potentially complicated problem of choosing a tree to the simpler problem
of selecting a scalar penalty parameter α.

The rpart function has one option that we have changed from the default.
That parameter is cp, the complexity parameter. The default is 10−2. The cp
parameter stops tree growing early if a proposed split improves R(T ) by less
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than a factor of cp. We set cp = 10−4. Our choice creates somewhat larger trees
to get more choices to use in cross-validation.

5.4 The algorithm

Here is a summary of the entire algorithm. First we make the following prepro-
cessing steps.

1) Fit a large tree T by rpart relating observed incremental reaches Vi to
predictor variables Xi in the SSP data. This tree returns a nested sequence
of subtrees T0 ⊂ T1 ⊂ · · · ⊂ TL ⊂ T . Each T` corresponds to a critical value
α` of the penalty. Choosing α` from this list selects the tree T`. The value
L is data-dependent, and chosen by rpart.

2) Specify a grid of values ωg for g = 1, . . . , G. Here ωg = (ωg0, ωg1, . . . , ωgK)

with ωgk > 0 and
∑G
k=0 ωgk = 1.

3) Randomly partition SSP data (Xi, Yi, Zi) into M folds Sm for m = 1, . . . ,M
each of roughly equal size n/M . For fold m the SSP will contain ∪Sm′ for
all m′ 6= m. We call this S−m. The BRP for fold m is the entire BRP. We
also considered using a bootstrap sample for the fold m BRP, but that was
more expensive and less accurate in our numerical investigation as described
in section A.4 of the Appendix.

After this precomputation, our algorithm proceeds to the cross-validation
shown in Figure 5.2 to make a joint selection of the tree penalty parameter α`
and the simplex grid point ωg. Let the chosen values be α∗ and ω∗. We select
the tree T∗ from step 1 above, corresponding to penalty parameter α∗. We treat
each leaf node of T∗ as a cell c. We translate ω∗ into the corresponding λc in
every cell c of tree T∗. Then we minimize (4) using this λc and the resulting β̂c
is our estimate V̂c of incremental reach in cell c.

After choosing the tuning parameters ωg and α` by cross-validation, we use
these parameters on the whole data set to make our final prediction.

6 Numerical investigation

In order to measure the effect of data enriched estimates on incremental reach,
we conducted a simulation where we knew the ground truth. Our goal is to pre-
dict for ensembles, not for individuals, so we constructed two large populations
in which ground truth was known to us, simulated our process of subsampling
them, and scored predictions against the ground truth incremental reach prob-
abilities.

To make our large samples realistic, we built them from our real data. We
created S- and B-populations by replicating our SSP (respectively BRP) records
100 times each. Then in each simulation, we form an SSP by drawing 6000
observations at random from the S-population, and a BRP by drawing 13,000
observations at random from the B-population.
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for ` = 1, . . . , L do // initialize error sum of squares

for g = 1, . . . , G do

SSE`,g ← 0

for m = 1, . . . ,M do // folds

construct Table 5.1 for fold m, using S−m and B

fit tree Tm for fold m by rpart

prune tree Tm to T1,m, . . . , TL,m, tree T`,m uses α`

for ` = 1, . . . , L do // tree sizes

define cells S−m,c and Bc, c = 1, . . . , C from leaves of T`,m

for g = 1, . . . , G do // simplex weights

convert ωg into λg

for c = 1, . . . , C do // cells

compute Ṽk for k = 0, 2, 3 in cell c

get V̂c = β̂c from the weighted average (5)

Vc ←
1

|Sm,c|
∑

i∈Sm,c

Vi // held out incr. reach

pc ← fraction of true S population in cell c

SSE`,g ←SSE`,g + pc(V̂c − Vc)2

Fig. 5.2: Data enrichment for incremental reach (deir) algorithm. After precom-
putation described on page 13 we run this cross-validation algorithm
to choose the complexity parameter α` and the weights ωg, as the joint
minimizers `∗ and g∗ of SSE`,g. The values pc come from a census or
from the SSP if the census does not have the variables we need. We
use M = 10.

For each campaign, we apply deir with this sample data to estimate the
incremental reach V̂ (x). We used 10–fold cross-validation. The mean square
estimation error (MSE) is

∑
x p(x)(V̂ (x) − V (x))2. This sum is taken over all

x values in the SSP.
The simulation above was repeated 1000 times. The root mean square error

was divided by the true incremental reach to get a relative RMSE.
We consider two comparison methods. The first is to use the SSP only. That

method computes θ̂S within the leaves of a tree. The tree is found by rpart.
The second comparison is a tree fit by rpart to the pooled SSP and BRP data
and using both CIA and IDA. We do not compare to the empirical fractions
because many of them are from empty cells.

