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Abstract
We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the
player is unconstrained. We develop a novel characterization of a large class of minimax algorithms,
recovering, and even improving, several previous results as immediate corollaries. Moreover, using

our tools, we develop an algorithm that provides a regret bound ofO
(
U
√
T log(U

√
T log2 T + 1)

)
,

where U is the L2 norm of an arbitrary comparator and both T and U are unknown to the player.
This bound is optimal up to

√
log log T terms. When T is known, we derive an algorithm with an

optimal regret bound (up to constant factors). For both the known and unknown T case, a Normal
approximation to the conditional value of the game proves to be the key analysis tool.
Keywords: Online learning, minimax analysis, online convex optimization

1. Introduction

The online learning framework provides a scalable and flexible approach for modeling a wide
range of prediction problems, including classification, regression, ranking, and portfolio manage-
ment. Online algorithms work in rounds, where at each round a new instance is given and the
algorithm makes a prediction. Then the environment reveals the label of the instance, and the learn-
ing algorithm updates its internal hypothesis. The aim of the learner is to minimize the cumulative
loss it suffers due to its prediction error.

Research in this area has mainly focused on designing new prediction strategies and proving the-
oretical guarantees for them. However, recently, minimax analysis has been proposed as a general
tool to design optimal prediction strategies (Rakhlin et al., 2012, 2013; McMahan and Abernethy,
2013). The problem is cast as a sequential multi-stage zero-sum game between the player (the
learner) and an adversary (the environment), providing the optimal strategies for both. In some
cases the value of the game can be calculated exactly in an efficient way (Abernethy et al., 2008a),
in others upper bounds on the value of the game (often based on the sequential Rademacher com-
plexity) are used to construct efficient algorithms with theoretical guarantees (Rakhlin et al., 2012).

While most of the work in this area has focused on the setting where the player is constrained to
a bounded convex set (Abernethy et al., 2008a) (with the notable exception of McMahan and Aber-
nethy (2013)), in this work we are interested in the general setting of unconstrained online learning
with linear losses in Hilbert spaces. In Section 4, extending the work of McMahan and Abernethy
(2013), we provide novel and general sufficient conditions to be able to compute the exact minimax
strategy for both the player and the adversary, as well as the value of the game. In particular, we
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show that under these conditions the optimal play of the adversary is always orthogonal or always
parallel to the sum of his previous plays, while the optimal play of the player is always parallel. On
the other hand, for some cases where the exact minimax strategy is hard to characterize, we intro-
duce a new relaxation procedure based on a Normal approximation. In the particular application of
interest, we show the relaxation is strong enough to yield an optimal regret bound, up to constant
factors.

In Section 5, we use our new tools to recover and extend previous results on minimax strategies
for linear online learning, including results for bounded domains. In fact, we show how to obtain
a family of minimax strategies that smoothly interpolates between the minimax algorithm for a
bounded feasible set and a minimax optimal algorithm in fact equivalent to unconstrained gradient
descent. We emphasize that all the algorithms from this family are exactly minimax optimal,1 in a
sense we will make precise in the next section. Moreover, if you are allowed to play outside of the
comparator set, we show that some members of this family have a non-vacuous regret bound for the
unconstrained setting, while remaining optimal for the constrained one.

When studying unconstrained problems, a natural question is how small we can make the de-
pendence of the regret bound on U , the L2 norm of an arbitrary comparator point, while still main-
taining a

√
T dependency on the time horizon. The best algorithm from the above family achieves

Regret(U) ≤ 1
2(U2 +1)

√
T . Streeter and McMahan (2012) and Orabona (2013) show it is possible

to reduce the dependence on U to O(U logUT ). In order to improve on this, in Section 6 we apply
our techniques to analyze a strategy, based on a Normal potential function, that gives a regret bound

of O
(
U
√
T log(U

√
T log2 T + 1)

)
where U is the L2 norm of a comparator, and both T and U

are unknown. This bound is optimal up to
√

log log T terms. Moreover, when T is known, we
propose an algorithm based on a similar potential function that is optimal up to constant terms. This
solves the open problem posed in those papers, matching the lower bound for this problem. Table 1
summarizes the regret bounds we prove, along with those for related algorithms.

Our analysis tools for both known-T and unknown horizon algorithms rest heavily on the re-
lationship between the reward (negative loss) achieved by the algorithm, potential functions that
provide a benchmark for the amount of reward the algorithm should have, the regret of the algo-
rithm with respect to a post-hoc comparator u, and the conditional value of the game. These are
familiar concepts from the literature, but we summarize these relationships and provide some mod-
est generalizations in Section 3.

2. Notation and Problem Formulation

Let H be a Hilbert space with inner product 〈·, ·〉. The associated norm is denoted by ‖ · ‖, i.e.
‖x‖ =

√
〈x, x〉. Given a closed and convex function f with domain S ⊆ H, we will denote its

Fenchel conjugate by f∗ : H → R where f∗(u) = supv∈S
(
〈v, u〉 − f(v)

)
.

