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Abstract

This paper presents MiniBox, the first two-way sand-

box for x86 native code, that not only protects a benign

OS from a misbehaving application, but also protects an

application from a malicious OS. MiniBox can be ap-

plied in Platform-as-a-Service cloud computing to pro-

vide two-way protection between a customer’s applica-

tion and the cloud platform OS. We implement a Mini-

Box prototype running on recent x86 multi-core systems

from Intel or AMD, and we port several applications to

MiniBox. Evaluation results show that MiniBox is effi-

cient and practical.

1 Introduction

Platform-as-a-Service (PaaS) is one of the most widely

commercialized forms of cloud computing. In 2012, 1

million active applications were running on Google App

Engine [14]. On PaaS cloud computing, it is critical to

protect the cloud platform from the large number of un-

trusted applications sent by customers. Thus, a virtual-

ized infrastructure (e.g., Xen [7]) and sandbox (e.g., Java

sandbox [19]) are deployed to isolate customers’ appli-

cations and protect the guest OS. However, security on

PaaS is not only a concern for cloud providers but also

a concern for cloud customers. As shown in Figure 1-A,

current sandbox technology provides only one-way pro-

tection, which protects the OS from an untrusted appli-

cation. The security-sensitive Piece of Application Logic

(PAL) is completely exposed to malicious code on the

OS. Also, current sandboxes expose a large interface to

untrusted applications, and may have vulnerabilities that

malicious applications can exploit.

In this paper, we rethink the security model of PaaS

cloud computing and argue that a two-way sandbox is

desired. The two-way sandbox not only protects a be-

nign OS from a misbehaving application (OS protection)

but also protects an application from a malicious OS (ap-

plication protection). Researchers have explored sev-

eral approaches for either protecting the OS from an un-

OS

Isolation Module

Sandbox

(1-C) Combination option #1 (1-D) Combination option #2

OS

Sandbox

System call interface

Isolation Module

(Attacks:

(1) Iago attacks

(2) Subvert OS

if sandbox is broken)

System call interface

(Attack: subvert OS 

if sandbox is broken)

OS

Sandbox

TCB

Attacks 

(e.g., direct 

memory 

access)

OS

Isolation Module

(1-A) Sandbox architecture 

for OS protection
(1-B) TrustVisor or SGX architecture 

for application protection

Security-Sensitive 

Piece of App Logic (PAL)

Non-Sensitive 

Piece of App Logic (PAL)

System call interface

(Attack: subvert OS

if sandbox is broken)

Env switch

Env switch

System call interface

(Attack: subvert OS)

Break 

sandbox

Break 

sandbox

Break 

sandbox

Figure 1: Sandbox architecture, TrustVisor or Intel SGX archi-

tecture, and combination options.

trusted application [16, 23, 25, 48] or protecting security-

sensitive applications (or security-sensitive PALs) from a

malicious OS [6, 10, 11, 12, 13, 15, 18, 21, 24, 31, 32, 38,

39, 40, 47]. Unfortunately, none of these schemes pro-

vides two-way protection, and many challenges remain

to design a two-way sandbox.

TrustVisor [31] and Intel Software Guard Extensions

(Intel SGX) [4, 17, 20] are examples of systems that

provide efficient memory space isolation mechanisms to

protect a security-sensitive PAL from a malicious OS

(Figure 1-B). On TrustVisor or Intel SGX, memory ac-

cess from the OS to the security-sensitive PAL or from

the security-sensitive PAL to the OS is disabled by an

isolation module, which is a hypervisor (on TrustVisor)

or CPU hardware extensions (on Intel SGX). However,

the non-sensitive PAL is not isolated from the OS, and

the non-sensitive PAL may contain malware that can

compromise the OS.



Google Native Client (NaCl) [48] and Microsoft

Drawbridge [16, 36] are examples of application-layer

one-way sandboxes for native code. We found that

combining an application-layer sandbox and an efficient

memory space isolation mechanism is promising for the

two-way sandbox design. However, it it not straightfor-

ward. Figure 1-C and 1-D show two combination op-

tions. In option #1, the security-sensitive PAL runs in an

isolated memory space while a sandbox confines the non-

sensitive PAL. However, in this design application devel-

opers need to split the application into security-sensitive

and non-sensitive PALs, requiring substantial porting ef-

fort. In option #2, the sandbox is included inside the iso-

lated memory space to avoid porting. The isolation mod-

ule forwards system calls (from the sandbox) to the OS.

However, there are several issues with this option. First,

because the sandbox is complex and exposes a large in-

terface to the application, a malicious application may

exploit vulnerabilities in the sandbox and in turn subvert

the OS. Second, a malicious OS may be able to compro-

mise the application through Iago attacks [9]. In Iago

attacks, a malicious OS can subvert a protected process

by returning a carefully chosen sequence of return values

to system calls. For instance, if a malicious OS returns

a memory address that is in the application’s stack mem-

ory for an mmap system call, sensitive data (e.g., a return

address) in the stack may subsequently be overwritten

by the mapped data. Finally, because the OS is isolated

from the sandbox and the application, it is challenging to

support the application execution in an isolated memory

space. Thus, both options have obvious shortcomings

and we shall not choose them for the two-way sandbox

design.

In this paper, we present MiniBox, the first two-

way sandbox for x86 native applications. Leveraging

a hypervisor-based memory isolation mechanism (pro-

posed by TrustVisor) and a mature one-way sandbox

(NaCl), MiniBox offers efficient two-way protection.

