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ABSTRACT
Personalized recommender systems based on latent factor
models are widely used to increase sales in e-commerce. Such
systems use the past behavior of users to recommend new
items that are likely to be of interest to them. However,
latent factor model suffer from sparse user-item interaction
in online shopping data: for a large portion of items that
do not have sufficient purchase records, their latent factors
cannot be estimated accurately.

In this paper, we propose a novel approach that automat-
ically discovers the taxonomies from online shopping data
and jointly learns a taxonomy-based recommendation sys-
tem. Out model is non-parametric and can learn the tax-
onomy structure automatically from the data. Since the
taxonomy allows purchase data to be shared between item-
s, it effectively improves the accuracy of recommending tail
items by sharing strength with the more frequent items. Ex-
periments on a large-scale online shopping dataset confirm
that our proposed model improves significantly over state-of-
the-art latent factor models. Moreover, our model generates
high-quality and human readable taxonomies. Finally, us-
ing the algorithm-generated taxonomy, our model even out-
performs latent factor models based on the human-induced
taxonomy, thus alleviating the need for costly manual tax-
onomy generation.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; G.3
[Mathematics of Computing]: Probability and Statistics

General Terms
Algorithms, Theory, Experimentation
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1. INTRODUCTION
Personalized recommender systems are used widely to in-

crease sales and customer satisfaction in e-commerce. These
systems use past behavior of users to recommend new items
that are likely to be of interest to them. One of the most
extensively studied techniques are latent factor models and
related variants [1, 8, 9, 10]. These models project users
and items into a lower-dimensional space of latent factors.
Then, the similarity between a particular user and an item
is computed via the inner product of their latent factors and
the most similar items are recommended to the user.

Despite substantial success in the Netflix contest [3, 8],
in tag recommendation [15] and other applications, the la-
tent factor model approach encounters specific challenges in
product recommendation for online shopping: on a typical
retail website we observe a long tail effect both in terms of
users and in terms of items. This means that not only most
users only buy a small number of items, but also that the
majority of items are only infrequently purchased. On our
data users typically purchase 2.4 items and 85% of the items
are purchased by less than 10 users. This sparsity of user-
item interactions makes it difficult to learn latent factors.

In order to resolve the sparsity problem in online shop-
ping, Kanagal et al. [7] use a human-induced taxonomy that
attaches every item to a node in the category tree. Their
proposed taxonomy-aware latent factor model assumes that
the latent factor associated with each tree node is sampled
from its parent node, thus generalizing the purchase data
from an individual item to items belonging to the same cat-
egory. Experimental studies show that this significantly im-
proves the performance for online shopping data. Other re-
lated work includes Mnih et al. [12] and Menon et al. [11]
who use the taxonomy to measure biases in music recom-
mendation, and earlier works by Ziegler et al. [17] and Weng
et al. [16] who incorporates the taxonomy in alternative rec-
ommender systems besides latent factor models.

Unlike previous work that requires an existing taxonomy,
we propose in this paper a novel approach that automatically
discovers the taxonomy from online shopping data and joint-
ly learns a taxonomy-based recommendation system from
raw data. This has several benefits:

1. Many online shopping datasets don’t have an associ-
ated human-induced taxonomy since it may be too ex-
pensive to create a hand-crafted taxonomy and attach
every item to the category. In contrast, for our al-
gorithm it is sufficient to obtain the textual descrip-
tion text of items (whenever available) and purchase
records. Both sources are much easier to collect.



2. Human-created taxonomies are static and they do not
evolve with a change in user demographics or product
inventory. Our method adaptively handles incremental
data. This makes it capable of dynamically updating
the tree structure.

3. Human labelings are noisy and not optimized for learn-
ing latent factor models. For example, in our reference
taxonomy, video game software and video game con-
soles are categorized into two different top-level de-
partments: “Software” and “Electronics”. In reality,
they are usually bought together and thus have simi-
lar latent factors. Our method combines categorization
with latent factor optimization so that items having
similar latent factors tend to have common ancestors
in the tree, which allow them to share purchase data.

We use a nonparametric generative procedure which we re-
fer to as a hierarchical latent factor model (HF Model). It
generates a tree structure for categories and items by means
of a nested Chinese Restaurant Process (nCRP) [4]. Then,
the item’s descriptions are generated via a language model
and the user purchase data is generated by a latent factor
model. We propose an inference algorithm to jointly opti-
mize the tree structure and the latent factors. Thereby the
HF model constructs a taxonomy that depends on both the
item’s description and on the user’s purchase data.

Recent work of Mnih et al. [13] clusters items a bina-
ry tree by their latent factors in order to reduce the com-
putation complexity of inference. Agarwal et al. [1] pro-
pose a regression-based latent factor model that uses meta-
information to help tail items. We found that building a
dynamic taxonomy based on both descriptions and purchase
data performs considerably better than these models.

We report comprehensive experiments that compare the
HF model with state-of-the-art latent factor models on a
large-scale online shopping dataset. There the HF model sig-
nificantly improves on existing models. We also compare the
HF model to the latent factor model that relies on human-
induced taxonomy. We find that although the HF model
requires no human effort, it outperforms the human depen-
dent model. An extensive study shows that the HF model
generates high-quality and human-readable taxonomies.