We consider a version of online linear optimization, a standard game for studying repeated
decision making. On each of a sequence of rounds, a player chooses an actionwt ∈ H, an adversary
chooses a linear cost function gt ∈ G ⊆ H, and the player suffers loss 〈wt, gt〉. For any sequence of

1. In this work, we use the term “minimax” to refer to the exact minimax solution to the zero sum game, as opposed to
algorithms that only achieve the minimax optimal rate up to say constant factors.
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Regret bounds for known-T algorithms
(A) Minimax Regret

√
T for u ∈ W , O(T ) otherwise Abernethy et al. (2008a)

(B) OGD, fixed η 1
2 (1 + U2)

√
T E.g., Shalev-Shwartz (2012)

(C) pq-Algorithm
(
1
p + 1

qU
q
)√
T Cor. 9, which also covers (A) and (B)

(D) Reward Doubling O
(
U
√
T log(d(U + 1)T )

)
Streeter and McMahan (2012)

(E) Normal Potential, ε = 1 O
(
U
√
T log

(
UT + 1

))
Theorem 11

(F) Normal Potential, ε =
√
T O

(
(U + 1)

√
T log(U + 1)

)
Theorem 11

Regret bounds for adaptive algorithms for unknown T
(G) Adaptive FTRL/RDA (1 + 1

2U
2)
√
T Shalev-Shwartz (2007); Xiao (2009)

(H) Dim. Free Exp. Grad. O
(
U
√
T log(UT + 1)

)
Orabona (2013)

(I) AdaptiveNormal O∗
(
U
√
T log

(
UT + 1

))
Theorem 12

Table 1: HereU = ‖u‖ is the norm of a comparator, withU unknown to the algorithm. We letW =
{w : ‖w‖ ≤ 1}; the adversary plays gradients with ‖gt‖ ≤ 1. (A) is minimax optimal
for regret against points inW , and always plays points fromW . The other algorithms are
unconstrained. Even though (A) is minimax optimal for regret, other algorithms (e.g. (B))
offer strictly better bounds for arbitraryU . (C) corresponds to a family of minimax optimal
algorithms where 1

p + 1
q = 1; p = 2 yields (B) and as p→ 1 the algorithm becomes (A);

Corollary 9 covers (A) exactly. Only (D) has a dependence on d, the dimension ofH. The
O∗ in (I) hides an additional log2(T + 1) term inside the log.

plays w1, . . . wT and g1, . . . , gT , we define the regret against a comparator u in the standard way:

Regret(u) ≡
T∑
t=1

〈gt, wt − u〉 .

This setting is general enough to cover the cases of online learning in, for example, Rd, in the vector
space of matrices, and in a RKHS. We also define the reward of the algorithm, which is the earnings
(or negative losses) of the player throughout the game:

Reward ≡
T∑
t=1

〈−gt, wt〉 .

We write θt ≡ −g1:t, where we use the compressed summation notation g1:t ≡
∑T

s=1 gs.

The Minimax View It will be useful to consider a full game-theoretic characterization of the
above interaction when the number of rounds T is known to both players. This approach that has
received significant recent interest (Abernethy et al., 2008a, 2007; Abernethy and Warmuth, 2010;
Abernethy et al., 2008b; Streeter and McMahan, 2012).
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In the constrained setting, where the comparator vector u ∈ W , we have that the value of the
game, that is the regret when both the player and the adversary play optimally, is

V ≡ min
w1∈H

max
g1∈G
· · · min

wT∈H
max
gT∈G

(
sup
u∈W

T∑
t=1

〈wt − u, gt〉

)

= min
w1∈H

max
g1∈G
· · · min

wT∈H
max
gT∈G

(
T∑
t=1

〈wt, gt〉+ sup
u∈W
〈u, θT 〉

)

= min
w1∈H

max
g1∈G
· · · min

wT∈H
max
gT∈G

(
T∑
t=1

〈wt, gt〉+B(θT )

)
,

where
B(θ) = sup

w∈W
〈w, θ〉 . (1)

Following McMahan and Abernethy (2013), we generalize the game in terms of a generic con-
vex benchmark function B : H → R, instead of using the definition (1). This allows us to analyze
the constrained and unconstrained setting in a unified way. Hence, the value of the game is the
difference between the benchmark reward B(θT ) and the actual reward achieved by the player (un-
der optimal play by both parties). Intuitively, viewing the units of loss/reward as dollars, V is the
amount of starting capital we need (equivalently, the amount we need to borrow) to ensure we end
the game with B(θT ) dollars. The motivation for defining the game in terms of an arbitrary B is
made clear in the next section: It will allow us to derive Regret bounds in terms of the Fenchel
conjugate of B.

We define inductively the conditional value of the game after g1, . . . , gt have been played by

Vt(θt) = min
w∈H

max
g∈G

(〈g, w〉+ Vt+1(θt − g)) with VT (θT ) = B(θT ) .

Thus, we can view the notation V for the value of the game as shorthand for V0(0). Under minimax
play by both players, unrolling the previous equality, we have

∑t
s=1〈gs, ws〉 + Vt(−g1:t) = V, or

for t = T ,

Reward =

T∑
t=1

〈−gt, wt〉 = B(θT )− V . (2)

We also have that, given the conditional value of the game, a minimax-optimal strategy is

wt+1 = arg min
w

max
g∈G
〈g, w〉+ Vt+1(θt − g) . (3)

McMahan and Abernethy (2013, Cor. 2) showed that in the unconstrained case, Vt is a smoothed
version ofB, where the smoothing comes from an expectation over future plays of the adversary. In
this work, we show that in some cases (Theorem 4) we can find a closed form for Vt in terms of B,
and in fact the solution to (3) will simply be the gradient of Vt, or equivalently, an FTRL algorithm
with regularizer V ∗t . On the other hand, to derive our main results, we face a case (Theorem 6)
where Vt is generally not expressible in closed form, and the resulting algorithm does not look
like FTRL. We solve the first problem by using a Normal approximation to the adversary’s future
moves, and we solve the second by showing (3) can still be solved in closed form with respect to
this approximation to Vt.
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3. Potential Functions and the Duality of Reward and Regret

In the present section we will review some existing results in online learning theory as well as pro-
vide a number of mild generalizations for our purposes. Potential functions play a major role in
the design and analysis of online learning algorithms (Cesa-Bianchi and Lugosi, 2006). We will
use q : H → R to describe the potential, and the key assumptions are that q should depend solely
on the cumulative gradients g1:T and that q is convex in this argument.2 Since our aim is adap-
tive algorithms, we often look at a sequence of changing potential functions q1, . . . , qT , each of
which takes as argument −g1:t and is convex. These functions have appeared with different inter-
pretations in many papers, with different emphasis. They can be viewed as 1) the conjugate of an
(implicit) time-varying regularizer in a Mirror Descent or Follow-the-Regularized-Leader (FTRL)
algorithm (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2007; Rakhlin, 2009), 2) as proxy for
the conditional value of the game in a minimax setting (Rakhlin et al., 2012), or 3) a potential giv-
ing a bound on the amount of reward we want the algorithm to have obtained at the end of round
t (Streeter and McMahan, 2012; McMahan and Abernethy, 2013).