MiniBox splits the NaCl sandbox into OS protection

modules (software modules performing OS protection)

and service runtime (software modules supporting appli-

cation execution), runs the service runtime and the appli-

cation in an isolated memory space (Section 4.1), and ex-

poses a minimized and secure communication interface

between the OS protection modules and the application

(Section 4.2). MiniBox also splits the system call inter-

face available to the isolated application as sensitive calls

(the calls that may cause Iago attacks) and non-sensitive

calls (the calls that cannot cause Iago attacks), and pro-

tects the application against Iago attacks by handling

sensitive calls inside the service runtime in the isolated

memory space (Section 4.3). MiniBox also provides se-

cure file I/O for the application (Section 4.3.4). Using

a special toolchain, application developers can concen-

trate on application development with small porting ef-

fort (Section 6). We implement a MiniBox prototype

based on the Google Native Client (NaCl) [48] open

source project and the TrustVisor hypervisor [31, 41]

(Section 5), and port several applications to MiniBox.

Evaluation results show that MiniBox is practical and

provides an efficient execution environment for isolated

applications (Section 6).

Contributions.

1. We design, implement, and evaluate MiniBox, the

first attempt toward a practical two-way sandbox for

x86 native applications.

2. MiniBox demonstrates it is possible to provide a min-

imized and secure communication interface between

OS protection modules and the application to protect

against each other.

3. MiniBox demonstrates it is possible to protect against

Iago attacks, and provide an efficient execution envi-

ronment with secure file I/O for the application.

2 Background

2.1 TrustVisor

TrustVisor [31] is a minimized hypervisor that isolates a

PAL from the rest of the system and offers efficient trust-

worthy computing abstractions (via a µTPM API) to the

isolated PAL with a small TCB. TrustVisor isolates the

memory pages containing itself and any registered PALs

from the guest OS and DMA-capable devices by config-

uring nested page tables and the IO Memory Manage-

ment Unit (IOMMU). TrustVisor exposes hypercall in-

terfaces for applications in the guest OS to register and

unregister a PAL. When a PAL is registered, informa-

tion including the memory pages of the PAL is passed to

TrustVisor. TrustVisor configures nested page tables to

isolate the memory pages of the PAL from the guest OS.

TrustVisor is booted using the Dynamic Root of Trust

for Measurement mechanism [5] available on commod-

ity x86 processors. The chipset computes an integrity

measurement (cryptographic hash) of the hypervisor and

extends the resulting hash into a Platform Configuration

Register (PCR) in the Trusted Platform Module (TPM).

TrustVisor computes an integrity measurement for each

registered PAL, and extends that measurement result into

the PAL’s µTPM instance. The TPM Quote from the

hardware TPM and the µTPM Quote from the PAL’s

µTPM instance comprise the complete chain of trust for

remote attestation.

2.2 Google Native Client

Google Native Client (NaCl) [48] is a sandbox for x86

native code (called Native Module) using Software Fault

Isolation (SFI) [30, 42]. To guarantee the absence of

privileged x86 instructions that can break out of the SFI



sandbox in a Native Module, a validator in NaCl reliably

disassembles the Native Module and validates the disas-

sembled instructions as being safe to execute. NaCl pro-

vides a simple service runtime including a context switch

function and a system call dispatcher to support the ex-

ecution of a Native Module. On 32-bit x86, the service

runtime and the Native Module are isolating using the

CPU’s segmentation mechanism [22]. NaCl simulates

system calls for a Native Module using a Trampoline Ta-

ble and Springboard. There is a Trampoline Table in

each Native Module, and a 32-byte entry in the Tram-

poline Table for each supported system call. For each

system call, the Google NaCl toolchain ensures that con-

trol transits to one of the entries in the Trampoline Table,

instead of to a traditional system call. The Trampoline

Table entries switch the active data and code segments,

and jump to the context switch function in NaCl. The

context switch function transfers control to the system

call dispatcher in NaCl. The system call dispatcher ex-

poses only a subset of the OS system call interface to

the Native Module, sanitizes the system call parameters,

conducts access control to constrain the file access of the

Native Module, and finally calls the corresponding han-

dler in the OS. The Springboard performs the inverse of

the control transitions in the Trampoline Table entries.

3 Assumptions and Attacker Model

Assumptions. We assume that the attacker cannot con-

duct physical attacks against the hardware units (e.g.,

CPU and TPM). We assume that the attacker cannot

break standard cryptographic primitives and that the

TCB of MiniBox is free of vulnerabilities. For applica-

tion protection, we also assume that the application does

not have any memory safety bugs (e.g., buffer overflows)

or insecure designs. One example of the insecure de-

signs is that an application seeds a pseudo-random num-

ber generator by the return value of a system call handled

by the untrusted OS. It is the developer’s responsibility

to take measures to eliminate memory safety bugs or in-

secure designs. For OS protection, we assume that the

system call interface that the OS protection modules ex-

pose to the application (a subset of the OS system call

call interface) is free of vulnerabilities, and that the OS

does not have concurrency vulnerabilities [43] in system

call wrappers.

Attacker Model For Application Protection. We as-

sume that the attacker can execute arbitrary code on the

OS. For example, the attacker may compromise and con-

trol the OS, and then attempt to tamper with the pro-

tected application by accessing the application memory

contents or handling the system calls of the application

in malicious ways (Iago attacks). The attacker may at-

tempt to inject malicious code into the application bi-

nary or into the service runtime binary before the appli-

cation runs in an isolated memory space without being

detected. The attacker may subvert DMA-capable de-

vices on the platform in an attempt to modify memory

contents through DMA. The attacker may also attempt

to access security-sensitive files of the application. How-

ever, we do not prevent denial of service attacks. Finally

we do not prevent side-channel attacks [51].

Attacker Model For OS Protection. The untrusted ap-

plication may attempt to subvert the hypervisor or break

out of the hypervisor-based memory isolation. The appli-

cation may also attempt to read or modify sensitive files

that do not belong to the application on the system. The

application may attempt to subvert the OS by making ar-

bitrary system calls with carefully-chosen parameters.