The rest of this paper is organized as follow. In Sec-
tion 2, we describe related works and baseline models. In
Section 3, we define the hierarchical latent factor model with
its learning algorithm described in Section 4. In Section 5,
we present experiments that compare the HF model with
state-of-the-art latent factor models. In Section 6, we il-
lustrate how the HF model interacts with human-induced
taxonomy, and conduct empirical studies to illustrate its ad-
vantage over methods that directly use the human-induced
taxonomy as a priori.

2. RELATED WORKS
We give a brief overview of four state-of-the-art latent fac-

tor models for personalized recommendation, since we will
compare their performance to the HF model empirically.

2.1 Latent Factor Models
A latent matrix factorization model (MF) assumes that

there is a factor associated with each user and each item.
We denote the factor for user u and item i by vu, vi ∈ Rd

respectively. Each item is associated with a bias term bi

that models the relative popularity of the item (we need no
such bias for users since we recommend items to users rather
than the converse). The model defines an affinity score xui

between user u and item i by an inner product, that is:

xui = 〈vu, vi〉+ bi.

When the observed user-item interaction is in the form of
an implicit feedback where we only have access to positive
interactions between users and items, we adopt the Bayesian
Personalized Ranking (BPR) criterion as described in [14].
BPR adopts a preference ranking approach by ranking items
that the user liked (or bought) higher than items that the
user did not interact with. For items i and j we denote by
Ruij the event of user u preferring i to j. In this case

P (Ruij |vu, vi, vj) = σ (xui − xuj) with σ(x) =
1

1 + e−x
.

We denote the set of model parameters (item and user fac-
tors, biases) by Θ and we summarize the pairwise relations
by R. Based on the above model the likelihood of the dataset
factorizes via

P (R|Θ) =
∏
u∈U

∏
i∈Bu

∏
j /∈Bu

P (Ruij |vu, vi, vj).

Here U is the set of all users and Bu is the set of items that
user u purchases. If we further assume that every entry
in Θ is independently sampled from a normal distribution
N (0, 1/λ), then the log-posterior distribution of parameters
given the data is represented by

logP (Θ|R) =
∑
u∈U

∑
i∈Bu

∑
j /∈Bu

log σ(xui − xuj)− λ‖Θ‖22. (1)

The Bayesian Personalized Ranking (BPR) method estimates
Θ by minimizing the negative log posterior (1) via stochas-
tic gradient descent (SGD). For each iteration, a user u, a
purchased item i and an unpurchased item j are sampled.
The gradient of the associated log-posterior contribution is
calculated and the parameters are updated via SGD.

2.2 Collaborative Item Selection Model
The collaborative item selection model (CIS) [13] orga-

nizes items in a binary tree, where the leaf nodes represent
items and the internal nodes represent intermediate cate-
gories. Let n be a node of the tree and C(n) be the set of its
children. The CIS model assumes that for user u, the prob-
ability of moving from node np to node nc on a root-to-leaf
tree traversal is given by

P (nc|np, u) =
exp(U�

u Qnc + bnc )∑
m∈C(np)

exp(U�
u Qm + bm)

if nc ∈ C(np).

Here Qn and bn are factors and biases of node n, and Uu

is the factor vector of user u. The probability of selecting
item i is then given by the product of the probabilities of
the decisions leading from the root to the leaf containing i:

P (i|u) =
Li∏
j=1

P (ni
j |ni

j−1, u).

Here ni
j represents the j-th node in the path from the root to

item i. Given a tree over items, the CIS model can be trained
using stochastic gradient ascent in log-likelihood, updating
parameters after each user/item pair. Mnih et al. [13] also



propose an approximate algorithm to learn the structure of
the tree. Their approach assumes that the latent factors are
known. It then learns individual levels of the tree iteratively
from top to bottom by maximizing log-likelihood. The mod-
el is trained in a three-stage procedure. First, we train a CIS
model based on a random balanced binary tree, then extract
the user vectors learned by the model and use them to learn
a better tree from the data. Finally, we train a CIS mod-
el based on the learned tree, updating all the parameters,
including the user vectors.

2.3 Regression-based Latent Factor Model
The regression-based latent factor model (RLFM) [1] map-

s features of items and users into a lower dimensional factor
space and then defines the affinity between users and items
using these latent factors. Concretely, let vuj , wu and zi be
dyadic, user and item feature vectors, then the affinity score
xui is given by

xui = b�vui + w�
u g + d�zi +w�

u G�Dzi

where the parameters of the model are the vectors b, g and d,
and matrices G andD. Given affinity scores, [1] defined a set
of response functions to model the observed data and learn
the model parameters by maximizing the log-likelihood of
the observed data. However since in our problem we are on-
ly given implicit feedback, i.e. only positive interaction, we
adopt the BPR objective function as in Section 2.1 in train-
ing the RLFM. For simplicity of notation we will refer to
this BPR-modified variant as RLFM throughout the paper,
since all models except CIS are trained using the BPR ob-
jective. We learn the RLFM model parameters by maximiz-
ing log-likelihood through stochastic gradient ascent. Note
that within feature vectors wu and zi, we always include
the unique IDs of the user and the item. If there are oth-
er meta-information associated with either user or item, we
concatenate them to the feature vector.