These views are of course closely connected, but can lead to somewhat different analysis tech-
niques. Following the last view, suppose we interpret qt(θt) as the desired reward at the end of
round t, given the adversary has played θt = −g1:t so far. Then, if we can bound our actual final
reward in terms of qT (θT ), we also immediately get a regret bound stated in terms of the Fenchel
conjugate q∗T . Generalizing Streeter and McMahan (2012, Thm. 1), we have the following result
(all omitted proofs can be found in the Appendix).

Theorem 1 Let Ψ : H → R be a convex function. An algorithm for the player guarantees

Reward ≥ Ψ(−g1:T )− ε̂ for any g1, . . . , gT (4)

for a constant ε̂ ∈ R if and only if it guarantees

Regret(u) ≤ Ψ∗(u) + ε̂ for all u ∈ H . (5)

First we consider the minimax setting, where we define the game in terms of a convex benchmark
B. Then, (2) gives us an immediate lower bound on the reward of the minimax strategy for the
player (against any adversary), and so applying Theorem 1 with Ψ = B gives

∀u ∈ H, Regret(u) ≤ B∗(u) + V . (6)

The fundamental point, of which we will make much use, is this: even if one only cares about the
traditional definition of regret, the study of the minimax game defined in terms of a general compara-
tor benchmark B may be interesting, as the minimax algorithm for the player may then give novel
bounds on regret. Note when B is defined as in (1), the theorem implies ∀u ∈ W, Regret(u) ≤ V .
More generally, even for non-minimax algorithms, Theorem 1 states that understanding the reward
(equivalently, loss) of an algorithm as a function of the sum of gradients chosen by the adversary is
both necessary and sufficient for understanding the regret of the algorithm.

Now we consider the potential function view. The following general bound for any sequence
of plays wt against gradients gt, for an arbitrary sequence of potential functions qt, has been used

2. It is sometimes possible to generalize to potentials qt(g1, . . . , gt) that are functions of each gradient individually.
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numerous times (see Orabona (2013, Lemma 1) and references therein). The claim is that

Regret(u) ≤ q∗T (u) +
T∑
t=1

(qt(θt)− qt−1(θt−1) + 〈wt, gt〉) , (7)

where we take θ0 = 0, and assume q0(0) = 0. In fact, this statement is essentially equivalent to the
argument of (4) and (5). For intuition, we can view qt(θt) as the amount of money we wish to have
available at the end of round t. Suppose at the end of each round t, we borrow an additional sum εt
as needed to ensure we actually have qt(θt) on hand. Then, based on this invariant, the amount of
reward we actually have after playing on round t is qt−1(θt−1) + 〈wt,−gt〉, the money we had at
the beginning of the round, plus the reward we get for playing wt. Thus, the additional amount we
need to borrow at the end of round t in order to maintain the invariant is exactly

εt(θt−1, gt) ≡ qt(θt)︸ ︷︷ ︸
Reward desired

−
(
qt−1(θt−1) + 〈wt,−gt〉

)︸ ︷︷ ︸
Reward achieved

, (8)

recalling θt = θt−1 − gt. Thus, if we can find bounds ε̂t such that for all t, θt−1, and g ∈ G,

ε̂t ≥ εt(θt−1, gt) (9)

we can re-state (7) as exactly (5) with Ψ = qT and ε̂ = ε̂1:T . Further, solving (8) for the per-round
reward 〈wt,−gt〉, summing from t = 1 to T and canceling telescoping terms gives exactly (4). Not
surprisingly, both Theorem 1 and (7) can be proved in terms of the Fenchel-Young inequality.

When T is known, and the qt are chosen carefully, it is possible to obtain ε̂t = 0. On the other
hand, when T is unknown to the players, typically we will need bounds ε̂t > 0. For example, in
both Streeter and McMahan (2012, Thm. 6) and Orabona (2013), the key is showing the sum of
these ε̂t terms is always bounded by a constant. For completeness, we also state standard results
where we interpret q∗t as a regularizer.

The conjugate regularizer and Bregman divergences The updates of many algorithms are
based on a time-varying version of the FTRL strategy,

wt+1 = ∇qt(θt) = arg min
w

〈g1:t, w〉+ q∗t (w), (10)

where we view q∗t as a time-varying regularizer (see Orabona et al. (2013) and references therein).
Regret bounds can be easily obtained using (7) when the regularizers q∗t (w) are increasing with t,
and they are strongly convex w.r.t. a norm ‖ · ‖∗, using the fact that the potential functions qt will
be strongly smooth. Then strong smoothness and particular choice of wt implies

qt−1(θt) ≤ qt−1(θt−1)− 〈wt, gt〉+
1

2
‖gt‖2, (11)

which leads to the bound

εt(θt, gt) = qt(θt)− qt−1(θt−1) + 〈wt, gt〉 ≤ qt(θt)− qt−1(θt) +
1

2
‖gt‖2 ≤

1

2
‖gt‖2,

where the last inequality follows from the fact that if f(x) ≤ g(x), then f∗(y) ≥ g∗(y) (immediate
from the definition of the conjugate).