4 System Design

4.1 MiniBox Architecture
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Figure 2: MiniBox System Architecture.

Figure 2 shows the MiniBox architecture. As shown

in this figure, a hypervisor underpins the system. The

hypervisor sets up the two-way memory space isola-

tion between the Mutually Isolated Execution Environ-

ment (MIEE) and the regular environment, and creates a

µTPM instance for the MIEE.

On MiniBox, the hypervisor and a service runtime in

the MIEE comprise the runtime TCB for application pro-

tection. In the MIEE, beyond the x86 native applica-

tion, a service runtime is included, containing: a con-

text switch module that stores and switches thread con-

texts between the application and the service runtime; a

system call dispatcher that distinguishes between non-

sensitive and sensitive calls, calls handlers in the MIEE

for sensitive calls, or invokes the parameter marshal-

ing module for non-sensitive calls; a parameter marshal-

ing module that prepares parameter information for non-

sensitive calls (for the hypervisor); system call handlers

for handling sensitive calls; and a thread scheduler that



schedules the execution of multiple threads comprising

an application. In sensitive call handlers, the service run-

time supports dynamic memory management, thread lo-

cal storage management, multi-threading management,

secure file I/O, and µTPM API.

On MiniBox, the OS protection modules include a

user-level program loader, a context switch module, a

parameter unmarshaling module, and a system calls dis-

patcher in the regular environment. In the regular envi-

ronment, the user-level program loader sets up the MIEE

and loads the application into the MIEE; the context

switch module stores and restores the thread context of

the regular environment during environment switches be-

tween the regular environment and MIEE; the parame-

ter unmarshaling module unmarshals system call param-

eters; and the system call dispatcher confines the system

call interface exposed to the application (allowing only a

subset of the OS system calls), sanitizes the system call

parameters, conducts access control to constrain the file

access of the application, and forwards the non-sensitive

system calls to corresponding handlers in the regular en-

vironment.

Finally, MiniBox adopts TrustVisor’s integrity mea-

surement (recall Section 2.1) to enable a remote verifier

to verify the integrity of the hypervisor, the service run-

time, and the isolated application. In this way, MiniBox

prevents adversaries from injecting malicious code into

the hypervisor, the service runtime or the application be-

fore the memory isolation is established without being

detected. This is also the reason that the program loader

is not in the TCB for application protection.

4.2 Communication Interfaces

The MiniBox hypervisor exposes a small interface to the

rest of the system. MiniBox minimizes and secures the

communication interface between OS protection mod-

ules and the application to protect against each other.

Hypervisor Interface. Other than passing system call

information between the MIEE and the regular envi-

ronment, the hypervisor exposes a small interface (i.e.,

only several hypercalls) to the rest of the system. Thus,

assuming the small hypercall interface is free of vul-

nerabilities, malicious code in the rest of the system

cannot compromise the hypervisor or break out of the

hypervisor-based memory isolation.

Minimizing Communication Interface. On Mini-

Box, the communication interface between OS protec-

tion modules and the application consists of only the pro-

gram loader and the system call interface. Because priv-

ileged instructions cannot break out of the hypervisor-

based memory isolation, the NaCl validator (that vali-

dates that the application binary does not contain priv-

ileged instructions) is not included in MiniBox, which

significantly reduces the interface exposed to the ap-

plication. Without the validator, privileged instructions

in the application can break out of the segmentation-

based isolation and compromise the service runtime in

the MIEE. However, a malicious service runtime in the

MIEE cannot break out of the hypervisor-based memory

isolation.

Secure Communication. On MiniBox, the hypervisor

is the only communication channel between the regular

environment and the MIEE. Each non-sensitive system

call causes environment switches between the MIEE and

the regular environment. For each environment switch

from the MIEE out to the regular environment, the pa-

rameter marshaling module in the MIEE updates the pa-

rameter information of the system call that will be used

by the hypervisor for copying parameters between the

two environments. However, the parameter marshaling

module in the MIEE cannot specify where the parameters

will be stored in the regular environment. The hypervisor

copies the system call parameters to a parameter buffer

in the regular environment, and constrains the total data

size of system call parameters (to prevent buffer over-

flow attacks). In this way, malicious code in the MIEE

cannot overwrite critical data (e.g., stack contents) in the

regular environment. To prevent a misbehaving appli-

cation from sending arbitrary system call parameters to

the regular environment, the system call dispatcher in the

regular environment checks the system call parameters

before sending them to the OS. For example, the system

call dispatcher checks the value of every pointer param-

eter and guarantees that it is safe to access the memory

space the parameter points to. If a check fails, the system

call dispatcher returns an error code without calling the

corresponding system call handler.

After the system call is handled, the system call dis-

patcher copies return values to the parameter buffer in the

regular environment and triggers the environment switch

back to the MIEE. When MiniBox switches from the reg-

ular environment back to the MIEE, the hypervisor uses

the same parameter information specified by the MIEE

to copy parameters from the parameter buffer in regu-

lar environment to the MIEE. This prevents malware in

the regular environment from attempting to compromise

MIEEs by manipulating parameter information.

4.3 Service Runtime

4.3.1 Dynamic Memory Management

MiniBox supports three system calls (sysbrk, mmap, and

munmap) to provide dynamic memory management for

the application running inside the MIEE. To prevent the

OS from returning arbitrary memory addresses for the

sysbrk or mmap system calls (Iago attacks) or removing

arbitrary data memory pages from the MIEE, memory

management system calls are handled inside the MIEE.



Design. One naive design is pre-allocating and register-

ing a large amount of data memory in the MIEE as data

memory for the application. This design has low execu-

tion time overhead, but it wastes memory and is inflexi-

ble. Another design is allowing the hypervisor to allocate

memory pages as the application’s data memory. How-

ever, the MiniBox hypervisor does not support swapping

of memory pages to disk, and cannot be sure that pages

marked as unused by the guest OS are actually present in

memory. To resolve this issue, we design the system call

handlers that request more data memory (i.e., sysbrk

and mmap) in two modules: one in each of the isolated

and regular environments. When the application requests

more data memory but the requested data memory is not

in the MIEE, the system call handler in the MIEE calls

the module in the regular environment that allocates the

memory page(s) and writes zero to them to ensure that

the new memory page(s) are loaded into physical mem-

ory, and then returns to the handler inside the MIEE. The

system call handler inside the MIEE then makes a hyper-

call to the hypervisor to add the new memory page(s) to

the MIEE. The munmap handler inside the MIEE makes

a hypercall to unregister memory from the MIEE.