2.4 Taxonomy-aware Latent Factor Model
To address prediction accuracy issues related to cold-start

for new items and the problem of sparsity, taxonomy-based
models were proposed. The main idea is to utilize the cate-
gorical information in a human-induced taxonomy to share
statistical strength between frequently purchased items and
tail items.

In the taxonomy-aware latent factor model (TF) [7], a
latent variable is associated with each user u, each item i,
and each category k. Specifically, we use wu, wi and wk

to represent the corresponding factors. Given an item or a
category i, let π(i) indicate the parent of i in the taxonomy
tree. Then, the latent factor for item i is defined recursively

vi =

{
wi i is the root.
wi + vπ(i) otherwise.

In other words, the effective factor associated with node i is
the sum of all latent factors associated with nodes along the
path from (and including) i to the root. The affinity score
between user u and node i is consequently defined by:

xui = 〈wu, vi〉+ bi.

As above, the BPR objective is used for model estimation.

Table 1: Notation used for the HF model.

u User
i, j Item
vu, vi Latent factor for user u or items i
xui Affinity score between user i and item i
y, z Internal nodes of the categorization tree
π(z) Parent of node z
C(y) Children of node z
φz, ϕz Multinomial distribution associated with z
nz Number of items belonging to category z
α Chinese Restaurant Process parameter
β, η Dirichlet distribution parameter
Di, Ai Description of item i (a set of terms)
t, a Term in the description
qi Popularity measure of item i
σ2, τ 2 Variance for generating latent variables.

3. HIERARCHICAL
LATENT FACTOR MODEL

Our goal in designing a hierarchical latent factor model
(HF) is to automatically generate a hierarchical categoriza-
tion for all items based on their descriptions and their pur-
chase data, so that we can learn the item/user latent factors
jointly. Our model has the following features:

• It arranges the items in a taxonomy with infinite (adap-
tive) depth and width using a non-parametric prior [2].
• In addition to purchase data it can use side-information

such as item descriptions to infer the taxonomy.
• It smoothes the model parameters over the induced

taxonomy and as such combats data sparsity.
• It can utilize a partial (or full) human-induced taxon-

omy when available (we defer details to section 6).

Table (1) summarizes the notation used in the paper.

3.1 Taxonomy Generation
We now describe a non-parametric prior over trees with in-

finite depth and width. This is similar to the nested Chinese
restaurant process in [2, 4]. In a nutshell, to organize items
in a tree, one needs to generate a path for each item over the
tree. A path can be conceptually viewed as a nested set of
decisions. Starting from the root, a child is selected and the
process continues until a termination condition is satisfied.
These choices can be modeled using a Chinese Restaurant
Process (CRP) where at each node the probability of select-
ing a child is proportional to the child’s frequency.

Consider an arbitrary item i that we want to attach to
the category tree. For this to happen we generate a path
in the tree from the root to the leaf node that represents i.
Starting from node v, the probability of selecting an existing
(or new) child is

P (y → z) =

{
nz

ny+α
if z ∈ C(y)

α
ny+α

for a new node
(2)

Recall that ny is the number of items belongs to category
y and nz is the number of items that belongs to z. The
parameter α controls the probability of creating a new child
for y, i.e. the probability that the item belongs to a new
category under y.

Once a child node is selected, the process is repeated until
a full path is defined. To ensure finite paths we need to



allow for the probability of termination at a vertex. Here,
we define that the process terminates at category z if z is
the first child of its parent. This strategy is in complete
analogy to Ghahramani et al. [6] — we treat the probability
of terminating at a vertex in complete analogy to that of
generating a special child.

3.2 Parameter Cascade
The nCRP process gives a distribution over trees. How-

ever, we still need to assign parameters to each node in the
tree and tie these parameters in a manner that is consistent
with the semantic of the tree, i.e. nodes close in the tree
should have similar parameters. We endow each internal
node z with two latent variables: a latent factor vz and a
multinomial distribution over terms φz. These parameters
are cascaded over the tree as follows:

vz ∼
{ N (0, σ21) w is the root node
N (vπ(z), σ

21) otherwise
(3)

and the multinomial is sampled by a Dirichlet distribution:

φz ∼
{

Dir(β) z is the root node
Dir(ηφπ(z)) otherwise

(4)

3.3 Generating item data
After we generate the tree with its associated parameters,

we need to generate data associated with item i: an item
description, an item latent factor and item bias. Item latent
factors are sampled from its parent’s latent factors via

vi ∼ N (vπ(i), σ
21).

We generate the item description according to the multino-
mial distribution associated with its parent. In particular,
for each term t in the description of item i, it is sampled by
a multinomial distribution:

t ∼ Mult(φπ(i)). (5)

Every item also maintains a popularity measure qi. A high
qi indicates that the item attracts customer regardless of the
customer’s latent factor. The popularity measure is gener-
ated by a normal distribution

qi ∼ N (0, τ 2). (6)

The generative procedure for items and categories is com-
plete by combining (2)-(6) appropriately.