When the regularizer q∗ is fixed, that is, qt = q for all t for some convex function q, we get the
approach pioneered by Grove et al. (2001) and Kivinen and Warmuth (2001):

εt(θt, gt) = q(θt)− q(θt−1) + 〈wt, gt〉 = q(θt)−
(
q(θt−1) + 〈∇q(θt−1), gt〉

)
= Dq(θt, θt−1),

where Dq is the Bregman Divergence with respect to q, and we predict with wt = ∇q(θt−1).
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Admissible relaxations and potentials We extend the notion of relaxations of the conditional
value of the game of Rakhlin et al. (2012) to the present setting. We say vt with corresponding
strategy wt is a relaxation of Vt if

∀θ, vT (θ) ≥ B(θ) and (12)

∀t ∈ {0, . . . , T − 1}, g ∈ G, θ ∈ H, vt(θ) + ε̂t+1 ≥ 〈g, wt+1〉+ vt+1(θ − g), (13)

for constants ε̂t ≥ 0. This definition matches Eq. (4) of Rakhlin et al. (2012) if we force all ε̂t = 0,
but if we allow some slack ε̂t, (13) corresponds exactly to (8) and (9).

Note that (13) is invariant to adding a constant to all vt. In particular, given an admissible vt, we
can define qt(θ) = vt(θ)−v0(0) so qt(0) = 0 and q satisfies (9) with the same ε̂t values for which vt
satisfies (13). Or we could define q0(0) = 0 and qt(θ) = vt(θ) for t ≥ 1, and take ε̂1 ← ε̂1 + v0(0)
(or any other way of distributing the v0(0) into the ε̂). Generally, when T is known we will find
working with admissible relaxations vt to be most useful, while for unknown horizons T , potential
functions with q0(0) = 0 will be more natural.

For our admissible relaxations, we have a result that closely mirrors Theorem 1:

Corollary 2 Let v0, . . . , vT be an admissible relaxation for a benchmark B. Then, for any se-
quence g1, . . . , gT , for any wt chosen so (13) and (12) are satisfied, we have

Reward ≥ B(θT )− v0(0)− ε̂1:T and Regret(u) ≤ B∗(u) + v0(0) + ε̂1:T .

Proof For the first statement, re-arranging and summing (13) shows Rewardt ≥ vt(θt)−ε̂1:t−v0(0)
and so final Reward ≥ B(θ)− v0(0)− ε̂1:T ; the second result then follows from Theorem 1.

The regret bound corresponds to (6); in particular, if we take vt to be the conditional value of the
game, then (12) and (13) hold with equality with all ε̂t = 0. Note if we define B as in (1), the regret
guarantee becomes ∀u ∈ W, Regret(u) ≤ v0(0) + ε̂1:T , analogous to (Rakhlin et al., 2012, Prop.
1) when ε̂1:T = 0.

Deriving algorithms Consider an admissible relaxation vt. Given the form of the regret bounds
we have proved, a natural strategy is to choose wt+1 so as to minimize ε̂t+1, that is,

wt+1 = arg min
w

max
g∈G

vt+1(θt− g)− vt(θt) + 〈g, w〉 = arg min
w

max
g∈G
〈g, w〉+ vt+1(θt− g), (14)

following Rakhlin et al. (2012, Eq. (5)), Rakhlin et al. (2013), and Streeter and McMahan (2012,
Eq. (8)). We see that vt+1 is standing in for the conditional value of the game in (3). Since additive
constants do not impact the argmin, we could also replace vt with a potential qt, say qt(θ) =
vt(θ)− v0(0).

4. Minimax Analysis Approaches for Known-Horizon Games

In general, the problem of calculating the conditional value of a game Vt(θ) is hard. And even for
a known potential, deriving an optimal solution via (14) is also in general a hard problem. When
the player is unconstrained, we can simplify the computation of Vt and the derivation of optimal
strategies. For example, following ideas from McMahan and Abernethy (2013),

εt(θt) = max
p∈∆(G),Eg∼p[g]=0

E
g∼p

[qt+1(θt − g)]− qt(θt),

7
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where ∆(G) is the set of probability distributions on G. McMahan and Abernethy (2013) shows that
in some cases is possible to easily calculate this maximum, in particular when G = [−G,G]d and
qt decomposes on a per-coordinate spaces (that is, when the problem is essentially d independent,
one-dimensional problems).

In this section we will state two quite general cases where we can obtain the exact value of the
game, even though the problem does not decompose on a per coordinate basis. Note that in both
cases the optimal strategy for wt+1 will be in the direction of θt.

We study the game when the horizon T is known, with a benchmark function of the form
B(θ) = f(‖θ‖) for an increasing convex function f : [0,+∞] → R (which ensures B is convex).
Note this form for B is particularly natural given our desire to prove results that hold for general
Hilbert spaces. We will then be able to derive regret bounds using Theorem 1, and the following
technical lemma:

Lemma 3 Let B(θ) = f(‖θ‖) for f : R→ (−∞,+∞] even. Then, B∗(u) = f∗(‖u‖).

Recall that f is even if f(x) = f(−x). Our key tool will be a careful study of the one-round version
of this game. For this section, we let h : R → R be an even convex function that is increasing on
[0,∞], G = {g : ‖g‖ ≤ G}, and d the dimension ofH. We consider the one-round game

H ≡ min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) , (15)

where θ ∈ H is a fixed parameter. For results regarding this game, we let H(w, g) = 〈w, g〉 +
h(‖θ − g‖), w∗ = arg minw maxg∈G H(w, g), and g∗ = arg maxg∈G H(w∗, g). Also, let θ̂ = θ

‖θ‖
if ‖θ‖ 6= 0, and 0 otherwise.

