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ABSTRACT

Many estimation tasks come in groups and hierarchies of
related problems. In this paper we propose a hierarchical
model and a scalable algorithm to perform inference for mul-
titask learning. It infers task correlation and subtask struc-
ture in a joint sparse setting. Implementation is achieved
by a distributed subgradient oracle and the successive ap-
plication of prox-operators pertaining to groups and sub-
groups of variables. We apply this algorithm to conversion
optimization in display advertising. Experimental results
on over 1TB data for up to 1 billion observations and 1 mil-
lion attributes show that the algorithm provides significantly
better prediction accuracy while simultaneously being effi-
ciently scalable by distributed parameter synchronization.

Categories and Subject Descriptors

G.3 [Mathematics of Computing]: Probability and Statis-
tics; 1.2.6 [Artificial Intelligence]: Learning

1. INTRODUCTION

In many cases data inference problems do not arise in
isolation. That is, we usually encounter a range of related
problems and there is considerable benefit in solving them
jointly. This insight has been exploited repeatedly and it
has led to algorithms commonly known as multitask learn-
ing techniques [4, 22, 12, 7, 18]. Applications, e.g. to mas-
sively multitasked spam filtering [20] show its practical im-
portance. The key idea is that by solving related tasks we
are able to learn more about an individual task.

In this paper we study the problem of conversion maxi-
mization in display advertising. That is, we focus on maxi-
mizing the occurrence of commercially relevant actions such
as purchases, account creation, mailing list signups, etc.
This involves estimating a user’s propensity to perform such
actions and to identify generally susceptible populations of
users. The challenge here is that we have both a broad range
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of different advertisers and also a range of subtasks (views,
clicks, conversions) that we wish to maximize.

As is to be expected in computational advertising, the
amount of data can be quite significant. Moreover, the data
is not necessarily homogeneous. Tasks have wildly varying
sizes, commensurate with the financial stake of the advertis-
ers and the popularity of their product. Likewise, attributes
are sparse and many occur only in a small number of con-
texts. This requires an effective inference approach.

Our work builds on well known multiple kernel learning
[19] and collaborative filtering techniques namely that of ef-
fectively imposing a hyperprior on the regularization term.
In doing so it is possible to cast multitask learning as a non-
trivial convex optimization problem. See e.g. [23] for details.
This strategy is then combined with a hierarchical model
over task and subtask specific parameters. Furthermore, we
impose structured sparsity along the lines of [5].

To solve the problem in practice we rely on a distributed
subgradient oracle. Load-balancing is achieved by using con-
sistent hashing for task distribution over processors and dis-
tributed variable aggregation to mitigate the latency and
task restarts otherwise required in Hadoop MapReduce. That
is, we use the variable distribution of [13] for storage. Sub-
sequently we invoke a sequence of prox operators [5] to syn-
chronize efficiently between local and global penalties. To
summarize, our contributions are the following:

e We formulate the joint conversion, click and unattributed-
conversion modeling problem in behavioral targeting
as a large-scale hierarchical multitask learning problem
and show that the convex multitask learning approach
of [23] can be adapted to this setting.

e We design an efficient distributed implementation of
the above algorithm that scales to Terascale data.

e Using a real-world, web-scale display advertising tar-
geting data set and two smaller public datasets, we
show the ability of our algorithm to significantly im-
prove on the baseline modeling performance obtained
by traditional single-task inference systems.

1.1 Challenges in Conversion Maximization

Recent trends in behavioral targeting and display adver-
tising emphasize the importance of commercially relevant
actions. That is, rather than user clicks, advertisers aim to
maximize the number of conversions they receive. Conver-
sions stand for purchases, account creation, or any other rel-
evant action that an advertiser sees as particularly desirable.
To obtain good performance, publishers tend to instrument



their websites with embedded code which allows third par-
ties to capture user transactions and generate user segments
that are of high value for a particular advertiser [1]. These
segments primarily contain users that are actually inclined
to perform a transaction as opposed to a casual visit to the
web site through an accidental click.

Conversions on an advertiser’'s web site are either “at-

tributed” to their corresponding display ads based on advertiser-

specific rules, such as the amount of time elapsed between
the conversion time and the time that the ad was last shown
to the user, or they are “unattributed” if they cannot be
tied to a specific display ad. Past work [3] has shown the
superiority of targeting platforms maximizing for attributed
conversions to traditional solutions maximizing for clicks.
For conversion-oriented behavioral targeting the traditional

approach has been to only consider attributed conversions.
The corresponding inference problem for each advertising
campaign is then solved independently, for instance, by fit-
ting a Support Vector Machine or Logistic Regression model.
This generates separate models based on user data for each
campaign. However, a typical behavioral targeting platform
optimizing for attributed conversions, henceforth simply re-
ferred as conversions, faces two core issues:

e There is a large volumes of user histories that need to
be processed in a periodic fashion in order to perform
inference over attributed conversions for a large num-
ber of ad campaigns. Processing activities of billions
of users on a daily basis imposes many challenges such
as how to build user profiles in an efficient way, and
how to optimize multiple campaigns at the same time;

e When optimizing for each campaign separately we are
likely to do poorly for infrequent campaigns. We there-
fore need to design algorithms that can deal with sparse-
ness of attributed conversions in many campaigns. The
absence of a sufficient number of labeled data for the

inference tasks creates a major bottleneck against achiev-

ing tangible targeting performance improvement.