3.4 Generating User Purchase Preferences
Given items and their features obtained in Section 3.3,

we can then generate the purchase preference Ruij for any
particular user u and item pairs i, j via the BPR model. For
an arbitrary item i, we define the affinity score between u
and i to be

xui = 〈vu, vi〉+ [qi]
+

Here, vu and vi are user and item latent factors, qi is the
popularity measure that we define in Section 3.3. The no-
tation [qi]

+ = max(qi, 0) indicates that we force the contri-
bution from the popularity measure to be non-negative. We
impose this constraint because [qi]

+ behaves like a bias term
in the latent factor model. Consequently, its value is strong-
ly correlated to the frequency that item i is purchased in the
user log data. Without the [·]+ operator, infrequently pur-
chased items will always have negative biases, which makes

item i

vi

category π(i)

φπ(i)vπ(i)

qi

vu

user u

Ruij

user u

item i, j

t

term t ∈ Di

Figure 1: Graphical model representation of the H-
F model. White nodes represent random variables
and shaded nodes represent observations. Ruij is the
event that user u prefers item i over item j. Large
plates indicate parts of the graph that are repeated.
Graphical model omits some dependencies to avoid
cluttering the display. For example the hidden vari-
able π(i) is sampled from nCRP process. Moreover,
dependencies between categories and subategories
latent variables φ and v are omitted for clarity. See
Section 3 for a full description.

them unlikely to be recommended to any customer. Since
a large percentage of items are infrequent, this makes the
personalized recommendation ineffective. By adopting the
non-negative constraint on qi, it promotes frequent item-
s but does not penalize infrequent items. This allows the
model to recommend tail items to specific groups of target
customers as long as their latent factors match. This yields

Ruij ∼ Bernoulli(σ(xui − xuj)).

An alternative means of deriving Ruij is as follows: Given
the affinity xui, the probability that u selects i is given by

P (i|u) = exp(xui)∑
j exp(xuj)

.

By this definition, for two items i and j available to u, the
probability that the user chooses i over j is

P (i > j|u) = exp(xui)

exp(xui) + exp(xuj)
= σ(xui − xuj) (7)

Note that the conditional probability (7) is consistent with
the BPR optimization criterion [14]. Figure 1 shows a sim-
plified summary of the HF model.

4. INFERENCE
We observe item descriptions and purchase data. The goal

of learning is to infer the tree structure, category parameters
and latent factors. We use a collapsed Gibbs sampler and
we integrate out multinomial variables φ to improve mixing.
Our goal is thus to infer the posterior P (Θ, T |D,R), where T
denotes the tree structure, Θ denotes the remaining latent
variables (factors and biases for items and categories), D
denotes item description and R purchase preferences. We
alternate until convergence between two steps: sampling a
path for each item over the tree and then optimizing the
latent factors of items and categories while keeping the tree
structure fixed. The following sections describe each step.



4.1 Sampling Hierarchical Categories
Sampling a tree structure T amounts to sampling a path

for each item i over the tree. Collectively the set of item
paths defines the tree. We denote by pi = (pi0, pi1, · · · ) the
path of item i, where pi0 is the root, pi1 is a child of the
root selected by item i, etc.; In general pi,k ∈ C(pi,k−1). If
l(pi) denotes the length of the path, then pi,l(p) is the parent
category of item i. The probability that the path is sampled
is given by:

P (pi|Di, vi, rest) = P (pi|rest)P (vi, Di|pi, rest) (8)

where rest denotes all other hidden variables. The first com-
ponent defines the prior probability of the path, while the
second component defines the likelihood of item description
and latent variable given this path selection. The prior prob-
ability of a path pi is given by the nCRP process as follows

P (pi|rest) = ∏l(pi)−1
k=0 P (pi,k → pi,k+1), where each factor is

determined by (2).
Unfortunately this is very costly, since the space of possi-

ble paths scales as O(N), where N is the number of nodes
in the tree. Therefore we resort to a greedy approximation
following [2] which works well in practice. In this approxi-
mation we use a level-wise strategy: assume that we are at
level k and that pi,k = y, then we can descend the tree as
follows:

1. Stay on the current node y — i.e. pick child 0, and set
pi,k+1 = 0.

2. Move to a child node z of y other than child 0, and set
pi,k+1 = z.

3. Create a new child node of node y and move to it, and
set pi,k+1 accordingly.

The probability of each choice shares a similar form:

P (pi,k+1 = z|pi,k = y, rest)P (Di, vi|pi,k+1 = z, rest) (9)

Here the first probability is

P (pi,k+1 = z|pi,k = y, rest) = P (y → z) (10)

as defined in (2).
The second term is essentially the probability of the item

data given a choice of the parent z under consideration in
the path which can be decomposed into two components: the
probability of the item description P (Di | pi,k+1 = z, rest) ,
and the probability of the item factor given its parent’s fac-
tor P (vi | pi,k+1 = z, rest). The latter probability is simply
normally distributed:

P (vi | pi,k+1 = z, rest) = N (vz, σ) (11)

Since we integrated out the multinomial distributions φ,
computing P (Di | pi,k+1 = z, rest) amounts to a standard
Dirichlet-multinomial integration, that is:

P (Di | pi,k+1 = z, rest) =
∏
t∈Di

m−i
z,t

m−i
z

. (12)

where the notation m−i
z,t indicates the regularized occurrence

of term t in the item descriptions under category z (exclud-
ing item i). In particular, we have

m−i
z,t =

{
m−i

z,t + β v is the root node.
m−i

z,t + η ·my,t otherwise
(13)

wherem−i
z,t is the exact occurrence of term t under category z

(excluding item i). The two coefficients β and η are defined
in equation (4). The quantity m−i

z represents the sum of
m−i

z,t over all possible term t, which serves as a normalizer
in equality (12). Similarly, if z is a new node, then

P (Di | pi,k+1 = z, rest)

=

{ ∏
t∈Di

η+1
|V |+|Di| y is the root node.∏

t∈Di

η·my,t+1

η·my+|Di| otherwise
(14)

where V is the vocabulary that contains all possible terms.
The complexity of this sampling procedure is O(LC) for

each item, where L is the depth of the tree and C is the
average number of children per node. Comparing to the
naive implementation, the approximate sampling procedure
is exponentially faster for a balanced tree.

