
History Dependent Domain Adaptation

Allen Lavoie
Rensselaer Polytechnic
lavoia@cs.rpi.edu

Matthew Eric Otey
Google Pittsburgh

otey@google.com

Nathan Ratliff
Google Pittsburgh

ratliffn@google.com

D. Sculley
Google Pittsburgh

dsculley@google.com

Abstract

We study a novel variant of the domain adaptation problem, in which the lossfunction on
test data changes due to dependencies on prior predictions. One important instance of this
problem area occurs in settings where it is more costly to make a new errorthan to repeat a
previous error. We propose several methods for learning effectively in this setting, and test
them empirically on the real-world tasks of malicious URL classification and adversarial
advertisement detection.

1 Introduction

In typical domain adaptation problem settings, the loss function used at testing time may differ
in some way from the loss function that is known during training [1]. In this paper, we study a
domain adaptation problem with an interesting historical structure in whichtomorrow’s loss function
depends on the predictions given today.

A historical dependency in the loss function can occur when we have a classification system that
makes predictions day after day on similar input data, and for which classification errors are costly
to correct in terms of time or effort. In this case, it is important not only to predict with good
accuracy, but also toavoid making new errorswith respect to previous predictions. The nightmare
scenario we wish to avoid is a system that achieves 99% accuracy, but which makes errors on a
different 1% of the data each day. After a hundred days the cumulative error rate would be 100%.

The problem of history dependent domain adaptation occurs frequently in practice, but it has not
been previously studied formally to our knowledge. An example of this is Google’s system for
learning to detect adversarial advertisements [5]. This system is responsible for protecting users by
detecting and blocking advertisements that may cause the user some form of harm. In this system,
automated classification is used as a first line of defense, with significant human effort used to correct
errors so that the total system error is driven to zero. Any error from the automated classifier requires
human effort to correct, but the correction is effectively permanent. Thus, the key to reducing human
cost is for the automated classifier to avoid making new errors over time while still achieving high
accuracy.

This paper aims to make the following contributions. We define the problem of history dependent
domain adaptation, formalizing the trade-off between performance and hypothesis stability, and
present several methods for learning within this setting. Our study is grounded in two real-world
classification problems where history dependent domain adaptation is needed: malicious URL de-
tection [4] and adversarial advertisement classification [5]. We present experimental results on data
from these domains showing that, over time, history dependent domain adaptation can be used to
dramatically reduce the incidence of new prediction errorswith little or no loss in classical predictive
performance measures such as the area under the ROC curve (AUC).

1



2 Defining the Problem: When New Errors are Especially Costly

Classical domain adaptation problems deal with situationswhere the test and training data are drawn
from different distributions [2]. Here we are concerned with deployed classification systems that
make repeated predictions on a set of entities with a time-varying distribution. Importantly, the loss
function for classifying these entities has a historical dependency on the system’s prior predictions.

Formally, assume our system uses a prediction functionht : R
n → {−1, 1}, which may differ with

each time stept. The model is applied to an entitye ∈ Et, which is represented by a vectorxt ∈ R
n

at time stept. This vector may vary over time. For example, if the entity isa particular URL, its
content may change or its metadata may vary over time, causing the representation vector to differ.
The set of entitiesEt classified byht(·) may grow over time. That is,Et−1 ⊆ Et.

In this setting, it is clearly possible that the system classifies the same entity differently over time.
That is, it is possible thatht(e) 6= ht−1(e). This could be caused by changes in the representation
vector fore, such that‖xt − xt−1‖ > 0, or it could be caused by changes in the prediction model
used byh(·), which may be introduced by training updates on additional or altered training data.

Of course, if we had full label feedback on all predictions attime t − 1, learning a good model at
time t would be easy. In this case, we could simply define and optimize a loss function of the form:

min
ht

L(ht, Dt) + α
∑

e∈Dt−1

I(ht(e) 6= ye ∧ ht−1(e) = ye).

HereL(h,Dt) is some standard classifier loss function to be minimized,I is the indicator function,
andye is the true label ofe. It essentially penalizesht(·) for making false positive predictions not
made byht−1(·).1

However, in real-world situations, it is likely that at timet we do not have full label feedback for
all predictions made at timet− 1. For large-scale deployed systems, collecting ground-truth labels
for all examples may be prohibitively expensive, and the labels that are available may take time to
collect. Therefore we need to prevent making new errors while being unsure which of the previous
classifications were correct.