1.2 Multitask Learning

For each advertising campaign, we can formulate several
other related inference tasks apart from conversion model-
ing: we can attempt to infer the likelihood of a click (which
is typically a prerequisite for conversion) and to model the
likelihood of unattributed conversions (the latter helps to
identify similar users). These different inference problems
of each campaign are likely to be correlated. Hence model-
ing them jointly should improve estimation performance.

Additionally, it is quite likely that there is significant cor-
relations between inference tasks across different advertising
campaigns. For example, if there exists advertising cam-
paigns corresponding to different brands of cars, the conver-
sion or click models for all these campaigns might be quite
similar to each other. Thus, performing a joint inference over
all these potentially-correlated tasks together might lead to
better performance than solving these inference tasks sepa-
rately. This is the basic premise of multitask learning.

The key difference to conventional multitask learning is
that in our case there exists a hierarchy between tasks. That
is, we expect that all tasks for a given campaign (e.g. sell-
ing car insurance for a particular company) have related
specificity in terms of their user demographic. Hence it is
only reasonable that the sets of features and preferences are

shared between them. It is to be expected that joint feature
selection should improve the performance of each estimator.

Strictly speaking, we have two somewhat related goals —
one is to do well for all tasks, i.e. click, conversion, and
unattributed conversion estimation. This is a symmetric
setting where the goal is to use the task correlations to si-
multaneously improve the prediction performance of all the
tasks. The other task is to perform well for conversion pre-
diction while using the remaining data as side information.
This is an asymmetric setting. While both tasks are rather
related, they are subtly different in their performance crite-
ria and in terms of the estimation problem.

In this paper, we formulate two different hierarchical mul-
titask models for these settings: a hierarchical model for the
symmetric setting, and an attachment model for the asym-
metric setting. In the hierarchical model, we first define an
inter-campaign correlation matrix on a root-level set of fea-
ture weights for each campaign. This is then used to derive
feature weights for its conversions, clicks and unattributed
conversions locally. In the attachment model, the inter-
campaign correlation matrix is applied directly on the fea-
ture weights for the conversion model of each campaign.

There is ample literature covering the subject of multitask
learning. However, in the context of our behavioral targeting
problem, there are two objectives that a multitask learning
algorithm should satisfy: it should be easily distributable
and scale to thousands of campaigns and millions of features;
it should extend to a multi-level task hierarchy. This makes
the setting rather nontrivial in terms of efficient inference.

1.3 Approach

In this paper, we use a convex formulation approach for
multitask learning. Its basic idea is described in several vari-
ants e.g. in the context of multitask learning [23], matrix
inference [16] and multiple kernel learning [14]. Essentially,
one imposes a penalty over the covariance matrices govern-
ing correlation between attribute vectors. This way we can
ensure that primarily similar attribute sets and related at-
tribute vectors are chosen.

In terms of conversion maximization this means that we
use an inter-campaign covariance matrix to model the rela-
tionships between the various campaigns. Moreover, intra-
campaign covariance matrices are used to model the rela-
tionships between clicks, conversions and unattributed con-
versions of each campaign. A matrix-variate normal prior is
imposed on these covariance matrices. A joint optimization
objective can be formulated for all the tasks by obtaining
a maximum likelihood estimate of the covariance matrices
and the per-task feature weights for all the tasks. As we
will show later, this objective is convex. It can be solved in
a distributed fashion using proximal subgradient methods,
such as the Fast Iterative Shrinkage algorithm (FISTA) [6].

For both models, we use a scalable alternating subspace
descent method for simultaneous inference of both the task
correlation matrices and the feature weights. A key tool for
achieving scalability will be to use a cluster of machines as
a distributed subgradient oracle [17]. Since iterative thresh-
olding algorithms like FISTA require a significant number of
gradient computations (e.g. [0] report 100 steps), our plat-
form must preserve state and data locality between itera-
tions. This makes it unsuitable to a naive Hadoop MapRe-
duce implementation. Instead, we employ a consistent hash-
ing based synchronization algorithm. We apply our dis-



i € {1...mc}
c e {1...m}

i € {1...msc}

0200
s € {1...mc}
@ c € {1...m}

Figure 1: Top: Standard multitask learning using
a Matrix-Variate distribution. Observations X.; for
campaign c receive labels Y,;. These are assigned us-
ing campaign-specific weight vectors W.. The latter
are exchangeable but not independent, hence jointly
drawn from some distribution p(W|Q2). Bottom: Hi-
erarchical multitask learning. After drawing task
specific parameters Z. from an exchangeable but not
independent distribution we draw subtask specific
parameters W, using a joint parameter ©. and Z..
The rest remains unchanged.

tributed multitask learning framework to the conversion mod-
eling problem described in [1] and we show how our system
can improve the AUC performance significantly, when com-
pared to individual conversion modeling of each ad-campaign.

2. MULTITASK LEARNING
2.1 Notation

We now cast the problem of campaign-specific estimation
as a multitask learning problem. That is, we treat each
campaign ¢ as a task. In each such case we observe co-
variates (patterns) z.; and our goal is to infer labels yc;.
For simplicity we assume that z.; € X = R? consists of d-
dimensional vectors and moreover that y.; € Y are either
binary Y = {£1} for classification or real-valued Y = R for
regression. At a later stage (in section 3) we will assume
that each campaign contains a number of subtasks s. The
table below gives an overview of the symbols used:

X | domain of observations (usually X = R?)