Security Protection. To prevent Iago attacks caused by

mmap or sysbrk, the hypervisor checks that the newly

registered pages are not already registered to the MIEE

(so that the malicious OS cannot overwrite stack contents

of the application in the MIEE). To prevent leakage of

sensitive data in either direction, the MiniBox hypervisor

zeroes memory pages during registration and unregistra-

tion. To prevent a misbehaving or malicious application

from adding privileged data pages (e.g., kernel pages)

into MIEE, the hypervisor checks that the newly regis-

tered pages are user-level memory pages that are in ring

3, and correspond to the same OS process that originally

registered the MIEE. Presently MiniBox does not allow

additional memory to be mapped as executable, as this

represents a significant increase in attack surface. Thus,

the hypervisor checks that the requested memory pages

are data pages that are not executable. In data memory

page unregistration, the hypervisor checks that the un-

registered memory pages are data pages that are already

registered to the MIEE.

4.3.2 Thread Local Storage Management

Background. On 32-bit Linux, the native code on

vanilla NaCl stores the memory address of its Thread Lo-

cal Storage (TLS) as the base address of a segment de-

scriptor in the Local Descriptor Table (LDT) [22]. Dur-

ing program initialization or when a new thread is cre-

ated, tls init system call initializes the TLS base ad-

dress and updates the appropriate LDT entry. During ex-

ecution, the tls get system call is frequently called to

get the TLS base address.

Design. Because the TLS and LDT represent critical

configuration data, MiniBox handles the tls init and

tls get entirely within the MIEE. The MiniBox hy-

pervisor creates an LDT instance for each MIEE and

supports a hypercall interface to the MIEE to handle

tls init system call. MiniBox supports caching the

latest TLS address inside the MIEE, so that the tls get

handler can quickly return the latest TLS base address to

the application without calling the hypervisor.

4.3.3 Multi-threading

Background. NaCl applies a 1:1 thread model (i.e.,

creating a kernel thread for each Native Module user-

level thread) and uses the OS to handle thread-related

system calls (e.g., thread synchronization system calls)

and schedule the execution of Native Module threads.

Design. If MiniBox applies the same multi-threading

mechanism, the OS controls the thread context of the ap-

plication threads. A malicious OS could break the Con-

trol Flow Integrity (CFI) [1, 2, 3] of the isolated applica-

tion by changing the thread context. Also, when the OS

handles all thread synchronization system calls, a mali-

cious OS could break the application CFI by arbitrarily

changing application thread states. To protect the appli-

cation thread context from being accessed by the OS,

MiniBox can store the thread context in the MIEE and

never leak it out of the MIEE. Also, the service runtime

in the MIEE can verify the thread synchronization results

by duplicating all supported thread synchronization sys-

tem call handlers. In this design, all thread context and

the application CFI are protected from a malicious OS.

However, the complexity of this design is comparable to

implementing the multi-threading operations within the

MIEE. Also, if thread-related system calls are handled

by the OS, the environment switches caused by thread-

related system calls will increase the overhead of appli-

cation execution in the MIEE. Thus, to reduce execu-

tion overhead and avoid duplicated operations, Mini-

Box supports multi-threaded application execution via

a user-level multi-threading mechanism entirely within

the MIEE. System calls to create, exit and synchronize

threads are handled in the MIEE.

Thread Scheduler. MiniBox provides a thread sched-

uler to schedule the thread execution of the application

in the MIEE. The thread scheduler is invoked each time

there is a call from an entry of the Trampoline Table (re-

call Section 2). After the call is handled, control returns

to the thread scheduler inside the MIEE before the con-

text switch module is invoked. The scheduler checks

the state of each thread, and schedules the execution of

runnable threads using a round-robin algorithm. The

thread scheduler finally calls the context switch module,

which resumes the execution of the scheduled thread.



4.3.4 Secure File I/O

On MiniBox, the application running in the MIEE still

needs to access the file system in the regular environ-

ment, so the file system calls are forwarded to the OS.

However, to protect the file contents and metadata of an

isolated application, MiniBox supports secure file I/O for

applications running in the MIEE through five system

calls: secure write, secure read, secure open,

secure close, create siokey. The five system calls

are handled in the MIEE.

Confidentiality and Integrity. secure write encrypts

the data written by the application (with a symmetric se-

cret key) and sends the encrypted data to the general file

I/O, while secure read decrypts the data and returns

the decrypted data to the application in the MIEE. In

secure write and secure read, the data is written or

read by a chain of blocks of a constant size. To protect

the integrity of file contents and file metadata, includ-

ing file name and path, a hash tree is constructed and

computed over the blocks of file contents and file meta-

data in the MIEE (this approach has been demonstrated

in the Trusted Database System [28], VPFS [45] and

jVPFS [46]). A HMAC of the master hash is computed

in the MIEE and stored at the end of the file (as file con-

tents). When a file created by secure file I/O is opened,

secure open reads the HMAC and verifies the integrity

of the file contents and metadata by reconstructing the

hash tree. secure open stores the hash tree in the

MIEE. When a data block is read, secure read verifies

the integrity of the data block based on the stored hash

tree. When file contents are modified, secure write

updates the hash tree stored in the MIEE. When a file is

closed, secure close recomputes the master hash and

the HMAC, and stores the updated HMAC at end of the

file. This allows the integrity of file contents and file

metadata to be verified. The attacker cannot remove, add,

or replace data blocks in the file because any changes will

invalidate the HMAC. The attacker cannot replace the

file with other files that are created by the same applica-

tion running in the MIEE either because file metadata is

also verified.