4.1. The case of the orthogonal adversary

Let B(θ) = f(‖θ‖) for an increasing convex function f : [0,∞] → R, and define ft(x) =
f(
√
x2 +G2(T − t)). Note that ft(‖θ‖) can be viewed as a smoothed version of B(θ), since√
‖θ‖2 + C is a smoothed version of ‖θ‖ for a constant C > 0. Moreover, f0(‖θ‖) = B(θ).

Our first key result is the following:

Theorem 4 Let the adversary play from G = {g : ‖g‖ ≤ G} and assume all the ft satisfy

min
w

max
g∈G

〈w, g〉+ ft+1(‖θ − g‖) = ft+1

(√
‖θ‖2 +G2

)
. (16)

Then the value of the game is f(G
√
T ), the conditional value is Vt(θ) = ft(‖θ‖) = ft+1(

√
‖θ‖2 +G2),

and the optimal strategy can be found using (14) on Vt.
Further, a sufficient condition for (16) is that d > 1, f is twice differentiable, and f ′′(x) ≤

f ′(x)/x, for all x > 0. In this case we also have that the minimax optimal strategy is

wt+1 = ∇Vt(θt) = θt
f ′(
√
‖θt‖2 +G2(T − t))√
‖θt‖2 +G2(T − t)

. (17)

In this case, the minimax optimal strategy (20) is equivalent to the FTRL strategy in (10) with the
time varying regularizer V ∗t (w). The key lemma needed for the proof is the following:

8
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Lemma 5 Consider the game of (15). Then, if d > 1, h is twice differentiable, and h′′(x) ≤ h′(x)
x

for x > 0, we have:

H = h
(√
‖θ‖2 +G2

)
and w∗ =

θ√
‖θ‖2 +G2

h′
(√
‖θ‖2 +G2

)
.

Any g∗ such that 〈θ, g∗〉 = 0 and ‖g∗‖ = G is a minimax play for the adversary.

We defer the proofs to the Appendix (of the proofs in the appendix, the proof of Lemmas 5 and 8
are perhaps the most important and instructive). Since the best response of the adversary is always
to play a g∗ orthogonal to θ, we call this the case of the orthogonal adversary.

4.2. The case of the parallel adversary, and Normal approximations

We analyze a second case where (15) has closed-form solution, and hence derive a class of games
where we can cleanly state the value of the game and the minimax optimal strategy. The results
of McMahan and Abernethy (2013) can be viewed as a special case of the results in this section.

First, we introduce some notation. We write τ ≡ T − t when T and t are clear from context. We
write r ∼ {−1, 1} to indicate r is a Rademacher random variable, and rτ ∼ {−1, 1}τ to indicate
rτ is the sum of τ IID Rademacher random variables. Let σ =

√
π/2. We write φ for a random

variable with distribution N(0, σ2), and similarly define φτ ∼ N(0, (T − t)σ2). Then, define

ft(x) = E
rτ∼{−1,1}τ

[f (|x+ rτG|)] and f̂t(x) = E
φτ∼N(0,τσ2)

[f (|x+ φτG|)] , (18)

and note B(θ) = fT (‖θ‖) = f̂T (‖θ‖) since φ0 and r0 are always zero. These functions are exactly
smoothed version of the function f used to define B. With these definitions, we can now state:

Theorem 6 Let B(θ) = f(‖θ‖) for an increasing convex function f : [0,∞] → R, and let the
adversary play from G = {g : ‖g‖ ≤ G}. Assume ft and f̂t as in (18) for all t. If all the ft satisfy

min
w

max
g∈G
〈w, g〉+ ft+1(‖θ − g‖) = E

r∼{−1,1}

[
ft+1 (‖θ‖+ rG)

]
, (19)

then Vt(θ) = ft(‖θ‖) is exactly the conditional value of the game, and (14) gives the minimax
optimal strategy:

wt+1 = θ̂
ft+1 (‖θ‖+G)− ft+1 (‖θ‖ −G)

2G
. (20)

Similarly, suppose the f̂t satisfy the equality (19) (with f̂t replacing ft). Then qt(θ) = f̂t(‖θ‖) is an
admissible relaxation of Vt, satisfying (13) with ε̂t = 0, using wt+1 based on (14). Further, a suffi-
cient condition for (19) is that d = 1, or d > 1, the ft (or f̂t, respectively) are twice differentiable,
and satisfy and f ′′t (x) ≥ f ′t(x)/x for all x > 0.

Contrary to the case of the orthogonal adversary, the strategy in (20) cannot easily be interpreted as
an FTRL algorithm. The proof is based on two lemmas. The first provides the key tool in supporting
the Normal relaxation:

Lemma 7 Let f : R→ R be a convex function and σ2 = π/2. Then,

E
g∼{−1,1}

[f(g)] ≤ E
φ∼N(0,σ2)

[f(φ)] .

9
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Proof First observe that E[(φ − 1)1{φ > 0}] = 0 and E[(φ + 1)1{φ < 0}] = 0 by our choice of
σ. We will use two lower bounds on the function f , which follow from convexity:

f(x) ≥ f(1) + f ′(1)(x− 1) and f(x) ≥ f(−1) + f ′(−1)(x+ 1) .

Writing out the value of E[f(φ)] explicitly we have

E[f(φ)] = E[f(φ)1{φ < 0}] + E[f(φ)1{φ > 0}]
≥ E[(f(−1) + f ′(−1)(φ+ 1))1{φ < 0}] + E[(f(1) + f ′(1)(φ− 1))1{φ > 0}]

=
f(−1) + f(1)

2
+ f ′(−1)E[(φ+ 1)1{φ < 0}] + f ′(1)E[(φ− 1)1{φ < 0}] .

The latter two terms vanish, giving the stated inequality.