Y domain of labels (usually Y = {£1} or Y = R)
c campaign index (c € {1...m})

s sub-campaign index (s € {1...n})

j | observation index (j € {1...mc} or j € {1...mcs})
x | observation (Zc; Or Xcsj)

X, | set of observations for campaign c

Y observation (yc; or Yes;)

Y. | set of labels for campaign ¢

w | parameter vectors (we Or wes)

W | stacked parameter vectors W = {...w....}

z parameter vectors z. for top level hlerarchy
Z | stacked parameter vectors Z = {...zc...}

Figure 1 captures the formal structure of the multitask learn-
ing problem. To capture interaction between covariates .,

p(, yle)

campaigns c and associated labels y.;, e.g. whether a partic-
ular user converted on an ad in a particular campaign at a
particular occasion, we consider the issue of estimating y|z, ¢
for a large range of campaigns simultaneously. We denote
by m the total number of campaigns and by m. the number
of observations per campaign. Formally we consider sets of
covariates and labels indexed by a campaign ¢, denoted by

X© = {xf{a"wxfl“} g X and Y = {yfaay;r} g y
Here each pair (xcj,yc;) is drawn from some distribution
= p(y|z, c)p(z|c) of covariates and labels respec-
tively. Finally, we denote by csi the combination of task,
subtask, and coordinate, and by - the entire vector in the
associated dimension. E.g. w..; denotes the vector over all
subtasks s associated with ¢ for coordinate 3.

2.2 Objective

The inference problem is expressed either of risk mini-
mization whenever we want to find a classifier which makes a
small number of mistakes, or as one of maximizing the data
likelihood. In the latter case we want to find parameters
W = {ws, ... wn} such that the maximizes label likelihood:

pVIX, W) = [[p(VelXeswe) = [ ] pwes aeswe) (1)
c=1 c=1j=1
Choices for yej|xcj, we are e.g.

Za%(ycj *(chywc>)2 (2)

®3)

(27‘(0’2)7% e
N S
1 4 e vei{zesjwe)

P(Yeslwes, we) =

P(Yesles, we) =

for regression and classification respectively. A naive max-
imization of the conditional response likelihood p(Y|X, W)
leads to overfitting unless the model complexity is overly
small or unless a suitable prior is used. Multitask learning
models aim to address this problem by imposing a suitable
prior distribution p(W) on W which favors simple models
and which exploits correlation between tasks. Consequently,
instead of maximizing (1) one aims to find the Maximum-a-
Posteriori (MAP) estimate of W via

maxvlvmlzep(W) Hp(Yc\XC,wC) (4)

c=1

The challenge is now to define models of p(W) that are both
computationally tractable and statistically meaningful. This
hierarchical modeling imperative leads to multitask learning.

2.3 Multitask Prior

Our working assumption is that W is drawn from a matrix-
variate distribution in such a way as to exploit correlations
between the tasks, such as assuming that the tasks are more
concentrated in a lower dimensional subspace. This is a rea-
sonable assumption since there is no inherent order in which
the tasks are laid out. One option is to choose a normal dis-
tribution as follows:

W ~ N(0,14 ® Q) or equivalently w.; ~ N(0,2) (5)

for all coordinates i. The likelihood of W is given (up to
constants) by

—logp(W|Q) = tr WQ'W T 4+ dlog|Q| + ¢ (6)



It is straightforward to modify this by including a conjugate
Wishart hyperprior on 2. Unfortunately, the outcome is
concave in W.

An alternative is to replace the log-barrier arising from a
conjugate prior on €2 by a trace constraint and a positive
semidefiniteness constraint. That is, we replace log || by
Q > 0 and trQ = 1. This is used, e.g. in [23]. Such a
modification leaves the eigenspace of the W-dependent part
of the optimization problem unchanged. This leads to the
following alternative:

L —1,T
mlrvlé,rglzeg—logp(YJXc,wc)—l—)\trWQ w (7a)

subject to @ > 0 and trQ2 =1 (7b)

The above formulation is convex in both W and €2 and can
be solved using an efficient algorithm based on alternating
subspace descent. For fixed 2 minimize (7) with respect
to W. Subsequently, for fixed W, find the minimizer with
respect to €2. A simple constrained optimization problem
shows that this can be found via

_1
2

W]

Q: - 1
tr [WTW]™ 2

(8)
This approach forms the baseline relative to which we will
compare our proposed method.

3. HIERARCHICAL MULTITASK LEARN-
ING

While the flat models presented in Section 2 can learn
the correlation structure between tasks, they are not so eas-
ily amenable for distributed optimization because of the
squared dependency between all the tasks. Fortunately,
many large scale multitask problems possess a hierarchical
structure that allows us to decompose them into tasks and
subtasks. For example, in display advertising each adver-
tiser can be regarded as a task (a campaign) within which
we can define three subtasks as follows:

e Conversion prediction: estimate if the user will con-
vert, i.e. perform a commercially relevant action, on
the current display ad.

e Click prediction: predict if the user will click on the
currently displayed ad.

e Unattributed conversion: historical data of users who
converted on previous advertisements of the advertiser.

We use s to index the subtask. That is, rather than ¢ we
now use the tuple cs to index task and associated subtask,
such as (Coca Cola, clicks). All remaining notation is
unchanged relative to the previous section.

In a nutshell we have two options for dealing with the
hierarchical structure: firstly, we estimate the joint model
for all tasks, subtasks and all campaigns. A second strategy
is to solve the model for the primary subtask of conversion
estimation exclusively and to use the associate (secondary)
subtasks only as side-information. We will refer to the for-
mer as a hierarchical model and to the latter as attachment
model. The key difference is in the following assumption:

e Hierarchical Model: We assume that for each task
group there exists some parameter vector z., with Z =

Figure 2: Top: Hierarchical dependency structure
over parameter vectors for multitask learning. The
intermediate parameter vector z. encapsulates com-
monalities per task. Bottom: Attachment model.
Here the conversion-specific parameters are directly
coupled. For simplicity of the diagram we omitted
©. in both cases.