3 Methods for Reducing New Errors

In this section, we present several methods for learning with history dependent domain adaptation.
For this initial study, we use the classical linear support vector machine (SVM) as the baseline
method. Recall that a linear SVM may be learned by solving thefollowing optimization problem:

min
w

L(w, D) +
λ

2
‖w‖2

HereL(w, D) is hinge-loss. This can be solved efficiently for large-scale problems using stochastic
gradient descent variants [6]. Each of the methods we propose will vary this basic linear SVM.

Model Averaging As a baseline approach, we can treat history dependent domain adaptation as a
temporal smoothing problem, and take a smoothed average of predictions from our different models.
At time t+ 1 with historical weight vectorswi, ht+1(x) = 〈 1

t+1

∑
t+1

i=1
wi, x〉.

Warm-Start Online Learning with Small Fixed Step SizeWe can use the prior weight vectorwt

rather than the null vector as the initial hypothesis for stochastic gradient descent. Taking a limited
number of steps with fixed step sizeη will restrict the amount thatwt+1 can diverge fromwt [3].

Adding a Nearness ConstraintSimilarly, we can add history dependency to our training by adding
a hard constraint thatwt+1 be close to its predecessor in the weight space. We constrainwt+1 to lie
within an L2 ball of radiusδ, wherewt is the center of the ball. This is implemented efficiently via
projected gradient descent [7], with the following constraint added to the linear SVM optimization
problem:

require:‖wt+1 −wt‖ ≤ δ.

Prediction Regularization We may also enforce nearness not in weight space, as above, but in the
prediction space by regularizing the new model’s predictions back towards those of the old model.

1This greedy heuristic is an important approximation since the full optimizationover hypothesis sequences
is often intractable and would entail retrospectively modifying past hypotheses.

2



This ensures that a penalty is paid for diverging from the prior model’s predictions, which will
be traded off against the benefit given for reducing classification loss or model complexity by the
parameterα. We experimentally analyze two such techniques. First, we add a quadratic penalty to
the loss proportional to

∑
x∈Dt+1

(〈wt+1,x〉 − 〈wt,x〉)
2.

The second method treats the previous model predictions as additional (weighted) examples, adding
a new collection of hinge loss terms (one for eachx) proportional to

∑
x
max{0, 1−ht(x)w

T
t+1x}.

4 Experiments on Real-World Problems

4.1 Experimental Set Up

Our goal in these experiments is to simulate the performanceof each method from Section 3 in the
setting of a large, deployed system over time. We experimenton two large real-world data sets that
have the temporal qualities described in Section 2.

Adversarial Advertisement Classification DataThe adversarial-ads data is a large sample
from 170 days of Google’s proprietary adversarial advertisement classification data from the system
described in [5]. For the evaluation purposes in this simulation, we define time intervals as periods of
one week, and at each period train on the previous 100 days of data. (this does not reflect the actual
production process). Entities are individual advertisements, and are represented by a sparse, high di-
mensional feature set described in detail in [5]. The classification task is to label each advertisement
asadversarial(positive) ornon-adversarial(negative).

At each time stept, a new model is trained on the labeled data from the prior timesteps and evaluated
on data from the current time step. Entities are randomly selected astraining or testentities, so that
a training entity from a prior time step is never used as a testentity in the current time step. For
experimental purposes, all of the data used is labeled.

Malicious URL Identification Data To complement our experiments on private data, we also run
tests on a public data set that is qualitatively similar. Themalicious-url data set contains roughly
2.4 million examples over a 120 day date range [4]. Here time intervals are 10 days, and during each
interval we train on the previous 20 days of data. The task is to classify URLs asmalicious(positive)
or non-malicious(negative), where malicious URLs may contain malware or similarly harmful data
[4]. This data set is similar to theadversarial-ads in that it is relatively large and uses a sparse,
high dimensional feature space.