Figure 6.1 compares the relative errors in the SSP only method to data
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Fig. 6.1: Performance comparison, SSP only versus data enrichment, predictive
relative mean square errors. There is one panel for each of 6 campaigns
with one point for each of 1000 replicates. The reference line is the
forty-five degree line.

enrichment. Data enrichment is consistently better over all 6 campaigns we
simulated in the great majority of replications. It is clear that the popula-
tions are similar enough that using the larger data set improves estimation of
incremental reach.

Under the IDA we can pool the SSP and BRP together using rpart on the
combined data to estimate Pr(Z = 1 | X). Under the CIA we can multiply
this estimate by Pr(Y = 0 | X) fit by rpart to the SSP, see Table 5.1 under
the assumption CIA & IDA. This method, as an implementation of statistical
matching, uses two separate applications of rpart each with their own built in
cross-validation.

Figure 6.2 compares the relative errors of statistical matching to data enrich-
ment. Data enrichment is consistently better over all 6 campaigns we simulated
in the great majority of replications.

We also investigate for each estimator, how much of the predictive error is
contributed by bias. It is well known that predictive mean square error can
be decomposed as the sum of variance and squared bias. These quantities
are typically unknown in practice, but can be evaluated in simulation studies.
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Fig. 6.2: Performance comparison, statistical matching (data pooling) versus
data enrichment, predictive relative mean square errors. There is one
panel for each of 6 campaigns with one point for each of 1000 replicates.
The reference line is the forty-five degree line.

Table 6.1 reports the fractions of squared bias in predictive mean square errors
for each method in all six studies. We see there that the error for statistical
matching (data pooling) is dominated by bias while the error for SSP only is
dominated by variance. These results are not surprising because the SSP only
method has no sampling bias (only algorithmic bias) while the pooled data set
has maximal sampling bias. The proportion of bias for DEIR is in between these
extremes. Here we have less population bias than a typical data fusion situation
because the TV and online-only panels were recruited in the same way. The
bottom of Table 6.1 shows that DEIR is able to trade off bias and variance more
effectively than SSP only or data pooling, because DEIR attains the smallest
predictive mean squared error.

Conclusions

Predictions of incremental reach can be improved by making use of additional
data. That improvement comes only if certain strong assumptions are true or at
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bias2/mse Beer Chrome Salt Soap 1 Soap 2 Soap 3

SSP 0.35 0.42 0.26 0.12 0.28 0.12
Pool 0.88 0.82 0.88 0.88 0.88 0.93

DEIR 0.49 0.59 0.47 0.33 0.47 0.39

mse Beer Chrome Salt Soap 1 Soap 2 Soap 3

SSP 1.02 7.76 0.89 0.84 1.26 0.66
Pool 0.82 7.39 0.80 0.86 1.12 0.78

DEIR 0.61 5.42 0.48 0.52 0.68 0.42

Tab. 6.1: The upper rows show the fraction bias2/mse of the mean squared
prediction error due to bias for 3 methods to estimate incremental
reach in 6 campaigns. The lower rows show the total mse, that is
bias2 + var.

least approximately true. Our only guide to the accuracy of those assumptions
may come from the data themselves. Our data enriched incremental reach
estimate uses a shrinkage strategy to pool estimates using different assumptions.
Cross-validating the level of pooling gave us an algorithm that worked better
than either ignoring the additional data or treating it the same as the unbiased
data.
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A Appendix

A.1 Variance reduction by IDA

Recall that f = n/(n+N) and F = N/(n+N) are sample size proportions of
the two data sets. Under the IDA we may estimate incremental reach by

θ̂I = (fZ̄S + FZ̄B)
V̄S
Z̄S

= V̄I

(
f + F

Z̄B

Z̄S

)
.
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By the delta method (Lehmann and Romano, 2005), var(θ̂I) is approximately

ṽar(θ̂I) = var(V̄S)
( ∂θ̂I
∂V̄S

)2
+ var(Z̄B)

( ∂θ̂I
∂Z̄B

)2
+ var(Z̄S)

( ∂θ̂I
∂Z̄S

)2
+ 2cov(V̄S, Z̄S)

∂θ̂I
∂V̄S

∂θ̂I
∂Z̄S

,

with partial derivatives evaluated with expectations E(V̄S), E(Z̄S), and E(Z̄B)
replacing the corresponding random quantities. The other two covariances are
zero because the S and B samples are independent.

From the binomial distribution we have var(V̄S) = θ(1 − θ)/n, var(Z̄B) =
pz(1− pz)/N and var(Z̄S) = pz(1− pz)/n. Also

cov(V̄S, Z̄S) =
1

n

(
E(ViZi)− E(Vi)E(Zi)

)
= θ(1− pz)/n.