{z1,...2m} that specifies preferences per task
Z ~N(0,14 ® Q) or equivalently z.; ~ N(0,) (9)

Moreover, within each task, the distribution over sub-
tasks is given by

We.s ~ N(1 - 2es, O). (10)

This assumes that correlations within subgroups are
decoupled.

e Attachment Model: Denote by s = 1 the primary
subtask (conversion estimation). Instead of using z.
as an intermediary we couple the models directly via
we1 and use a hierarchical model on the remaining pa-
rameters. This amounts to

w.1; ~ N(0,9) and we.; ~ N(1 - weis, Oc) for s > 1.

The diagram in Figure 2 describes the difference between
both approaches for a rather simplistic structure of 4 tasks
(in reality we may have millions of such tasks).

As previously discussed in Section 2, we again resort to
a reformulation that uses a trace constraint and positive
semidefiniteness rather than the log-barrier to restrict {2 and
©.. That is, instead of

~ log p(W, 2|02, ©) (11)

1 _
= Z 3 tr(we. — 1+ zc)T(wc. —1-2:)0, b s log |©.]

1
+ itrZTQqZ—&—mc log |Q] + ¢



for the hierarchical model and analogous setting for the at-
tachment model, we use the following objectives L(W, Z, §2, ©):

Lhier(m Z7Q76) (12)

1 _ 1 _
:ZQtr(wc.—l-ZC)T(wa—1-zc)ecl—|—§trZTQ lz
c

subject totr©, = 0and trO, = land trQ > 0and trQ =1
for the hierarchical model. Moreover, for the attachment
model:

Lattach(Wa Q7 @) (13)

1 _ 1 _
:§trw1wc.@c by 3 Zi:w.hﬂ le

subject to the same constraints as for Lpier. The only real
difference is that we eliminated z and instead, we attach
the model to w.; directly. In either case this detaches the
subtasks from the problem of joint task inference.

3.1 Structured Sparsity

A second aspect of multi-task learning is to use structured
sparsity [5] to select relevant variables for an entire block
of terms jointly rather than eliminating terms for each task
individually. This is achieved by adding a mixed norm on the
parameters W and Z to the optimization problem. We need
some more notation first: the p norm of a vector z € R%:

[z} == Z |z;|” for p < oo and ||z||, = max |z;].
K3
i
Moreover, the mixed norm of a matrix X, where we apply

sparsity row-wise, is defined for p,q > 1 via

1X1q = 101, 1), (14)

- .
Of particular interest is the || X|, , norm, which attempts to
eliminate entire rows of X at a time. Finally, we use the ab-
breviation || X||, := || X||, ; to denote the sum over absolute
values in X. This leads to the following sparsity penalties
for the hierarchical and attachment models respectively:

Shier(m Z) =\ ||Z||1 + A2 ||Z||2,1 + (15)
MWL+ X2 Y IWelly s

Sattach (W) =AWl + A2 (Wl y + A2 D [[Welly, (16)

The coefficients A1 and A2 govern the trade-off between generic
sparsity and group sparsity. That is, for A2 there will be
no correlation in sparsity patterns beyond what is obtained
from data. For \; = 0 we can assume that whenever any
given Wes; # 0 then also all related W_/; will not vanish.

3.2 Optimization Problems

We conclude this section by stating the two optimization
problems that we will solve subsequently. The key ingre-
dients are a likelihood function —logp(Y|X, W) which de-
pends on the specific problem to solve, a simplified mul-
titask learning penalty as defined by Luier(W, Z, 2, ©) and
Lattach (W, Q, ©) respectively, and a sparsity penalty as in
Shier(W, Z) and Sattach (W). We have the following for the

hierarchical multitask model:

—log p(Yesj|Tesj, wes) + %tr zZ'a 'z

csj

1 _
+ Z 5 tr(we. —1- ZE)T(wCA —1-2.)0, L

minimize
W,Z,Q,0

A Z] + A2 ||Z||2,1 (17a)
+ A HWHI + Z A2 ||WC||2,1
subject to 2,0, > 0 and trQ2 =tr0, = 1. (17b)
Moreover, the attachment multitask model yields:
minimize Y —10gp(Yes;|ves;, wes) (18a)

csj

1 _ 1 _
+ 5 ;trwzwc.(ac Ly 3 gwlliﬂ lw,-;i
F MWL+ A2 Wy + D X2 [[Well,

subject to 2,0, = 0 and trQ =trO. = 1. (18b)

4. INFERENCE

The optimization problems (17) and (18) are jointly con-
vex in (W, Z,Q,0) and (W, , ©) respectively. For practical
optimization we resort to a Gauss-Southwell [15] approach
of minimizing blocks of parameters at a time. In practice
this means that we alternate between minimizing with re-
spect to W, Z and €2,0. This is known to converge to the
globally optimal solution (albeit slowly on occasion). Issues
of problem distribution and parallelization will be discussed
in the next section.

4.1 Covariance Updates

Assume that we are given W, Z. In this case we may find
optimal values for the psd matrices €2, ©. using the deriva-
tion in (8) as follows:

Q= (tro)'o (19)

where O = (ZZ T)7% (hierarchical)
-3

O = Z w.liwL:| (attachment)

Likewise, for ©. we have the updates
Q.= (trT7)'T (20)
-3

where T = |:Z(w” — 2ei) (Wei — zci)T] (hierarchical)
' _1
2

T= Z wc.iwzi] (attachment)

This means that we can compute T entirely with only access
to all subtask specific parameters s for a given campaign c.
Hence, as long as it is possible to have all such data available
on a single machine, we need not communicate the lower
level of the hierarchy outside the machine.