The second lemma is used to prove the sufficient condition by solving the one-round game;
again, the proof is deferred to the Appendix. Note that functions of the form h(x) = g(x2), with g
convex always satisfies the conditions of the following Lemma.

Lemma 8 Consider the game of (15). Then, if d = 1, or if d > 1, h is twice differentiable, and
h′′(x) > h′(x)

x for x > 0, then

H =
h (‖θ‖+G) + h (‖θ‖ −G)

2
and w∗ = θ̂

h (‖θ‖+G)− h (‖θ‖ −G)

2G
.

Any g∗ that satisfies |〈θ, g∗〉| = G‖θ‖ and ‖g∗‖ =G is a minimax play for the adversary.

The adversary can always play g∗ = G θ
‖θ‖ when θ 6= 0, and so we describe this as the case of

the parallel adversary. In fact, inductively this means that all the adversary’s plays gt can be on the
same line, providing intuition for the fact that this lemma also applies in the 1-dimensional case.

Theorem 6 provides a recipe to produce suitable relaxations qt which may, in certain cases,
exhibit nice closed form solutions. The interpretation here is that a “Gaussian adversary” is stronger
than one playing from the set [−1, 1] which leads to IID Rademacher behavior, and this allows us
to generate such potential functions via Gaussian smoothing. In this view, note that our choice of
σ2 gives Eφ[|φ|] = 1.

5. A Power Family of Minimax Algorithms

We analyze a family of algorithms based on potentials B(θ) = f(‖θ‖) where f(x) = W
p |x|

p for
parameters W > 0 and p ∈ [1, 2], when the dimension is at least two. This is reminiscent of p-
norm algorithms (Gentile, 2003), but the connection is superficial—the norm we use to measure θ
is always the norm of our Hilbert space. Our main result is:

Corollary 9 Let d > 1 and W > 0, and let f and B be defined as above. Define ft(x) =
W
p

(
x2 + (T − t)G

)p/2. Then, ft(‖θ‖) is the conditional value of the game, and the optimal strategy
is as in Theorem 4. If p ∈ (1, 2], letting q ≥ 2 such that 1/p+ 1/q = 1, we have a bound

Regret(u) ≤ 1

W q−1q
‖u‖q +

W

p

(
G
√
T
)p ≤ (

1
p + 1

q‖u‖
q
)
G
√
T ,

10
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where the second inequality comes by taking W = (G
√
T )1−p. For all u, the bound

(
1
p +

1
q‖u‖

q
)
G
√
T is minimized by taking p = 2. For p = 1, we have

∀u : ‖u‖ ≤W, Regret(u) ≤WG
√
T .

Proof Let f(x) = W
p |x|

p for p ∈ [1, 2], Then, f ′′(x) ≤ f ′(x)/x, in fact basic calculations show
f ′(x)/x
f ′′(x) = 1

p−1 ≥ 1 when p ≤ 2. Hence, we can apply Theorem 4, proving the claim on the ft. The

regret bounds can then be derived from Corollary 2, which gives Regret(u) ≤ f∗(u) + f(G
√
T ),

noting f∗(u) = W
q |

u
W |

q when p > 1. The fact that p = 2 is an optimal choice in the first bound

follows from the fact that d
dp

(
1
p + 1

q‖u‖
q
)
≤ 0 for p ∈ (1, 2] with q = p

p−1 .

The p = 1 case in fact exactly recaptures the result of Abernethy et al. (2008a) for linear
functions, extending it also to spaces of dimension equal to two. The optimal update is wt+1 =
Oft(‖θt‖) = Wθt/

√
‖θt‖2 +G2(T − t). In addition to providing a regret bound for the compara-

tor setW = {u : ‖u‖ ≤W}, the algorithm will in fact only play points from this set.
For p = q = 2, writing W = η, we have

Regret(u) ≤ 1

2η
‖u‖2 +

η

2
G2T,

for any u. In this case we see W = η is behaving not like the radius of a comparator set, but
rather as a learning rate. In fact, we have wt+1 = ∇Vt(θt) = ηθt = −ηg1:t, and so we see this
minimax-optimal algorithm is in fact constant-step-size gradient descent. Taking η = 1

G
√
T

yields
1
2(‖u‖2 + 1)G

√
T . This result complements McMahan and Abernethy (2013, Thm. 7), which

covers the d = 1 case, or d > 1 when the adversary plays from G = [−1, 1]d.
Comparing the p = 1 and p > 1 algorithms reveals an interesting fact. For simplicity, take G =

1. Then, the p = 1 algorithm with W = 1 is exactly the minimax optimal algorithm for minimizing
regret against comparators in the L2 ball (for d > 1): the value of this game is

√
T and we can

do no better (even by playing outside of the comparator set). However, picking p > 1 gives us
algorithms that will play outside of the comparator set. While they cannot do better than

√
T , taking

G = 1 and ‖u‖ = 1 shows that all algorithms in this family in fact achieve Regret(u) ≤
√
T when

‖u‖ ≤ 1, matching the exact minimax optimal value. Further, the algorithms with p > 1 provide
much stronger guarantees, since they also give non-vacuous guarantees for ‖u‖ > 1, and tighter
bounds when ‖u‖ < 1. This suggests that the p = 2 algorithm will be the most useful algorithm
in practice, something that indeed has been observed empirically (given the prevalence of gradient
descent in real applications). This result also clearly demonstrates the value of studying minimax-
optimal algorithms for different choices of the benchmarkB, as this can produce algorithms that are
no worse and in some cases significantly better than minimax algorithms defined in terms of regret
minimization directly (i.e., via (1)).

The key difference in these algorithms is not how they play against a minimax optimal adver-
sary for the regret game, but how they play against non-worst-case adversaries. In fact, a sim-
ple induction based on Lemma 5 shows that any minimax-optimal adversary will play so that√
‖θt‖2 +G2(T − t) = G

√
T . Against such an adversary, the p = 1 algorithm is identical to

the p = 2 algorithm with learning rate η = 1
G
√
T

. In fact, using the choice of W from Corollary 9,
all of these algorithms play identically against a minimax adversary for the regret game.