4.2 Estimating Model Parameters
Given the tree structure, we estimate the latent factors

and the popularity measures for categories and items. The
parameter estimation model is based on BPR and the opti-
mization is implemented via stochastic gradient ascent.

At each iteration, we sample a user u, a purchased item
i and an unpurchased item j. Suppose that i0 → i1 →
· · · iLi = i represents the path from the root node to i. We
define the same notation for item j. Given the conditional
probability (7), the log-posterior of the observation that user
u prefers item i over item j is given by

Luij = log σ(xui − xuj)−
Li−1∑
k=0

‖vik − vik+1‖2
2σ2

− q2i
2τ 2

−
Lj∑
k=1

‖vjk − vjk−1‖2
2σ2

− q2j
2τ 2

,

We update the parameters in this local objective function
by stochastic gradient ascent. The first step is to compute
the local derivatives. Let cuij denote the quantity 1−σ(xui−
xuj). Then we find that

∂Luij

∂vu
= cuij(vi − vj)− vu

σ2
. (15)

For latent factors, we update the difference between every
latent factor vik to its parent vik−1 . Then all latent factors
are implicitly updated once their differences to the parent
are updated. Let wik = vik − vik−1 be such a shorthand
notation, then we have

∂Luij

∂wik

= cuijvu − vik
σ2

k = 1, . . . , Li; (16)

∂Luij

∂wjk

= −cuijvu − vjk
σ2

k = 1, . . . , Lj . (17)

For popularity measures qi and qj , since they are part of a
non-smooth operator [·]+, we first approximate the operator
by a differentiable function

g(x) = δ log(1 + exp(x/δ))



Table 2: Metadata used in experiments.

description Description of the item (string)
brand Brand of the item (string)
price Discretized price of the item

for some small constant δ and then compute the partial
derivatives by

∂Luij

∂qi
=

cuije
qi/δ

1 + eqi/δ
− qi

τ 2
, (18)

∂Luij

∂qj
= − cuije

qj/δ

1 + eqj/δ
− qj

τ 2
. (19)

According to equations (15)-(19), we update the parameters
θ ∈ {vu, wik , wjk , qi, qj} via stochastic gradient ascent:

θ ← θ + ε
∂Luij

∂θ
. (20)

where ε is the stepsize. The update terminates when all
parameters of the model converge.

5. EXPERIMENTS
In this section, we present experimental evaluations for

the hierarchical latent factor model. We compare the HF
model with three state-of-the-art latent factor models: the
classical latent factor model (MF), the collaborative item
selection model (CIS) and the regression-based latent factor
model (RLFM).

5.1 Dataset
We used a log of user online transactions obtained from

a major search engine, email provider and online shopping
site. The dataset contains information about the histori-
cal purchases of users over a period of 3 months. We fully
anonymize the users by dropping the original user identifier
and assigning a new, sequential numbering of the record-
s. As a result, we have about 14 million anonymized users
with an average of 2.4 purchases per user and 3.28 million
individual products.

We also group items with respect to their frequencies
(number of purchases in the log data) and summarize the
result in Figure 2. As Figure 2(a) shows, the majority of
all items have frequency of at most 10. However, as Fig-
ure 2(b) shows, a majority of all purchases occur with high-
frequency items (item of frequency greater than 100). In
other words, most of the items in the dataset don’t have
sufficient purchases for estimating their parameters. This
unbalanced distribution of data characterizes the challenge
of our task.

We partition the purchase history of each user into two
parts: training and testing. The first part contains 1/2 of the
purchased items and the second part contains the remaining
1/2. Then, we take the first part as the training data and
second part as the test data. In particular, if the user bought
only one item, then we assign it to the training set. This
results in about 18.6 million purchases for training and about
14.8 million purchases for testing.

If we examine the data distribution in Figure 2(a) and
Figure 2(b), we find that purchases on the top 2% most
frequent items actually occupy more than 60% of the over-
all purchases. This unbalanced data distribution makes the
gap between different approaches small, because even for

the simplest latent factor model (such as MF), as long as
it achieves good performance on the top-frequency items, it
achieves good overall performance. We construct a sparse
data set that tests the models’ capability of learning from
all items. In particular, we remove those “trivial” users that
only buy popular items and keep those “non-trivial” users
that have bought at least one tail item (item with frequency
1− 10). As shown in Figure 2(c), it makes training and rec-
ommendation more challenging since infrequent items have
more weight in the sparse dataset. By this construction,
we obtain 3.5 million users and 12.4 million purchases. We
employ the same strategy as in the previous paragraph to
partition the training set and the test set which gives us 6.1
million purchases for training and 6.3 million purchases for
testing. The sparse dataset contains about 37% users in the
original full dataset.