4.2 Optimization with Sparsity Penalty

Next we need to discuss update steps in terms of W and Z.
Recall that we imposed a mixed norm penalty on both terms
such that we obtain group sparsity. Our strategy borrows
from [5], and [10, Proposition 1]. Recall the structure of
the penalties imposed by ||-||,, and ||-]|;. They constitute
a hierarchy over nonzero terms in W and Z respectively
— the (2,1)-norm attempts to zero out the entire set of
contributions for a given coordinate and the 1-norm ensures
that even if we use an attribute, we only use it sparingly.

Given 2, © the remainder of the problem is a convex un-
constrained optimization problem. Omne of the algorithms
recently proposed are of a structure resembling FISTA (Fast
Iterative Successive Thresholding) [6]. In it one interleaves
a gradient descent step with regard to the convex differen-
tiable part of the objective with a thresholding step with
regard to the sparsity penalty. That is, for the problem:

miniamize f(a) + AQ[a] (21)

one performs the following steps (after initializing ao)
biy1 := ar — nt0e f(ar) and (22)
a1 = argmin 2% lla = besa|? + AQ[a] (23)

Here (22) is essentially a gradient descent step in f. The
step (23) is commonly referred to as a prox-operator. The
step size t; is chosen such that ¢, ! majorizes the Lipschitz
constant of dq f(a).

We discuss computing gradients with respect to the ob-
jective in Section 4.3 for the hierarchical model (the attach-
ment model follows similarly). In this context we mean by
F|Z, W] either the first two lines of (17) or of (18) with Q
and O fixed at this point. For now note that in our case
Q[a] decomposes into penalties applied per task. That is

AW, Z]=3 M {Ilzclll + > lwesll,
A2 |:||ZC||2 +> IIwcslz]

Solving (23) can be carried out for each task ¢ and for each
zc and w, individually, hence it is amenable to easy distribu-
tion. Using [10, Proposition 1] one can see that performing
successive prox operations with respect to the ¢; norm and
subsequently with respect to the ¢2 norm lead to an exact
solution of (23). For instance, for z. this means that we
perform the following steps

Ze & Zei — ti&%&"[Z, W} (25)
Zei 4= s8N ze; max(0, | zei| — tid1) (26)

+ (24)

and subsequently we threshold the entire vector via

Ze — — max(0, ||ze|| — tida) (27)
l[zell

In other words, first we perform gradient descent. Then all
coefficients that are individually too small are eliminated
and the remainder is shrunk. Finally, we perform shrink-
age of the remainder in the direction of their unit vector.
The objective is either that of the hierarchical or of the at-
tachment model. Updates with respect to W are entirely
analogous and therefore omitted.

attributes

Ry

process tasks independently

Client | Client | Client | Client | Client | Client | Client | Client

process for shrinkage over attributes

Figure 3: The parameter matrices W and Z are of
size R*™. For gradient computation we need to
have access to all parameters for a given task ¢ on
a given machine, hence the row-wise split. Subse-
quently, to perform shrinkage over attributes, we
need all parameters pertaining to a feature (for all
tasks) on a given machine. Load balancing for both
of these tasks is achieved by consistent hashing.

4.3 Gradients

We complete our overview of optimization by discussing
the gradient in terms of W and Z. As before, we limit
ourselves to a discussion of the hierarchical model of (17).
Since the reasoning required for (18) is essentially identical,
we omit the details. Straightforward calculation yields

0. FIZW] = [ 2] + 0. (1 20 —wes)  (28)

Zci

Oueni FIZ W] = Ouess — 108 D(esj|Tesjy wes)  (29)
J

+ 0, (Weei — 1+ 2es)

As can be seen, again all gradients decompose in terms of
tasks and subtasks respectively. We will exploit this for
distributed optimization. The exact form of the gradient for
D(Yesj|Tesj, Wes) is straighforward to compute for both the
regression and classification problem given the form of the
conditional probability in (2) and (3) respectively.

S. DISTRIBUTED OPTIMIZATION

We now discuss how to implement a distributed optimiza-
tion algorithm efficiently on a cluster of commodity worksta-
tions. As discussed previously, invoking steps (22) and (23),
and updating Q and © requires the following operations:

1. Compute partial subgradients of F[Z, W] for all cam-
paigns with respect to Z and W.

2. Aggregate subgradients obtained from all instances and
apply it to the model parameters.

3. Distribute coordinates (or subsets S € 8§ thereof) of
the subgradients (or rather updated coordinates) to
clients for application of the prox operator.

4. Invoke the prox operator.

5. Redistribute the results to the machines holding the
campaign-specific data.

Since this is an iterative procedure with two barriers per it-
eration (send subgradients, return values) this sounds as if
it were a good fit for MapReduce. Unfortunately, this ap-
proach suffers from inefficiencies inherent in the Hadoop im-
plementation of MapReduce: context in the mappers is not



preserved between iterations. Moreover, Hadoop communi-
cates primarily via file I/O. Since the proposed algorithm
can take tens of iterations and since we need to communi-
cate parameters repeatedly, this means significant waste of
resources by repeatedly having to initialize the state of the
mappers. Hence we resort to a method discussed in [13, 2],
namely to allocate the machines using Hadoop and then to
establish an overlay communication network.