11
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6. Tight Bounds for Unconstrained Learning

In this section we analyze algorithms based on benchmarks and potentials of the form exp(‖θ‖2/t),
and show they lead to a minimal dependence on ‖u‖ in the corresponding regret bounds for a given
upper bound on regret against the origin (equal to the loss of the algorithm).

First, we derive a lower bound for the known T game. Using Lemma 14 in the Appendix, we can
show that the B(θ) = exp(‖θ‖2/T ) benchmark approximately corresponds to a regularizer of the

form ‖u‖
√
T log(

√
T‖u‖+ 1); there is actually some technical challenge here, as the conjugate

B∗ cannot be computed in closed form—the given regularizer is an upper bound. This kind of
regularizer is particularly interesting because it is related to parameter-free sub-gradient descent
algorithms (Orabona, 2013); a similar potential function was used for a parameter-free algorithm
by (Chaudhuri et al., 2009). The lower bound for this game was proven in Streeter and McMahan
(2012) for 1-dimensional spaces, and Orabona (2013) extended it to Hilbert spaces and improved
the leading constant. We report it here for completeness.

Theorem 10 Fix a non-trivial Hilbert space H and a specific online learning algorithm. If the
algorithm guarantees a zero regret against the competitor with zero norm, then there exists a se-
quence of T cost vectors in H, such that the regret against any other competitor is Ω(T ). On the
other hand, if the algorithm guarantees a regret at most of ε > 0 against the competitor with zero
norm, then, for any 0 < η < 1, there exists a T0 and a sequence of T ≥ T0 unitary norm vectors
gt ∈ H, and a vector u ∈ H such that

Regret(u) ≥ (1− η)‖u‖
√

1

log 2

√
T log

η‖u‖
√
T

3ε
− 2 .

6.1. Deriving a known-T algorithm with minimax rates via the Normal approximation

Consider the game with fixed known T , an adversary that plays from G = {g ∈ H | ‖g‖ ≤ G}, and

B(θ) = ε exp

(
‖θ‖2

2aT

)
,

for constants a > 1 and ε > 0. We will show that we are in the case of the parallel adversary,
Section 4.2. Both computing the ft based on Rademacher expectations and evaluating the sufficient
condition for those ft appear quite difficult, so we turn to the Normal approximation. We then have

f̂t(x) = E
φτ

[
ε exp

(
(x+ φτG)2

2at

)]
= ε

(
1− πG2(T − t)

2aT

)− 1
2

exp

(
x2

2aT − πG2(T − t)

)
,

where we have computed the expectation in a closed form for the second equality. One can quickly
verify that it satisfies the hypothesis of Theorem 6 for a > G2π/2, hence qt(θ) = f̂t(‖θ‖) will be
an admissible relaxation. Thus, by Corollary 2, we immediately have

Regret(u) ≤ B∗(θT ) + ε

(
1− πG2

2a

)− 1
2

,

and so by Lemma 14 in the Appendix, we can state the following Theorem, that matches the lower
bound up to a constant multiplicative factor.

12
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Theorem 11 Let a > G2π/2, and G = {g : ‖g‖ ≤ G}. Denote by θ̂ = θ
‖θ‖ if ‖θ‖ 6= 0, and 0

otherwise. Fix the number of rounds T of the game, and consider the strategy

wt+1 = εθ̂t
exp

(
(‖θt‖+G)2

2aT−πG2(T−t−1)

)
− exp

(
(‖θt‖−G)2

2aT−πG2(T−t−1)

)
2G

√
1− πG2(T−t−1)

2aT

.

Then, for any sequence of linear costs {gt}Tt=1, and any u ∈ H, we have

Regret(u) ≤ ‖u‖

√√√√2aT log

(√
aT‖u‖
ε

+ 1

)
+ ε

((
1− πG2

2a

)− 1
2

− 1

)
.

6.2. AdaptiveNormal: an adaptive algorithm for unknown T

Our techniques suggest the following recipe for developing adaptive algorithms: analyze the known
T case, define a potential qt(θ) ≈ VT (θ), and then analyze the incrementally-optimal algorithm for
this potential (14) via Theorem 1. We follow this recipe in the current section. Again consider the
game where an adversary that plays from G = {g ∈ H | ‖g‖ ≤ G}. Define the function ft as

ft(x) = βt exp
( x

2at

)
,

where a > 3πG2

4 , and the βt is a decreasing sequence that will be specified in the following. From
this, we define the potential qt(θ) = ft(‖θ‖2). Suppose we play the incrementally-optimal algorithm
of (14). Using Lemma 8 we can write the minimax value for the one-round game,

εt(θt) = E
r∼{−1,1}

[ft+1((‖θt‖+ rG)2)]− qt(θt)

≤ E
φ∼N(0,σ2)

[ft+1((‖θt‖+ φG)2)]− qt(θt) . Lemma 7.

Using Lemma 17 in the Appendix and our hypothesis on a, we have that the RHS of this inequality
is maximized for ‖θt‖ = 0. Hence, using the inequality

√
a+ b ≤

√
a+ b

2
√
a
, ∀a, b > 0, we get

εt(θt) ≤ βt+1

√
1 +

πG2

2a (t+ 1)− πG2
− βt ≤

βt
2

πG2

2a (t+ 1)− πG2
≤ πG2βt

4a t
.

Thus, choosing βt = ε/ log2(t + 1), for example, is sufficient to prove that ε1:T is bounded by
επG

2

a (Baxley, 1992). Hence, again using Corollary 2 and Lemma 14 in the Appendix, we can state
the following Theorem.

