History Dependent Domain Adaptation

Allen Lavoie Matthew Eric Otey
Rensselaer Polytechnic Google Pittsburgh
| avoi a@s. rpi . edu ot ey@oogl e. com
Nathan Ratliff D. Sculley
Google Pittsburgh Google Pittsburgh
ratliffn@oogle.com dscul | ey@oogl e. com
Abstract

We study a novel variant of the domain adaptation problem, in which thddostion on
test data changes due to dependencies on prior predictions. One imjiestance of this
problem area occurs in settings where it is more costly to make a newtlearoto repeat a
previous error. We propose several methods for learning efédgtin this setting, and test
them empirically on the real-world tasks of malicious URL classification anveradrial
advertisement detection.

1 Introduction

In typical domain adaptation problem settings, the los<tion used at testing time may differ
in some way from the loss function that is known during tnagn[1]. In this paper, we study a
domain adaptation problem with an interesting historitraicture in whictomorrow’s loss function
depends on the predictions given today

A historical dependency in the loss function can occur whenhave a classification system that
makes predictions day after day on similar input data, anevfach classification errors are costly
to correct in terms of time or effort. In this case, it is imf@mt not only to predict with good
accuracy, but also tavoid making new errorg/ith respect to previous predictions. The nightmare
scenario we wish to avoid is a system that achieves 99% agcuvat which makes errors on a
different 1% of the data each day. After a hundred days theutative error rate would be 100%.

The problem of history dependent domain adaptation oceecgiéntly in practice, but it has not
been previously studied formally to our knowledge. An exbmyf this is Google’s system for
learning to detect adversarial advertisements [5]. Thisesy is responsible for protecting users by
detecting and blocking advertisements that may cause #resose form of harm. In this system,
automated classification is used as a first line of defensk siginificant human effort used to correct
errors so that the total system error is driven to zero. Anygrdrom the automated classifier requires
human effort to correct, but the correction is effectivedymanent. Thus, the key to reducing human
cost is for the automated classifier to avoid making new srooer time while still achieving high
accuracy.

This paper aims to make the following contributions. We defime problem of history dependent
domain adaptation, formalizing the trade-off between qrenfince and hypothesis stability, and
present several methods for learning within this settingr Qudy is grounded in two real-world
classification problems where history dependent domaiptatian is needed: malicious URL de-
tection [4] and adversarial advertisement classificatin\|Ve present experimental results on data
from these domains showing that, over time, history depeindemain adaptation can be used to
dramatically reduce the incidence of new prediction et little or no loss in classical predictive
performance measures such as the area under the ROC cur@.(AU

2 Defining the Problem: When New Errors are Especially Costly

Classical domain adaptation problems deal with situatidmesre the test and training data are drawn
from different distributions [2]. Here we are concernedhadieployed classification systems that
make repeated predictions on a set of entities with a tinmghvg distribution. Importantly, the loss

function for classifying these entities has a historicgdefedency on the system’s prior predictions.

Formally, assume our system uses a prediction funétjarR™ — {—1, 1}, which may differ with
each time step. The model is applied to an entityc E., which is represented by a vectoy € R”

at time stept. This vector may vary over time. For example, if the entitgiparticular URL, its
content may change or its metadata may vary over time, agitisenrepresentation vector to differ.
The set of entitied; classified byh,(-) may grow over time. That idy;; C E;.

In this setting, it is clearly possible that the system df@ssthe same entity differently over time.
That is, it is possible thdi,(e) # h;—1(e). This could be caused by changes in the representation
vector fore, such that|x; — x;—1|| > 0, or it could be caused by changes in the prediction model
used byh(-), which may be introduced by training updates on additionallered training data.

Of course, if we had full label feedback on all predictionsige ¢ — 1, learning a good model at
time ¢ would be easy. In this case, we could simply define and optirmilbss function of the form:

nr}lbinL(ht, D)+« Z I(hi(€) # ye A he—1(e) = ye).
¢ ecDy 1

HereL(h, D,) is some standard classifier loss function to be minimiZed the indicator function,
andy. is the true label of. It essentially penalizek;(-) for making false positive predictions not

made byh; ().t

However, in real-world situations, it is likely that at timmeve do not have full label feedback for
all predictions made at time— 1. For large-scale deployed systems, collecting grouriti-tebels
for all examples may be prohibitively expensive, and thelsithat are available may take time to
collect. Therefore we need to prevent making new errorseniging unsure which of the previous
classifications were correct.