4.2 Evaluation Metrics

Our goal is to achieve good classification performance and reduce the incidence of new errors over
time. Thus we report two separate performance metrics that should be considered together when
evaluating success. The first metric is the traditional AUC metric for evaluating classifier perfor-
mance. For both data sets, we report the percent difference from a baseline control of naively
retraining each model from scratch every time period. The second metric we report is cumulative
unique false positive rate (CUFP). This is defined at timet as total number of unique entities that
have ever been wrongly marked as positives by any hypothesish1(·), ..., ht(·), divided by the total
number of unique entities. As with AUC, we report results relative to the control baseline.

4.3 Results

Figure 4.2 summarizes the results of our experiments. From left to right, top to bottom, the subplots
depict the AUC and CUFP rates for theadversarial-ads problem, and the AUC and CUFP rates
of themalicious-urls problem, respectively.2

Of the methods we compared,constrained, average, andwarm startperformed the best withcon-
strainedandaveragegenerally edging outwarm start. hingeandsquaredshowed a slight benefit
on the URL problem, but little, if any, overall improvement on the Adversarial Advertisers problem.
On both problems, none of the methods performed significantly different than the control in terms
of AUC.

2Error bars rendered the plots unreadable, but on average, they spanned approximately 2% and 12% for the
adversarial-ads AUC and CUFP plots from upper bound to lower bound, respectively, and spanned .1%
and 11% for themalicious-url AUC and CUFP plots, respectively. In particular, no method performed
significantly different than the control with respect to AUC on theadversarial-ads problem.

3



1 2 3 4 5 6 7 8 9 10
Generation number (7 day increments)

�0.5

0.0

0.5

1.0

Pe
rfo

rm
an

ce
 (A

UC
) -

 %
 d

iff
er

en
ce

 fr
om

 co
nt

ro
l

Adversarial advertisers performance (AUC)

1 2 3 4 5 6 7 8 9 10
Generation number (7 day increments)

�40

�30

�20

�10

0

10

20

CU
FP

 (%
 d

iff
er

en
ce

 fr
om

 co
nt

ro
l)

Adversarial advertisers CUFP

1 2 3 4 5 6 7 8 9 10
Generation number (10 day increments)

�0.12

�0.10

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

Pe
rfo

rm
an

ce
 (A

UC
) -

 %
 d

iff
er

en
ce

 fr
om

 co
nt

ro
l

URL performance (AUC)

average
constrained
hinge
squared
warm start

1 2 3 4 5 6 7 8 9 10
Generation number (10 day increments)

�50

�40

�30

�20

�10

0

10

CU
FP

 (%
 d

iff
er

en
ce

 fr
om

 co
nt

ro
l)

URL CUFP

Figure 1: Experimental Results. Top: adversarial-ads, bottom: malicious-urls, left: AUC
performance, right: cumulative false positives (CUFP). Each performance metric is represented relative to the
controlmodel, shown in each plot (relative to itself) as the zero line.

5 Conclusions

We proposed a number of techniques to mitigate new errors made between successive model retrain-
ings in real-world machine learning systems. Interestingly, some of the simplest and most intuitively
appealing methods performed the best in our experiments, reducing a measure of cumulative false
positives without adversely affecting the overall system performance. We are currently collecting a
more extensive suite of experimental results, and developing theoretical results to better characterize
the behavior of these algorithms.

References

[1] J. A. D. Bagnell. Robust supervised learning. InProceedings of AAAI. American Association for Artifical
Intelligence, June 2005.

[2] H. Dauḿe III and D. Marcu. Domain adaptation for statistical classifiers.Journal of Artificial Intelligence
Research, 26(1):101–126, 2006.

[3] M. Herbster, M. K. Warmuth, and P. Bartlett. Tracking the best linearpredictor. Journal of Machine
Learning Research, 1:281–309, 2001.

[4] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious urls: an application of large-scale
online learning. InProceedings of the 26th Annual International Conference on Machine Learning, 2009.

[5] D. Sculley, M. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou. Detecting adversarial adver-
tisements in the wild. InProceedings of the Seventeenth Conference on Knowledge Discovery and Data
Mining, 2011.

[6] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In
Proceedings of the twenty-first international conference on Machine learning, page 116. ACM, 2004.

[7] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. InIn Twentieth
International Conference on Machine Learning, 2003.

4