Rollback Prevention (Freshness). MiniBox adds a

counter in each HMAC computation to guarantee fresh-

ness of files stored through the secure file I/O. The

counter is sealed by the µTPM. Because the µTPM can-

not provide freshness for sealed contents, the integrity of

the counter is measured every time the same application

runs in the MIEE (the measurement result is extended

into µPCR for remote attestation). This allows a verifier

to verify the freshness during remote attestation.

Key Management. Before using secure file I/O, the ap-

plication running in the MIEE must call create siokey

to create the secret keys used in secure file I/O

(i.e., a symmetric encryption key and a HMAC key).

The application specifies the file name and file path

for storing the keys when calling create siokey.

Create siokey first checks if the file already exists. If

not, create siokey creates new secret keys, seals the

secret keys with the current µPCR values. Then it stores

the sealed secret keys in the file, and returns the key ID

to application. If the file already exists (i.e., keys are

already created), create siokey reads the sealed keys

from the untrusted file system, unseals the keys and re-

turns the key ID to the application.

Access Control and Migration. Because the secret

keys are sealed with the current µPCR (i.e., the in-

tegrity measurement of the application), the sealed keys

can only be unsealed by the µTPM when the same ap-

plication runs in the MIEE. Thus, any data encrypted

through secure File I/O can only be decrypted and ver-

ified when the same application runs in the MIEE. To

share the sensitive files with other applications running

in the MIEE (e.g., an updated version of the application),

the application can seal the secret keys with the integrity

measurement result of other applications, and share the

sealed keys to other applications. Then, other applica-

tions running in the MIEE can unseal the secret keys (us-

ing create siokey) and access the secret files.

Cache Buffer. On MiniBox, environment switches be-

tween the MIEE and the regular environment cause high

overhead in file I/O (Section 6). To reduce the number of

environment switches, MiniBox creates a cache buffer in

the MIEE for each opened file descriptor. Both general

file I/O and secure file I/O benefit from the cache buffer

because the number of environment switches is reduced.

4.4 MIEE Preemption and Scheduling

As described in Section 4.3.3, MiniBox does not preempt

an application thread running in the MIEE. However, if

an application thread is in an endless loop, the thread

will not freeze the entire system because the MIEE is

preemptive on MiniBox. When the system switches into

a MIEE, the hypervisor starts a timer for the MIEE and

preempts the code execution in the MIEE when the timer

expires. After preempting the MIEE, the hypervisor

stores the MIEE context and transfers control to the regu-

lar environment by simulating a special system call (i.e.,

MIEE sleep). The MIEE sleep handler sleeps for a while

and then calls the hypervisor to resume the code execu-

tion in the MIEE. In this way, the hypervisor transfers

the control to the OS, which can schedule the execution

of other processes. When multiple MIEEs are registered

(one MIEE in each process), the OS can implicitly sched-

ule the execution of multiple MIEEs by scheduling pro-

cess execution. However, the question is how much CPU

time should be assigned to each MIEE by the hypervi-

sor. One design is that the hypervisor exposes a hyper-



call interface to the regular environment and the MIEE to

enable the OS and the isolated application in the MIEE

to configure the MIEE process priority. The hypervisor

assigns CPU time to each MIEE based on the MIEE pro-

cess priority.

4.5 Exceptions, Interrupts, and Debugging

Exceptions and Interrupts. While the code in a MIEE

is running, the processor cannot access exception and in-

terrupt handlers in the OS. Thus, the hypervisor is con-

figured to intercept exceptions (e.g., segmentation fault,

invalid opcode) and Non-Maskable Interrupts (NMIs)

when system runs in a MIEE. Maskable interrupts are

disabled when system runs in a MIEE. When NMIs hap-

pen, the hypervisor handles NMIs and resumes the code

execution in the MIEE. When an exception happens, the

hypervisor first checks whether the exception is because

the application in the MIEE needs more stack pages. If

so, the hypervisor calls a module in the regular environ-

ment to allocate more data pages as stack pages, adds

the stack pages into the MIEE, and resumes the code ex-

ecution in the MIEE. If not, the hypervisor terminates

the code execution in the MIEE by simulating an Exit

system call. The Exit call is forwarded to the program

loader, which unregisters the MIEE from the hypervisor

via hypercall.

Debugging. Though the MiniBox execution environ-

ment is compatible with NaCl’s, the NaCl debugging tool

for application development cannot be directly used on

MiniBox because on MiniBox the OS cannot access the

memory contents in the MIEE. However, MiniBox can

be configured in a debugging mode, in which the hy-

pervisor functionalities are disabled, and an application

layer module passes parameters between the two envi-

ronments. In debugging model, memory management

and TLS management calls are handled by the OS. In this

way, the memory isolation is disabled and application de-

velopers can use the NaCl debugging tool for MiniBox

application development. An alternative way is includ-

ing the NaCl debugging tool in the MIEE and supporting

an interface to access the debugging tool from the regular

environment. In this way, the developers can debug the

application when the memory isolation is enabled.

5 Implementation

We implement a MiniBox prototype running on recent

x86 multi-core systems from Intel or AMD, with 32-

bit Ubuntu 10.04 LTS as the guest OS. This section de-

scribes the MiniBox implementation in details.

5.1 Hypervisor

The implementation of the MiniBox hypervisor is based

on the public implementation of TrustVisor hypervisor

(version 0.1.2) [31, 41] with support for multi-core and

both AMD and Intel processors. We changed the pa-

rameter marshaling implementation [26] and added a

hypercall interface for handling sensitive system calls.