3 Methods for Reducing New Errors

In this section, we present several methods for learnin igtory dependent domain adaptation.
For this initial study, we use the classical linear suppettor machine (SVM) as the baseline
method. Recall that a linear SVM may be learned by solvingdhewing optimization problem:

A
min L(w, D) + Sfwl?

HereL(w, D) is hinge-loss. This can be solved efficiently for large-sgabblems using stochastic
gradient descent variants [6]. Each of the methods we peopdkvary this basic linear SVM.

Model Averaging As a baseline approach, we can treat history dependent dadaptation as a
temporal smoothing problem, and take a smoothed averageditfions from our different models.

Attime t + 1 with historical weight vectorsy;, b1 () = (77 315 wy,).

Warm-Start Online Learning with Small Fixed Step SizeWe can use the prior weight vectar,
rather than the null vector as the initial hypothesis focksstic gradient descent. Taking a limited
number of steps with fixed step sigewill restrict the amount tha#;; can diverge fronw; [3].

Adding a Nearness ConstraintSimilarly, we can add history dependency to our training digiag
a hard constraint that; .1 be close to its predecessor in the weight space. We constiainto lie
within an L2 ball of radius), wherew, is the center of the ball. This is implemented efficiently via
projected gradient descent [7], with the following constradded to the linear SVM optimization
problem:

require:|| w1 — we|| < 0.

Prediction Regularization We may also enforce nearness not in weight space, as abdva,tha
prediction space by regularizing the new model’s predigtiback towards those of the old model.

1This greedy heuristic is an important approximation since the full optimizatien hypothesis sequences
is often intractable and would entail retrospectively modifying past hygsath.

This ensures that a penalty is paid for diverging from th@mpnmodel’'s predictions, which will
be traded off against the benefit given for reducing clasdita loss or model complexity by the
parametery. We experimentally analyze two such techniques. First, deeaaquadratic penalty to
the loss proportional 3. ., . ({(Wes1,%) — (W, x))2.

The second method treats the previous model predictiondditsaamal (weighted) examples, adding
a new collection of hinge loss terms (one for eagproportional toy_, max{0, 1 — h(z)w{,,x}.

4 Experiments on Real-World Problems

4.1 Experimental Set Up

Our goal in these experiments is to simulate the performaheach method from Section 3 in the
setting of a large, deployed system over time. We experimemivo large real-world data sets that
have the temporal qualities described in Section 2.

Adversarial Advertisement Classification DataThe adver sari al - ads data is a large sample
from 170 days of Google’s proprietary adversarial adventisnt classification data from the system
described in [5]. For the evaluation purposes in this situtawe define time intervals as periods of
one week, and at each period train on the previous 100 dayetaf (this does not reflect the actual
production process). Entities are individual advertisetsieand are represented by a sparse, high di-
mensional feature set described in detail in [5]. The clasdion task is to label each advertisement
asadversarial(positive) ornon-adversaria(negative).

At each time step, a new model is trained on the labeled data from the prior siteps and evaluated
on data from the current time step. Entities are randombycset! adraining or testentities, so that
a training entity from a prior time step is never used as adg8ty in the current time step. For
experimental purposes, all of the data used is labeled.

Malicious URL Identification Data To complement our experiments on private data, we also run
tests on a public data set that is qualitatively similar. hiei ci ous- ur | data set contains roughly
2.4 million examples over a 120 day date range [4]. Here timtervals are 10 days, and during each
interval we train on the previous 20 days of data. The tagkdtatssify URLs asnalicious(positive)

or non-maliciougnegative), where malicious URLs may contain malware oilaity harmful data

[4]. This data set is similar to thedver sari al - ads in that it is relatively large and uses a sparse,
high dimensional feature space.

4.2 Evaluation Metrics

Our goal is to achieve good classification performance addoethe incidence of new errors over
time. Thus we report two separate performance metrics timilg be considered together when
evaluating success. The first metric is the traditional AU&ru for evaluating classifier perfor-
mance. For both data sets, we report the percent differance & baseline control of naively
retraining each model from scratch every time period. Tho®seé metric we report is cumulative
unique false positive rate (CUFP). This is defined at tinas total number of unique entities that
have ever been wrongly marked as positives by any hypothe§is ..., k. (+), divided by the total
number of unique entities. As with AUC, we report resultsitiek to the control baseline.