Algorithm 1 Distributed Optimization
1: for all i =1---p parallel do
read data blocks from disk
3:  for all campaigns with m(c) =i do
4 compute subgradient g.
5 end for
6:  write g. to (key,value) store according to m(7)
7
8
9

: end for
: reach a barrier
: for alli=1--.p parallel do
10:  read g. from (key,value) store according to m(z)
11:  for all coordinates with m(j) =i do
12: solve the prox operator
13:  end for
14:  write to the (key,value) store according to m(c)
15:  Compute contribution to sufficient statistics of 2 and
write it back to shared memory.
16: end for
17: reach a barrier
18: Read sufficient statistics of {2 and compute new value.

5.1 Data and Task Distribution

In the following we assume that we have p machines to pro-
cess data. Recall that d denotes the number of attributes,
i.e. Tes; € R? and that m denotes the number of campaigns.
We use randomized load-balancing to determine which ma-
chine receives which portion of the data in both the data-
bound and the parameter-bound part of the optimization
procedure. This is achieved, e.g. by consistent hashing [11]:

m(c) = argmin h(m, ¢) and m(i) = argmin h(m,:) (30)
meM meM
to assign machines from a machine pool M for campaigns ¢
and coordinates 7 respectively.

Finally, data exchange is carried out in the form of a dis-
tributed (key,value) store. For reasons of practicality we
used memcached as our reference implementation. This fol-
lows the design pattern of [21, 13] and it avoids file I/O for
synchronization. Such a strategy is much more efficient than
repeated invocations of Hadoop MapReduce.

5.2 Distributed Subgradient Oracle

By design, the subgradients of F[Z, W] and F[W| decom-
pose into terms that are easily computable in a campaign-
specific manner (terms related to the negative log-likelihood)
and terms that are easily computable in a coordinate-specific
manner (the penalties in terms of 2,0 and the sparsity
penalties). Furthermore, only the former requires direct ac-
cess to data, whereas the latter requires access to a given
coordinate across all tasks. This means that we can com-
pute gradients in two stages: a pass over data, as performed
by the workers that have the data, a reshuffle of parameters,

and a finalizing pass (plus prox step) in a coordinate-specific
fashion.

Likelihood gradients: Since data is partitioned accord-
ing to tasks c¢, subgradients with regard to w.s are easily
computed via

Ncs

Ges = D Oues — 108 P(Yes;|esi, wes)- (31)
j=1

Next we compute gradients with respect to % > Wl O twes,
i.e. we add ©- w,. to ges. The analogous reasoning holds
for 3 (wes — zC)T®;1(wCS — zc). These gradients are then
redistributed according to Figure 3 such that all g.s; for a
given coordinate ¢ (ranging over all tasks and subtasks) are
available on the same machine.

Multitask gradients: At this point we can compute
coordinate specific parts as arising from the Q-dependent
terms on a per-coordinate basis. For this purpose we only
need Z.; or w.1;, depending on whether we chose the hier-
archical or attachment model respectively. We only need to
read the weights corresponding to non-zero entries in Q*.

5.3 Distributed Prox Operator and Covariance
Estimation

The final step required is to solve the prox operator re-
lated to the ||-||; and |||, ;, norms as these enforce sparsity.
Whenever we have a fully hierarchical setting, Proposition
1 of [10] applies and we can simply perform prox steps bot-
tom up in the process. Whenever this assumption is not
satisfied, we may still iterate the prox operator to obtain a
suboptimal solution. This suffices as a descent step, since
optimization in Z and W is just a subroutine in the over-
all optimization scenario involving © and . Note that the
prox operator can be carried out in linear time — we only
require computing norms of vectors and rescaling them.

The data exchange is completely analogous to the gradient
computation, except that we now work on attributes rather
than campaigns. After the prox operation we redistribute
parameters back into a (key,value) storage. As before, this
requires a barrier to ensure that up-to-date values are avail-
able on all workers for another pass through the data. Sim-
ilar to the gradient computation phase, the read and write
steps can be performed in parallel.

Finally we note that estimating © can be done locally
in each worker however the sufficient statistics required to
compute Q (see 19) is distributed on a per-attribute basis.
Thus we overlay this step with the prox-operator step. Each
worker computes its contribution to the sufficient statistics
using its assigned attributes. For example in the hierar-
chical model this reduces to computing a C' x C' matrix
> em(i) ziz; . After reaching a barrier, worker 0 then reads
those partial sums and computes the new value for Z using
(8) and then writes Q back to a shared memory to be read
by each worker for the next iteration. Alternatively each
worker can read the sufficient statistics of 2 and compute
the new value deterministically. Moreover, instead of using
(8), we could use the graphical lasso estimation of [9] to get
a sparse inverse covariance estimation of Q7! from its suf-
ficient statistics. This sparse inverse covariance is desirable
In distributed settings to minimize parameter movements
when computing the multi-task gradient as it depends on
the non-zero elements of the inverse covariance (i.e. Q7).



0.73 == MTL Attachment

0.72 *-%  MTL Hierarchical
071 4-——A MTL Flat

0.7

=== Single Task

R2 score

Iterations

Figure 4: School Data: R? Performance for various
multitask learning algorithms. Note the faster con-
vergence and better performance of ATT-MTRL.

6. EXPERIMENTS ON PUBLIC DATA

To establish the efficacy of our approach we report results
on both two public datasets and one proprietary dataset.
We make this choice since we are unable to share proprietary
and financially relevant data outside Yahoo, yet at the same
time we wish to provide the reader with some means of gain-
ing insight into the working of the proposed algorithm. In
other words, we show that the proposed algorithm improves
on the state of the art and simultaneously that it scales to
substantial problem sizes.