We added code to create new Global Descriptor Table

(GDT) [22] entries and instantiate an LDT for every

MIEE, and added code to handle GDT- and LDT-related

operations. The original implementation of TrustVisor

hypervisor has 14414 source lines of code (SLoC), com-

puted using the sloccount tool1. Our implementation

adds an additional 691 SLoC.

5.2 Program Loader and Service Runtime

We implement the user-level program loader, the service

runtime in the MIEE, the context module and the system

call dispatcher in the regular environment based on the

Google Native Client (NaCl) open source project (SVN

revision 7110). We have focused our work on the 32-bit

x86 architecture, though there are no fundamental barri-

ers to expanding to 64-bit. In the NaCl source code, we

implement code to conduct MIEE registration and unreg-

istration in 299 SLoC. We implement the service runtime

in the MIEE within the NaCl source code, adding 3550

SLoC. The secure file I/O module has a large code base

(1065 SLoC) because it contains cryptographic primi-

tives for AES and HMAC. The implemented service run-

time can be configured in debugging mode for applica-

tion development (recall Section 4.5).

5.3 System Calls

MiniBox adopts NaCl system call interface to expose a

subset of the OS system call interface to the isolated ap-

plication. MiniBox does not support dynamic code for

the application, so NaCl dynamic code system calls are

removed on MiniBox. MiniBox extends the NaCl sys-

tem call interface with µTPM API, network I/O system

calls, and secure file I/O calls, supporting a total of 75

system calls for the application (a list of supported sys-

tem calls is described in [26]). The network I/O system

calls are forwarded to the regular environment, because

they are treated as part of the untrusted communication

channel. Secure communication (e.g., SSL) can be im-

plemented in the application layer to protect the data in

network I/O. In the MIEE, the supported thread synchro-

nization system calls include semaphores, mutexes, and

condition variables, which have the same functionality as

the corresponding POSIX APIs. The secure file I/O calls

encrypt/decrypt the data using AES with a 128-bit key in

CBC mode and computes HMAC-SHA-1 using a 160-bit

key.

6 Evaluation

In this section, we present the evaluations including sys-

tem call overhead, file I/O overhead, network I/O, and

1http://www.dwheeler.com/sloccount/



application performance in the MIEE on MiniBox. Ex-

periments were conducted on a Dell PowerEdge T105

server with a Quad-Core AMD Opteron Processor run-

ning at 2.3 GHz with 4 GB memory. The operating sys-

tem is Ubuntu 10.04 with 32-bit kernel Linux 2.6.32.27.

To obtain accurate timing results, the hypervisor does not

preempt the MIEE.

Performance Impact. MiniBox hypervisor extends

the TrustVisor with hypercall interface and modified pa-

rameter marshaling [26], neither of which affects the

guest OS performance. Thus, MiniBox hypervisor im-

poses similar guest overhead to the TrustVisor [41]. Yee

et al. [48, 49] presented that the NaCl toolchain can

cause significant increase in code size (2% to 57% on

SPEC2000 benchmarks), but non-significant impact on

performance (on average less than 5% on SPEC2000

benchmarks).

Porting Effort. MiniBox uses the NaCl toolchain with

extended API for application development and imposes

similar porting efforts to the NaCl. Yee et al. [48, 49]

presented that porting an internal implemented H.264 de-

coders (11K lines of C code) to NaCl requires adding

about twenty lines of C code, and porting Bullet2 to NaCl

took only a few hours. Compared to NaCl, MiniBox re-

quires additional porting effort for application protection.

For instance, application developers must understand the

MiniBox protection mechanisms and avoid insecure ap-

plication designs (recall Section 3). Application develop-

ers must understand the trustworthy computing abstrac-

tions exposed to every MIEE, and correctly use them.

6.1 MiniBox Microbenchmarks

System Call Overhead. In the MIEE, non-sensitive

system calls are handled in the OS with environment

switches while sensitive system calls are handled either

in the application layer inside the MIEE or by the hy-

pervisor. The system call overhead in the MIEE was

measured, and compared with the corresponding system

calls on vanilla NaCl, and MiniBox in debugging model

(recall Section 4.5). The evaluation results (Figure 3)

show that the non-sensitive system calls (e.g., file oper-

ation calls) that involve environment switches on Mini-

Box are slower than on vanilla NaCl. However, the cor-

responding system calls on MiniBox in debugging mode

have similar performance to those on vanilla NaCl. Thus

the overhead of these system calls on MiniBox is mainly

caused by environment switches. The sensitive system

calls that are handled within the MIEE without any envi-

ronment switch (e.g., thread synchronization calls) have

similar performance to those on vanilla NaCl. The sen-

sitive system calls that involve hypercall and environ-

ment switches (e.g., memory management system calls)

2http://www.bulletphysics.com

on MiniBox are slower than on vanilla NaCl.

File I/O. We evaluate the file I/O overhead on MiniBox

and compare it to the file I/O on vanilla NaCl and Mini-

Box in debugging mode. We measure reads & writes

of 32B for both general file I/O and secure file I/O. The

measurement results (Figure 4) show that when the data

is cached in the MIEE (cache-hit), the cache buffer sig-

nificantly reduces the file I/O overhead for both general

file I/O and secure file I/O.

Network I/O. We evaluate the network I/O throughput

on MiniBox and compare it to the network I/O through-

put on MiniBox in debugging mode and vanilla NaCl.

The server runs in the MIEE using MiniBox on the Dell

T105 while the client runs on plain Linux on a Dell Op-

tiplex 755 desktop with two Intel Core2 Duo proces-

sors running at 2.0 GHz with 2 GB memory. The op-

erating system on the Dell Optiplex machine is Ubuntu

8.04.4 LTS with a 32-bit Linux kernel 2.6.24.30. Both

the server and the client connect to a Netgear Gigabit

Ethernet Switch using a Gigabit Ethernet Adapter. Dur-

ing each connection, the client sends 16 KB data to the

server and we measure the network I/O throughput. The

results (Figure 5) show that network I/O on MiniBox is

about 10% slower than on vanilla NaCl. Thus, although

the environment switches impose a small overhead on

MiniBox, the network throughput remains high.