4.3 Results

Figure 4.2 summarizes the results of our experiments. Fefirol right, top to bottom, the subplots
depict the AUC and CUFP rates for théver sari al - ads problem, and the AUC and CUFP rates
of themal i ci ous- ur| s problem, respectively:

Of the methods we comparechnstrained average andwarm startperformed the best witbon-
strainedandaveragegenerally edging ouvarm start hingeandsquaredshowed a slight benefit
on the URL problem, but little, if any, overall improvememt the Adversarial Advertisers problem.
On both problems, none of the methods performed signifigaliffierent than the control in terms
of AUC.

2Error bars rendered the plots unreadable, but on average, thayespapproximately 2% and 12% for the
adversari al - ads AUC and CUFP plots from upper bound to lower bound, respectivetyspaanned .1%
and 11% for themal i ci ous- ur| AUC and CUFP plots, respectively. In particular, no method performe
significantly different than the control with respect to AUC on &éttbser sar i al - ads problem.

Adversarial advertisers performance (AUC) Adversarial advertisers CUFP

Performance (AUC) - % difference from control
CUFP (% difference from control)

> ~

NN
-20 AT SRS

S iy TR
. -
ST LY
—30] AL ST B S
.l vy »-
1 RN Frian
1 2 4 5 6 7 8 9 10 407 2 3 4 6 8 9 10
Generation number (7 day increments) Generation number (7 day increments)
URL performance (AUC) URL CUFP
0.04 10

I
-
=)

—=0.02F

Performance (AUC) - % difference from control
CUFP (% difference from control)

—0.04F R —20F ==y
< 5
R
. - > N
—0.06F DARN - T~y
PR > Fi Pl
.. ; v R —30p RN - B g
S C Pd ® - average .. bl T o
008 e S .y’ v.-v constrained|] R
X . ‘ . ---o.
NN R a--a hinge —40 Ve v -“$-__.____.____
—0.10 SN <—< squared 1 IR
~ > > warm start . [SIEREE) ATTTI
—0.12 — - ceian
0127 2 9 1c T 2 3 a 5 7 8 9 10

3 4 5 6 7 8 6
Generation number (10 day increments) Generation number (10 day increments)

Figure 1: Experimental Results Top: adver sari al - ads, bottom: mal i ci ous-url s, left: AUC
performance, right: cumulative false positives (CUFP). Each padace metric is represented relative to the
controlmodel, shown in each plot (relative to itself) as the zero line.

5 Conclusions

We proposed a number of techniques to mitigate new errorg ineitdveen successive model retrain-
ings in real-world machine learning systems. Interesgirsgime of the simplest and most intuitively

appealing methods performed the best in our experimerdacieg a measure of cumulative false

positives without adversely affecting the overall systerfgrmance. We are currently collecting a

more extensive suite of experimental results, and devedpibieoretical results to better characterize
the behavior of these algorithms.

References

[1] J. A. D. Bagnell. Robust supervised learning.Aroceedings of AAAIAmerican Association for Artifical
Intelligence, June 2005.

[2] H. Daune lll and D. Marcu. Domain adaptation for statistical classifidmurnal of Artificial Intelligence
Research26(1):101-126, 2006.

[3] M. Herbster, M. K. Warmuth, and P. Bartlett. Tracking the best ling@dictor. Journal of Machine
Learning Researgh:281-309, 2001.

[4] J.Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying $tisps urls: an application of large-scale
online learning. IrProceedings of the 26th Annual International Conference on Machéaening 2009.

[5] D. Sculley, M. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Yodh Detecting adversarial adver-
tisements in the wild. IfProceedings of the Seventeenth Conference on Knowledge DisconkEData
Mining, 2011.

[6] T. Zhang. Solving large scale linear prediction problems using sstichgradient descent algorithms. In
Proceedings of the twenty-first international conference on Machineileg page 116. ACM, 2004.

[7] M. Zinkevich. Online convex programming and generalized infinitesignadient ascent. Ilm Twentieth
International Conference on Machine Learnjr2p03.