In our implementation, every user and every item is repre-
sented by a unique id. The item id and user id are used by all
models to construct latent factors. Besides using purchase
data, we leverage three types of meta-information to help
recommendation. These meta-information, which we sum-
marize in Table 2, are used by the RLFM model and the
HF model. In particular, the RLFM model uses all three
types of meta-information. The HF model uses the item de-
scription information. Note that it is possible to modify the
HF model’s specification in Section 3 to allow it accepting
brand and price features. We don’t do it in this paper since
we want the model specification to be concise as possible and
only using the description information turns out to achieve
good performance.

5.2 Implementation Details
We developed a multi-core implementation of all five mod-

els in C++. In latent factor models, we choose the factor
dimensions d ∈ {10, 20, 40, 60, 80} where d = 20 is the de-
fault setting. The latent factors are initialized by multivari-
ate Gaussian N (0, 0.1×1). For stochastic gradient descent,
we control the gradient stepsize using the adaptive gradient
method [5]. For all experiments, we use regularization co-
efficients obtained by cross validation. The constant δ that
approximates the operator [·]+ is set to be 0.2.

5.3 Evaluation
We use the AUC (Area under the ROC curve) metric to

compare the performance of models. AUC is a widely used
metric for testing recommender systems and latent factor
models [14, 1, 7]. Let X be the set of all products. Given
a user u, we suppose that r(u, i) is the numerical rank of
item i ∈ X provided by some model M. Let Tu be the set
of items the user u purchased in the test set, the formula
to compute AUC is given by: (Here δ(x) is the indicator
function that returns 1 if x is true or 0 otherwise):

AUCu =
1

|Tu||X\Tu|
∑

i∈Tu, j∈I\Tu

δ(r(u, i) < r(u, j))

The AUC on the overall test set is the average individual
user’s AUC weighted by the size of their purchases, that is

AUC =

∑
u |Tu|AUCu∑

u |Tu|
It is straightforward to see that AUC is a value in the range
of [0, 1]. A greater AUC indicates a better ranking quality
provided by the modelM.
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(a) Item distribution (b) Purchase distribution on full data (c) Purchase distribution on sparse data

Figure 2: The figures show the distribution of items and purchases in the dataset. (a) Distribution of items
in each frequency group. (b) Distribution of purchases in each frequency group. (c) Distribution of purchases
in the sparse dataset. For the sparse dataset, we keep users that have bought at least one infrequent item.

Table 3: Comparing models on the full set with AUC metric. Bold numbers indicate the best performance
and the star indicates statistical significance (p-value < 0.01).

Item Frequency 1 - 10 11 - 30 31 - 100 101 - 300 301 - 1000 > 1000 Overall
MF 0.453 0.878 0.961 0.987 0.996 0.9996 0.899
CIS 0.444 0.860 0.948 0.982 0.995 0.9996 0.893
RLFM 0.529 0.863 0.957 0.987 0.996 0.9995 0.908
HF 0.617∗ 0.891∗ 0.965∗ 0.989 0.997 0.9996 0.925∗
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Figure 3: Comparing latent factor model perfor-
mances with factor dimensions d ∈ {10, 20, 40, 60, 80}.
The HF model outperforms the MF, CIS and RLFM
models.

.

5.4 Comparing Latent Factor Models
In this section, we compare the performance of latent fac-

tor models on full dataset and sparse dataset. The evalua-
tion results are summarized in Figure 3(a) and Figure 3(b).

Among the four models, the MF model and the CIS model
have similar performances, and the RLFM model is slight-
ly better. The HF model yields significantly better perfor-
mance than the three baseline methods. Note that the HF
model uses only a subset of meta-information that is used by
the RLFM model. It suggests that the hierarchical structure
in the HF model organizes the meta-information in a more
efficient way than in the RLFMmodel’s regression approach.

In order to examine more carefully the evaluation results,
we pay more attention to the setting of d = 60 (best re-
sults for most models) and we partition the test set into six
frequency groups to evaluate performances on each individ-
ual group. The results are reported in Table 3 and Table 4.
From these tables, we find that the biggest performance gaps
are among the low-frequency groups. For items that have
frequency of 1−10, the RLFM model, which leverages meta-
information, is better than the MF model and the CIS model
that only use user purchase data. Furthermore, the HF mod-

el which maintain structural categorization of items is much
better than the RLFM model. It confirms that hierarchical
categorization is especially helpful to low-frequency items.

Finally, as plots and tables suggest, the HF model’s im-
provement is more significant on the sparse dataset. One
reason is that the sparse dataset is harder for training s-
ince the user-item interaction is insufficient. The HF model,
which allows sharing purchase data among infrequent items
under hierarchical categorization, is more robust to sparsi-
ty. This intuition is confirmed by Table 3 and Table 4’s
column for frequency 1−10, where the performance gap be-
tween HF and RLFM is greater on the sparse data (12% for
sparse data versus 9% for full data). On the other hand,
the sparse dataset is also more challenging for testing since
the low-frequency items occupy more weight as suggested
by Figure 2(c). This makes the HF model’s improvement
over low-frequency items to be more noticeably reflected in
the overall performance. As a comparison, the HF model
is at least 1.7% better than the baseline models on the full
dataset, and at least 5.1% better on the sparse dataset.