In terms of public datasets we choose two standard datasets:
estimation of examination scores for students attending sec-
ondary schools in London and multi-task classification of
the 20-newsgroup dataset. The algorithms we compare are
the Hierarchical MTL (HIE-MTRL) and Attachment MTL
(ATT-MTRL) algorithms, along with two baselines: the first
one is the Single-task Learning (STL) algorithm which does
not use multitask learning, and optimizes all the tasks inde-
pendently. The second baseline is the Flat MTL (F-MTRL)
algorithm of [23] that uses a matrix-variate normal prior
on the task correlation matrix. This algorithm performs
multitask learning, however it does not account for the hi-
erarchical task and subtask structure. It “flattens” the task
hierarchy and treats (task, subtask) as individual tasks and
learns a joint covariance structure.

6.1 Student score estimation

This dataset has been used widely for studying multitask
regression'. It consists of the exam scores of 15,362 stu-
dents from 139 secondary schools in London during 1985,
1986 and 1987. Originally, the input consists of the year of
the exam, four school-specific and three student-specific at-
tributes. The goal is to estimate the exam scores for the stu-
dents. Several papers [23, 4] evaluate multitask learning by
treating the school-ids as attributes, but one could arguably
treat this dataset as specifying a hierarchical task/subtask
structure, where the school ID refer to tasks and the exam
years for each school correspond to the subtasks of the school
ID. Thus, there are a total of 139 tasks, with up to 3 sub-

http://www0.cs.ucl.ac.uk/staff/A.Argyriou/code
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Figure 5: 20-newsgroup MTL: AUC Performance
for various multitask learning algorithms. The hi-
erarchical MTL algorithm starts off better than the
flat algorithm and it consistently outperforms both
single task and flat multitask learning.

tasks for each task. We note that several tasks have only 2
tasks in the dataset.

We replace each categorical attribute with one binary vari-
able for each possible attribute value as in [4] but remove the
attributes corresponding to the exam years. As a result of
this preprocessing, we have a total of 24 input attributes. We
use a 66/34 split of the dataset to use as training instances
and test instances, and report the average (over all years
and schools) performance of our algorithms, on the test set.
For our performance measure, we use the normalized inner
product between the input score vector and the predicted
score vector. This measure is proportional to the squared
multiple correlation coefficient R?, a normalized version of
the regression error, defined as

>y — fz‘)2.

2.1
B =1 =N

(32)
That is, it is the ratio between explained variance and total
variance. See e.g. [3] for further details.

For F-MTRL, HIE-MTRL and ATT-MTRL we use 5-fold
cross validation to determine the optimal value of the appro-
priate regularization constants and learning rate. Figure 6.1
plots the R? performance of the algorithms as optimization
progresses. As can be seen in the graph, and as also reported
by [23, 4], multitask learning provides a significant perfor-
mance improvement. F-MTRL improves over the baseline
by around 5%. However, by using the task-subtask hier-
archy, our HIE-MTRL and ATT-MTRL obtain a further
improvement from a score of around 0.71 (for F-MTRL) to
almost 0.73. The performance for ATT-MTRL was slightly
better than HIE-MTRL in this dataset.

6.2 Multi-Task Classification

The task at hand is multi-task classification of the 20-
newsgroup dataset”. The goal here is to predict the news-
group of a given post. The 20 news groups are arranged into
a two-level hierarchy. The first level comprises 5 categories:

*http://qwone.com/ jason/20Newsgroups,/
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Table 1: 20-newsgroup analysis: AUC performance
for single task and multitask algorithms on varying
percentages of the data.

Fraction of data STL F-MTRL HIE-MTRL

20% 0.755 0.775 0.827
40% 0.821 0.839 0.881
60% 0.875 0.893 0.910
80% 0.899 0.917 0.932
100% 0.918 0.931 0.957

politics, religion, recreational, science, and computers. Each
category has 2-5 subcategories in the second level. We map
categories to tasks and sub-categories to sub-tasks. The
dataset comprises 18k documents and we followed the stan-
dard test/train split. We removed stop words and words
appearing less than 10 times. Five-fold cross validation is
used to determine the values of the regularization parame-
ters for all models.

We measure classification accuracy using the AUC mea-
sure. Since in this dataset we do not have the notion of
an anchor task, we only use the symmetric HIE-MTRL for-
mulation. In Figure 5 we compare the performance of HIE-
MTRL against the state of the art algorithm in [23] F-MTRL
and against single-task baseline STL. As evident from figure
HIE-MTRL improves over the F-MTRL baseline by around
2% points and the improvement was statistically significant.
Moreover HIE-MTRL outperforms all other competing al-
gorithms in terms of speed of convergence.

To see the effect of varying the training set size, we se-
lect different fractions of the data for each task to form the
training set while keeping the test set fixed. As can be seen
in Table 1 HIE-MTRL outperforms all other competing al-
gorithms for a range of different sample sizes. Moreover,
the improvement of HIE-MTRL over competing algorithms
is more apparent when the training data size is small (a 5%
improvement over the F-MTRL baseline using a 20% frac-
tion of the training data).