After some calculus,

ṽar(θ̂I) =
θ(1− θ)

n
+
pz(1− pz)

N

θ2F 2

p2z
+
pz(1− pz)

n

θ2F 2

p2z
− 2

θ(1− pz)
n

θF

pz

= var(θ̂S) +
θ2F (1− pz)

pz

(
F

N
+
F

n
− 2

n

)
= var(θ̂S)− θ2F (1− pz)

pz

1

n

= var(θ̂S)
(

1− F 1− pz
pz

θ

1− θ

)
.

A.2 Variance reduction by CIA

Applying the delta method to θ̂C = Z̄S(1− ȲS), we find that

ṽar(θ̂C) = var(Z̄S)
( ∂θ̂C
∂Z̄S

)2
+ var(ȲS)

(∂θ̂C
∂ȲS

)2
+ 2cov(ȲS, Z̄S)

∂θ̂C
∂ȲS

∂θ̂C
∂Z̄S

= var(Z̄S)(1− py)2 + var(ȲS)p2z + 2cov(ȲS, Z̄S)(1− py)pz.

Here var(Z̄S) = pz(1 − pz)/n, var(Z̄S) = pz(1 − pz)/n, and under conditional
independence cov(ȲS, Z̄S) = 0. Thus

ṽar(θ̂C) =
1

n

(
pz(1− pz)(1− py)2 + py(1− py)p2z

)
=

1

n

(
pz(1− pz)(1− py)2 + py(1− py)p2z

)
=
pz(1− py)

n

(
(1− pz)(1− py) + pypz

)
.

When the CIA holds, θ = pz(1− py). Note that var(θ̂S) = θ(1− θ)/n. After
some algebraic simplification we find that

ṽar(θ̂C)

var(θ̂S)
= 1− py(1− pz)

1− θ
.
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A.3 Variance reduction by CIA and IDA

When both assumptions hold we can estimate θ by

θ̂I,C = (fZ̄S + FZ̄B)(1− ȲS).

Under these assumptions, Z̄S, Z̄B and ȲS are all independent, and ṽar(θ̂I,C)
equals

var(Z̄S)
(∂θ̂I,C
∂Z̄S

)2
+ var(Z̄B)

(∂θ̂I,C
∂Z̄B

)2
+ var(ȲS)

(∂θ̂I,C
∂ȲS

)2
=
pz(1− pz)

n
f2(1− py)2 +

pz(1− pz)
N

F 2(1− py)2 +
py(1− py)

n
p2z

=
pz(1− py)

n

(
f(1− py)(1− pz) + pypz

)
after some simplification. As a result

ṽar(θ̂I,C)

ṽar(θ̂C)
=
f(1− py)(1− pz) + pypz

(1− py)(1− pz) + pypz
.

A.4 Alternative algorithms

We faced some design choices in our algorithm. First, we had to decide which
estimators to include in our algorithm. We always include the unbiased choice
θ̂S as well as two others. Second, we had to decide whether to use the entire
BRP or to bootstrap sample it. We ran all six choices on simulations of all six
data sets where we knew the correct answer. Table A.1 shows the mean squared
errors for the six possible estimators on each of the six data sets. In every case
we divided the mean squared error by that for the estimator combining θ̂S , θ̂C ,
and θ̂I,C without the bootstrap. We only see small differences, but the evidence
favors choosing λI = 0 as well as not bootstrapping.

Our default method is consistently the best in this table, although only by a
small amount. We saw that data enrichment is consistently better than either
pooling the data or ignoring the large sample, and by much larger amounts than
we see in Table A.1. As a result, any of the data enrichment methods in this
table would make a big improvement over either pooling the samples or ignoring
the BRP.
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Estimators θ̂S , θ̂I , θ̂C θ̂S , θ̂I , θ̂I,C θ̂S , θ̂C , θ̂I,C

BRP All Boot All Boot All Boot

Beer 1.02 1.02 1.00 1.01 1 1.01
Chrome 1.04 1.04 1.01 1.01 1 1.00
Salt 1.04 1.04 1.01 1.01 1 1.01
Soap 1 1.04 1.05 1.01 1.02 1 1.00
Soap 2 1.05 1.05 1.01 1.03 1 1.01
Soap 3 1.02 1.02 1.01 1.00 1 1.00

Tab. A.1: Relative performance of our estimators on six problems. The relative
errors are mean squared prediction errors normalized to the case that
uses θ̂S , θ̂C , θ̂I,C without bootstrapping. The relative error for that
case is 1 by definition.