5.5 An Example of Algorithm-generated
Taxonomy

In Figure 4, we present a portion of the hierarchical cate-
gories discovered by the HF model. Besides the top-ranked
terms in each category, we also manually labeled the catego-
ry names to make them more readable. As Figure 4 shows,
the HF model is capable of constructing a high-quality hi-
erarchical structure of categories. Categories in higher level
represent broader concepts, and their sub-categories repre-
sents more refined range of products. For example, the tax-
onomy in Figure 4 clustered clothing items together, and
refines the category by jeans, dresses and polos. It also di-
vide the jeans category into two smaller sub-categories sep-
arating men’s jeans and women’s jeans, which is in analo-
gy to the taxonomy that is created by human. Note that
the hierarchical tree used by the HF model is automatically
generated and dynamically updated. Thus, unlike the static



Table 4: Comparing models on the sparse dataset with AUC metric. For this dataset, we keep users that
have bought at least one infrequent item. Bold symbols indicate best performance and the star indicates the
statistical significance (p-value < 0.01).

Item Frequency 1 - 10 11 - 30 31 - 100 101 - 300 301 - 1000 > 1000 Overall
MF 0.479 0.707 0.913 0.983 0.995 0.9993 0.772
CIS 0.472 0.720 0.916 0.978 0.993 0.9993 0.771
RLFM 0.544 0.741 0.904 0.976 0.994 0.9992 0.796
HF 0.662∗ 0.798∗ 0.923∗ 0.981 0.994 0.9992 0.847∗

Figure 4: A portion of hierarchical categories discovered by the HF model. The diagram shows two categories
and a subset of their sub-categories. Each block shows the top ranked terms in the category and a manual
labeling of the category’s name based on the terms.

human-induced taxonomy, the algorithm-generated taxono-
my is adaptive to incremental data as more items and more
users arrive.

6. USING HUMAN-INDUCED TAXONOMY
In this section, we assume that the human-induced taxon-

omy is available to the recommendation system. We study
approaches that incorporate the human-induced taxonomy
into the HF model. We also compare the HF model with
the taxonomy-aware latent factor model (TF), which is the
state-of-the-art latent factor model based on human-induced
taxonomies. Even without using the human-induced taxon-
omy, we find that the HF model consistently outperforms the
TF model. Incorporating human-induced taxonomy further
improves the HF model’s accuracy to make it achieving the
best performance in our comparison.

We begin with describing the human-induced taxonomy
that we use in this section. In this reference taxonomy, prod-
ucts are organized by a tree-structured taxonomy that has
20 top-level categories and 5140 internal nodes. The average
depth of the tree is 4.4. Each items is attached to exactly
one internal node of the tree.

6.1 Including Human-induced Taxonomy in
Generative Model

When a human-induced taxonomy is available to the HF
model, we can include it as a part of the HF model. More
specifically, we assume that these taxonomies are also gener-
ated by the underlying hierarchical model described in Sec-
tion 3. Then, by observing the human-induced taxonomy as

long as the item descriptions and user purchase data, we use
the technique in Section 4 to infer the model structure and
the model parameters.

Let Ai be the set of ancestors of item i in the human-
induced taxonomy tree. Ai can be seen as a collection of
terms, which provides another description to the item. For
every category node in the HF model, we maintain another
multinomial distribution that is used for generating such
descriptions. When a new category node w is generated, we
sample the multinomial distribution by

ϕw ∼
{

Dir(β′) w is the root node
Dir(η′ϕπ(w)) otherwise

and when an item i is generated, we sample each term a in
the associated set Ai by the multinomial distribution

a ∼ Mult(ϕπ(i)).

By setting hyper-parameters β′ and η′, we can control the
weight of the human-induced taxonomy in the global objec-
tive function. A smaller value of β′ or η′ indicates that the
human-induced taxonomy is more strictly followed when the
hierarchical structure is constructed. In practice, we set the
values of β′ or η′ using cross validation.

The inference for this modified HF model still follows the
approximation algorithm described in Section 4. In equa-
tion (9), we multiply an additional term describing the like-
lihood of the observed description Ai, whose computation
is in complete analoge to the likelihood term for Di using
equations (12-14). We omit the mathematical details here
due to space limitations.



Table 5: Number of internal nodes, entropies and
their mutual information for three categorizations.
In this table, Thuman is the taxonomy created by hu-
man, THF(D) and THF(D+T) are taxonomies generated
by the HF(D) model and the HF(D+T) model.

Categorization # Nodes Entropy Mutual
Information

Thuman 5140 5.976 -
THF(D) 7424 8.247 -

THF(D+T) 7356 8.182 -
Thuman, THF(D) - - 3.957

Thuman, THF(D+T) - - 5.162
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Figure 5: Using only item descriptions, the HF(D)
model outperforms the TF model which relies on
human-induced taxonomy. The HF(D+T) model
achieves the best performance.

.

We rename the two variants of the HF model by HF(D)
and HF(D+T), indicating that the model relies on only the
item description or relies on both the description and the
human-induced taxonomy. In next section, we compare the
taxonomy generated by HF(D) or HF(D+T) to the taxono-
my induced by human.