7. OPTIMIZING DISPLAY ADVERTISING
7.1 Data

We collected 4 weeks of advertising data, i.e. impressions,
clicks, and conversions, for a total of 1,468 advertising cam-
paigns.®> Each campaign is treated as a separate targeting
task. 66% of the data is used for training, while the remain-
ing 34% is used for scoring. The train/test split is performed
using a reference time stamp (impressions before that time
stamp used for training and afterwards impression for test-
ing). Since the user profiles span 56 days of user history, each
training/scoring example is preceded by at least 4 weeks of
user events. This benchmark data set enables us to perform
rigorous offline experiments. We count users based on the
unique number of browser cookies (see table below).

days wusers features campaigns dataset size
56 10° 934,000 630 1.4TB

We study the performance of our techniques compared to the
baseline system developed in [3]. We mainly compare mod-
eling performance in terms of the area under the ROC curve
(AUC). Unless otherwise specified, all metrics are measured
as conversion-weighted average of AUC across all campaigns

3We note here that data from users that opted out of be-
havioral targeting were not collected.

in the benchmark set. We denote the conversion-weighted
average of AUC as Weighted AUC.

We represent each user using features from both active
and passive observations. Passive observations include view-
ing ads and visiting pages in which an action is not specifi-
cally required upon seeing the page. Active observations in-
clude issuing search queries and clicking ads in which users
actually perform an action on the page.

Each advertising campaign has three subtasks:

e Predicting conversions: This sub task contains data
that shows whether users converted on a given cam-
paign. That is, it contains information whether they
performed an advertiser-specified action such as pur-
chasing a product or filling a form.

e Predicting clicks: This subtask contains data that
shows whether users clicked on the ad of this campaign
or not.

e Prediction on auxiliary (unattributed conver-
sion) data: This subtask contains data that shows
whether users converted on historic data on related
campaigns of the same advertiser. This data is sup-
plied by the advertiser.

We define the feature weight for a given user-(sub)campaign
example to be the number of days (before showing the user
the campaign ad) in which the feature appears. Our plat-
form experiences a large variance of feature weights across
our feature types thus making it hard to set a single count-
threshold below which we consider the feature to be irrel-
evant. We thus rely on the learning algorithm to perform
joint conversion optimization and feature selection.

7.2 Results

All experiments reported in this section were performed
using 300 machines. We assess the performance both in
terms of AUC accuracy and scalability of the algorithms.
The attachment multitask learning algorithm (ATT-MTRL)
significantly outperforms flat multitask and single task learn-
ing. Moreover, the results for hierarchical multitask learn-
ing (HIE-MTRL) were only slightly inferior to ATT-MTRL
(thus we omit them for space limitations). This finding is
consistent with our findings of Section 6.1. Note that ATT-
MTRL also performs multitask feature selection, which is es-
sential here due to the large feature space. We compare our
performance with the baseline Single-task Learning, which
optimizes for all the tasks and subtasks separately. We
omit comparing with the F-MTRL for this task since the
flat MTL requires flattening the task-subtask structure ( 2k
tasks) which results in massive weight vector movements
across machines and as such does not scale to this dataset
(though in Table 4 we show the effect of introducing task
and subtask covariance on the overall performance).

The parameters for all models were tuned on a validation
set. In Table 2 we report the overall performance of the
model against the baseline. As we can see, our model clearly
outperforms the baseline. All improvements of our models
over the baselines are statistically significant. Note that the
task of conversion prediction is very difficult since positive
examples are very rare.

Secondly, we quantify the effect of feature selection. For
this purpose we select the top 10k, 30k and 50k features
(using mutual-information measure) and use them in the
STL. For comparison we run ATT-MTRL using conservative



Table 2: Attachment multitask performance.

AUC STL ATT-MTRL
all subtasks 0.658 0.674
conversions 0.629 0.653
auxiliary (unattributed) 0.677 0.714
clicks 0.662 0.671

Table 3: Feature selection effectiveness:

Conversion AUC  features
STL + ¢> + top features 0.606 10,000
STL + ¢ + top features 0.609 30,000
STL + {2 + top features 0.607 50,000
ATT-MTRL (aggressive) 0.631 3,992
ATT-MTRL (conservative) 0.653 17,789

Table 4: Ablation study for ATT-MTRL.

AUC conversions  all sub-tasks
L1 0.621 0.642
L1+L12 0.629 0.658
L1+L124+© 0.641 0.663
L1+L124+0+0 0.653 0.674

(A1 = 04,2 = 10) and aggressive (A1 = 0.4, 2 = 25 )
feature selection parameters. The results in Table 3 are
reported in terms of the weighted average AUC measure.
Finally, in table 4 shows the contributions of the vari-
ous components of the ATT-MTRL algorithm towards the
learning performance. Q refers to the task-correlation reg-
ularization, © refers to the sub-task correlation regulariza-
tion, and L1 and L12 refer to per-campaign and multitask
feature selection respectively. As seen from the figure, using
multitask feature selection(L12) leads to only a marginal
improvement over single task feature selection(L1). How-
ever, adding the multitask learning components lead to a
significant improvement over using just L1 and L12 regular-
ization. These results clearly show the importance of lever-
aging cross-campaign and cross-campaign-subtask informa-
tion to improve the performance of campaigns with very few
conversions, as opposed to the baseline techniques.

8. CONCLUSION

In this paper we addressed the problem of hierarchical
multitask learning when tasks are organized in a hierarchy.
We presented two convex formulations to this problem and
showed that models that exploit the hierarchical structure
outperformed flat models. Furthermore, we showed how to
scale our models to a tera-scale advertising task. An advan-
tage of our hierarchical formulation is the utilization of the
task substructure for efficient parameter distribution that
reduces parameter movements across machines. We vali-
dated our models on both public and private datasets with
favorable performance.
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