6.2 Application Benchmarks

CPU-bound application (AES key search and Bit-

Coin). We measure the performance of CPU-bound

applications on MiniBox and compare it to the perfor-

mance of equivalent applications on vanilla NaCl and

MiniBox in debugging mode. We first evaluate AES

key search, which encrypts a 128-Byte plain-text using

a 128-bit key in CBC mode 200,000 times, simulating

a AES key search operation. We port CBitCoin [33]),

an open source BitCoin implementation to run on Mini-

Box. We measure the time to construct a BitCoin block,

requiring 200,000 SHA-256 computations. The results

show that MiniBox does not add any noticeable over-

head (less than 1% [26]) for CPU-bound applications

over NaCl.

I/O-bound application (Zlib). We evaluate the per-

formance of I/O-intensive applications on MiniBox by

testing Zlib [27], an open source library used for data

compression. Zlib is already ported to run on NaCl as

part of the naclports project, and does not require addi-

tional porting efforts to run on MiniBox. We measure

the time elapsed to read 1 MB of file data from the file

system over the general file I/O, and then compress the

read data. The file data always misses the cache buffer,

so every read operation involves an environment switch.

The evaluation results (Figure 6) show that because of



Figure 3: System call benchmarks in us. Average of 100 runs and standard deviation is

less than 5%. Calls with ∗ are sensitive calls handled inside the MIEE without environment

switches. Calls with # are sensitive calls that involve hypercall or environment switches.

Figure 4: File I/O benchmarks in us.

Average of 100 runs and standard de-

viation is less than 2%.

Figure 5: Network I/O bench-

marks in Mbps. Average of

100 runs and standard devia-

tion is less than 2%.

Figure 6: zlib file compression with

file I/O benchmarks in ms. Average of

10 runs and standard deviation is less

than 2%.

Figure 7: SSL connection

benchmarks in ms. Average

of 10 runs and standard de-

viation is less than 3%.

Figure 8: SSL throughput

benchmarks in Mbps. Aver-

age of 10 runs and standard

deviation is less than 1%.

environment switches, the zlib application on MiniBox

is slower than on vanilla NaCl. The slowdown is mainly

caused by the environment switches since MiniBox in

debugging mode has the same performance as vanilla

NaCl. We repeat the measurement on MiniBox while

storing the file data in the cache buffer in the MIEE. The

zlib application read file data with cache-hit without en-

vironment switches. The measurement result shows that

the overhead is significantly reduced. Thus, while file I/O

in MiniBox can be expensive in the worst case, we expect

that the cache buffer will significantly improve the appli-

cation performance in practice.

SSL Server. We port the entirety of OpenSSL [35] (ver-

sion 1.0.0.e) to run on MiniBox. We also run the SSL

server on NaCl by adding socket system call interface on

the NaCl. In this experiment, the Dell Optiplex machine

serves as the SSL client, and the Dell T105 acts as the

SSL server. The SSL client runs on plain Linux while

the SSL server runs inside the MIEE on MiniBox. We

recorded both the time required to create an SSL con-

nection and the overall SSL throughput. The SSL client

sends 16KB of data to the SSL server during each con-

nection. As in previous experiments, both machines con-

nect to a Netgear Gigabit Ethernet Switch via a Gigabit

Ethernet Adapter. The results show that MiniBox impose

about a 15% overhead to SSL connections (Figure 7) and

that SSL throughput on MiniBox has about a 10% slow-

down (Figure 8). The overhead is mainly caused by en-

vironment switches, since MiniBox in debugging mode

has the same performance as NaCl.

7 Related Work

Protecting Applications. Systems aspiring to protect

entire applications from a potentially compromised OS

have been proposed (e.g., [8, 11, 12, 13, 15, 21, 29, 34,

40, 47]). Most of these schemes mainly focus on pro-

tecting application data from malicious code on an op-

erating system and expose sensitive system calls to the

untrusted OS, thus making the protected application vul-

nerable to Iago attacks. InkTag [21] secures applications

running on an untrusted OS by verifying that the un-

trusted OS behaves correctly using a trustworthy hyper-

visor. It prevents mmap-based Iago attacks by verifying

memory address invariants. However, in InkTag some

other security-sensitive system calls (e.g., thread syn-

chronization and TLS-related calls) are still performed

by the untrusted OS without being verified. Proxos [40]

splits system calls and forwards sensitive system calls

to a trusted private OS to protect applications from an

untrusted OS. However, Proxos needs application devel-

opers to specify the splitting rule. Baumann et al. [8]

proposed to run entire legacy applications in the isolated

memory space provided by Intel SGX, and proposed to

include a library OS in the isolated memory space to pre-

vent Iago attacks. The proposed protection mechanisms

(for application protection) are similar to the mecha-

nisms on MiniBox. Mai et al. [29] proposed mecha-

nisms to prove that the OS implements the application



security invariants (e.g., secure storage and memory iso-

lation) correctly. The proposed verification approach is

promising for application isolation.

Protecting Security-Sensitive Code. Researchers have

explored many systems for isolating sensitive code using

virtualization, microkernels, and other low-level mech-

anisms [6, 18, 31, 32, 38, 40], or by running the code

inside trusted hardware [10, 24, 39]. The virtualization-

based schemes contain a large TCB. Other schemes

either do not enjoy compatibility with a large set of

commodity systems or require significant porting effort.

TrustVisor [31] and Flicker [32] isolate a PAL from

an untrusted OS with a small TCB. However, porting

security-sensitive applications on TrustVisor or Flicker

requires significant efforts. Nizza [38] also requires de-

velopers to perform similar operations to port sensitive

applications to Nizza.