6.2 Comparing Taxonomies induced by Hu-
man and by Algorithm

To measure the connection between taxonomies that the
HF model generates and the taxonomy induced by human,
we compute the entropy of each taxonomy and their mutual
information. Let C be the set of categories in taxonomy T .
Let pc be the portion of items belonging to category c ∈ C.
Then, the entropy of T is defined by

H(T ) =
∑
c∈C

−pc log(pc).

For two taxonomies T1 and T2, their joint entropy is calcu-
lated based on the Cartesian product of their category set
C1 ⊗ C2, and their mutual information is defined by

I(T1, T2) = H(T1) +H(T2)−H(T1, T2).

A high mutual information indicates that two taxonomies
are strongly correlated. As Table 5 shows, taxonomies gen-
erated by the HF model have the similar number of internal
nodes and entropies as the human-induced taxonomy. The
HF(D) model is capable of producing categories that has
high mutual information with the human-induced taxonomy
(equals 3.957). When human-induced taxonomy is incorpo-
rated to form the HF(D+T) model, the mutual information
increases to 5.162, which means that the resulting taxonomy
preserves most of the information induced by human.
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Figure 6: When human-induced taxonomy is par-
tially available, the dynamic taxonomy generated by
the HF model leads to robust recommendation per-
formance.
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Figure 7: A portion of dynamic taxonomy generated
by the HF model for r = 0.1. The shaded box repre-
sents human-created categories. The white box rep-
resents automatically generated categories with top-
ranked terms and manually labeled category names.

Next, we compare the three taxonomies in recommender
systems. As Figure 5(a) and Figure 5(b) shows, the HF(D)
models, though only relying on the raw data, consistently
outperforms the TF model which relies on human labels.
The HF(D+T) model outperforms all other models on both
datasets. The HF(D+T) model’s improvement over the TF
model is 0.9% on the full data and 2.4% on the sparse da-
ta, both are statistically significant. The experiment results
confirm our intuition that the HF model has advantage over
the TF model in recommendation accuracy, since it com-
bines categorization and parameter estimation together and
optimize both jointly. In contrast, the human-induced tax-
onomy used by the TF model is not optimized for learning
latent factor models.

6.3 Dynamically Evolving Human-induced
Taxonomy

In this section, we consider a scenario when the human-
induced taxonomy is taken as the ground truth, but it is
not fully available. That means, some of the items are cat-
egorized by human and others remains uncategorized. This
commonly happens when new source of items are added to



the database or when new types of products appear in the
market. In this case, the recommender doesn’t want to com-
pletely reconstruct the taxonomy that is already labeled by
editors. Instead, he/she desires a dynamic hierarchy: old
items keep their positions in the existing taxonomy, new
items are automatically added to the taxonomy, and new
categories are inserted when necessary.

The HF model is capable of maintaining such a dynamic
taxonomy. In particular, In section 4.1 we initialize the tree
with the human-induced taxonomy so that existing item-
s always belong to their human-induced categories. When
new items arrive, they are assigned to existing categories or
assigned to new categories according to the sampling algo-
rithm in Section 4.1.

We simulate a partial human-induced taxonomy in exper-
iment by taking a ratio r ∈ {0, 0.1, 0.2, 0.5, 1} of items cat-
egorized by the human-induced taxonomy, and keeping the
remaining items uncategorized. We compare the HF model
with static tree where uncategorized items are directly at-
tached to the root, and the HF model with the dynamic tree
described above. According to the experiment results, the
dynamic taxonomy appears to be very robust to incomplete
categorization. As Figure 6 shows, when using a static tree,
the latent factor model’s performance dramatically decreas-
es as the ratio r goes down, but with the dynamic tree, the
performance always retains at a high level. It suggests that
in reality the human editor only need to label a small por-
tion of items, then the algorithm will complete the remaining
part.

In Figure 7, we present a portion of the dynamic tree to
illustrate how the taxonomy envolves. In this example, the
HF model adds sub-categories to the“Video Game Software”
node to further refine the categorization. Interestingly, it al-
so creates a “Video Game Consoles” category that does not
belong to the original taxonomy. Although the game con-
soles are literally not software, they are indeed closely relat-
ed to the game software purchase, which makes the resulting
taxonomy a reasonable priori for recommendation.

7. CONCLUSIONS
In this paper we addressed the problem of inferring a

taxonomy for recommender systems. Smoothing latent fac-
tor models over a taxonomy combats sparsity and allows
for sharing statistical strength between items. However, in
many situations a human-induced taxonomy is not available,
for example when new items arrive, when a new merchant
is added to the system (possibly with items from a different
culture/language), or when users do not supply categories
for new items (as in youtube videos). Luckily, it is always
possible to obtain a textual description of items. We de-
scribed an unsupervised non-parametric method that joint-
ly learns taxonomy structure over items and item factors
in a recommender system from both items’ textual descrip-
tion and purchase data. We showed that the performance of
our model compares favourably with several state of the art
baselines and even with the performance of a human-induced
taxonomy when available. Furthermore, we showed that our
model can utilize and improve upon a partial human-induced
taxonomy if available. In the future we plan to apply our
taxonomy induction to the regression latent factor model in
[1]. Moreover, we plan to investigate user clustering when
users’ meta data is available.
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