Sandbox for x86 Native Code. Google Native

Client [48] confines untrusted native code using SFI [30,

42] and enables developers to port native code as web

applications. Drawbridge [16, 36] isolates an applica-

tion in a picoprocess and provides a library OS to the

isolated application. However, Native Client and Draw-

bridge provide only one-way protection. TxBox [23]

confines an untrusted application by executing the ap-

plication in a system transaction and conducting secu-

rity check. MBox [25] protects the host file system from

an untrusted application by exposing a virtual file sys-

tem on top of the host file system for the application.

Capsicum [44] supports capability-sandbox for applica-

tions on UNIX-like OS (e.g., FreeBSD). It focuses on ap-

plication compartmentalization and fine-grained access

control. Systrace [37] improves the host OS security by

confining the program privilege using a configurable sys-

tem call policy. The protection mechanisms provided by

MBox, Capsicum and Systrace can be applied on Mini-

Box as part of the OS protection modules.

8 Limitations and Future Work

Application Interface. MiniBox includes the entire ap-

plication (the security-sensitive and non-sensitive PALs)

in the MIEE and does not prevent adversaries from com-

promising the application through malicious inputs. The

application can measure the integrity of critical inputs

(known inputs) and extend the results into the µTPM

PCR for remote attestation. However, the isolated appli-

cation may expose a large interface to unknown inputs.

Schemes that focus on protecting a security-sensitive

PAL [6, 18, 31, 32, 38, 40] can significantly reduce the

attack surface by exposing a constrained interface be-

tween the security-sensitive PAL and the untrusted OS.

On those schemes, the security-sensitive PAL remains

secure when the application is compromised by the OS.

Thus, for protecting the security-sensitive PAL, Mini-

Box may expose a larger attack surface to the untrusted

OS than schemes that focus on protecting the security-

sensitive PAL.

Thread Scheduling. Application developers must con-

sider that MiniBox does not make the scheduler work

preemptively (recall Section 4.3.3), and so must always

use supported system calls for thread synchronization

(e.g., avoid situations where a thread performs busy

waiting by watching a global variable in a loop in-

stead of calling a blocking system call). In addition,

the application-layer thread scheduler does not support

multi-thread parallel computation to improve the perfor-

mance of threaded applications on multi-core systems.

One design is to allow the hypervisor to conduct thread

scheduling and to manage the parallel computation on

multiple cores, which will significantly increase the hy-

pervisor complexity. As future work, we will investigate

how to support parallel computation for a threaded appli-

cation running inside the MIEE on multi-core systems.

However, security-sensitive applications more concerned

with a small TCB than performance may prefer not to in-

clude code for such complex operations in the hypervi-

sor. To solve this issue, MiniBox can allow the applica-

tion to configure the hypervisor functionality (e.g., dis-

able the support for multi-thread parallel computation)

at registration time, and can boot the hypervisor with the

application-preferred configurations.

System Call Interface. Exposing a large system call in-

terface to the application increases the attack surface for

OS protection; thus, MiniBox exposes a subset of the OS

system call interface to the application to confine the ap-

plication’s operations. However, it will be interesting to

investigate how to support the entire OS system call in-

terface on MiniBox. If the entire OS system call interface

is supported, statically linked legacy applications may be

able to run on MiniBox. As future work, we will exam-

ine the OS system call interface, obtain a comprehensive

list of sensitive calls, and investigate how to support the

entire OS system call interface on MiniBox.

Improving Performance. The hypervisor-based

isolation mechanism causes overhead in environment

switches. It is expected that the hardware-based isola-

tion mechanism provided by Intel SGX will decrease the

environment switch overhead. The VMFUNC instruc-

tion [22] released on the latest Intel 4th Generation Pro-

cessor enables software in a guest Virtual Machine to

switch nested page tables without a Virtual Machine exit.

It is expected that the VMFUNC instruction will decrease

the environment switch overhead. However, the VM-

FUNC instruction does not switch other critical system

configurations (e.g., the GDT or IDT). As future work

we will investigate how to perform secure environment



switch using the VMFUNC instruction.

Supporting Multi-tenant Cloud Platform. The Mini-

Box hypervisor prototype supports only a single guest

OS. There is no fundamental barrier to port MiniBox

with a virtual machine monitor like Xen [7] that sup-

ports multiple tenants, though doing so increases the

TCB size. CloudVisor [50] demonstrates the approach

to minimize the TCB on multi-tenant cloud platforms by

leveraging nested virtualization technology. Nested vir-

tualization can be added in MiniBox to support multi-

tenant cloud platforms. On multi-tenant cloud platforms,

the virtual machine (VM) may be constructed, destruc-

ted, saved, restored, or migrated. It is critical to protect

the MIEE during VM management. The MiniBox hy-

pervisor can encrypt or decrypt the memory contents of

MIEEs in VM management, and verify the integrity of

the MiniBox hypervisor on other machines to guarantee

that MIEEs are only migrated to machines with a veri-

fied hypervisor. Also, the MiniBox hypervisor needs to

encrypt or decrypt the µTPM instance together with a

MIEE in VM management, to make the trustworthy com-

puting abstractions provided to the MIEE transparent to

the VM management.

9 Conclusion

MiniBox is a hypervisor-based sandbox that provides

two-way protection between x86 native applications and

the guest OS. MiniBox protects the guest OS through

hypervisor-based memory isolation and OS protection

modules. MiniBox significantly reduces the attack sur-

face for both OS protection and application protection by

minimizing and securing the interface between OS pro-

tection modules and the application, and protects against

Iago attacks on the application. The MiniBox design

and protection mechanisms are promising for establish-

ing two-way protection on commodity computer sys-

tems. In addition, MiniBox significantly decreases the

porting effort compared to previous systems for isolating

security-sensitive PALs, making MiniBox practical for

wide adoption. Thus, we anticipate that MiniBox will be

widely adopted on systems where two-way protection is

desired (e.g., the PaaS cloud computing platforms).
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