Theorem 12 Let a > 3G2π/4, and G = {g : ‖g‖ ≤ G}. Denote by θ̂ = θ
‖θ‖ if ‖θ‖ 6= 0, and 0

otherwise. Consider the strategy

wt+1 = εθ̂t

(
exp

(
(‖θt‖+G)2

2a(t+ 1)

)
− exp

(
(‖θt‖ −G)2

2a(t+ 1)

))(
2G log2(t+ 2)

)−1
.

Then, for any sequence of linear costs {gt}Tt=1, and any u ∈ H, we have

Regret(u) ≤ ‖u‖

√√√√2aT log

(√
aT‖u‖ log2(T + 1)

ε
+ 1

)
+ ε

(
πG2

a
− 1

)
.
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Appendix A. Proofs

A.1. Proof of Theorem 1

Proof Suppose the algorithm provides the reward guarantee (4). First, note that for any comparator
u, by definition we have

Regret(u) = −Reward−〈g1:T , u〉 . (21)

Then, applying the definitions of Reward, Regret, and the Fenchel conjugate, we have

Regret(u) = θT · u− Reward By (21)

≤ θT · u− qT (θT ) + ε̂1:T By assumption (4)

≤ max
θ

(
θ · u− qT (θ) + ε̂1:T

)
= q∗T (u) + ε̂1:T .

For the other direction, assuming (5), we have for any comparator u,

Reward = θT · u− Regret(u) By (21)

= max
v

(
θ · v − Regret(v)

)
≥ max

v

(
θ · v − q∗T (v)− ε̂1:T

)
By assumption (5)

= qT (θ)− ε̂1:T .

Alternatively, one can prove this from the Fenchel-Young inequality.

A.2. Proof of Lemma 3

Proof We have B∗(u) = supθ 〈u, θ〉 − f(‖θ‖). If ‖u‖ = 0, the stated equality is correct, in fact

B∗(u) = sup
θ
−f(‖θ‖) = sup

α≥0
−f(α) = sup

α∈R
−f(α) = f∗(0) .

Hence we can assume ‖u‖ 6= 0, and by inspection we can take θ = αu/‖u‖, with α ≥ 0, and so

B∗(u) = sup
α≥0

α‖u‖ − f(α) = sup
α∈R

α‖u‖ − f(α) = f∗(‖u‖) .

A.3. Proof of Theorem 4

Proof First we show that if f satisfies the condition on the derivatives, the same conditions is
satisfied by ft, for all t. We have that all the ft have the form h(x) = f(

√
x2 + a), where a ≥

0. Hence we have to prove that xh′′(x)
h′(x) ≤ 1. We have that h′(x) = xf ′(

√
x2+a)√

x2+a
, and h′′(x) =

x2f ′′(
√
x2+a)+ a√

x2+a
f ′(
√
x2+a)

x2+a
, so

xh′′(x)

h′(x)
=
x2f ′′(

√
x2 + a)

√
x2 + a

f ′(
√
x2 + a)(x2 + a)

+
a

x2 + a
≤ x2

x2 + a
+

a

x2 + a
= 1,
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where in the inequality we used the hypothesis on the derivatives of f .
We show Vt has the stated form by induction from T down to 0. The base case for t = T is

immediate. For the induction step, we have

Vt(θ) = min
w

max
g
〈w, g〉+ Vt+1(θ − g) Defn.

= min
w

max
g
〈w, g〉+ ft+1 (‖θ − g‖) (IH)

= ft+1

(√
‖θ‖2 +G2

)
Assumption (16)

= f
(√
‖θ‖2 +G2(T − t)

)
.

The sufficient condition for (16) follow immediately from Lemma 5.

A.4. Proof of Theorem 6

Proof First, we need to show the functions ft and f̂t of (18) are even. Let r be a random variable
draw from any symmetric distribution. Then, we have

ft(x) = E[f(|x+ r|)] = E[f(| − x− r|)] = E[f(| − x+ r|)] = ft(−x),

where we have used the fact that | · | is even and the symmetry of r.
We show ft(‖θ‖) = Vt(θ) inductively from t = T down to t = 0. The base case T = t follows

from the definition of ft. Then, suppose the result holds for t+ 1. We have

Vt(θ) = min
w

max
g∈G
〈w, g〉+ Vt+1(θ − g) Defn.

= min
w

max
g∈G
〈w, g〉+ ft+1(‖θ − g‖) IH

= E
r∼{−1,1}

[
ft+1(‖θ‖+ rG)

]
Lemma 8

= E
r∼{−1,1}

[
E

rτ−1∼{−1,1}τ−1

[
f(‖θ‖+ rG+ rτ−1G)

]]
= ft(‖θ‖),

where the last two lines follow from the definition of ft and ft+1. The case for f̂t is similar, using
the hypothesis of the Theorem we have

min
w

max
g∈G
〈g, w〉+ f̂t+1(‖θ − g‖) = Er∼{−1,1}[f̂t+1(‖θ‖+ rG)] ≤ Er∼N(0,σ2)[f̂t+1(‖θ‖+ φG)]

= f̂t(‖θ‖),

where in the inequality we used Lemma 7, and in the second equality the definition of f̂t. Hence,
qt(θ) = f̂t(‖θ‖) satisfy (13) with ε̂t = 0. Finally, the sufficient conditions come immediately from
Lemma 8.

16



UNCONSTRAINED ONLINE LINEAR LEARNING IN HILBERT SPACES

A.5. Analysis of the one-round game: Proofs of Lemmas 5 and 8

In the process of proving these lemmas, we also show the following general lower bound:

Lemma 13 Under the same definitions as in Lemma 5, if d > 1, we have

H ≥ h
(√
‖θ‖2 +G2

)
.

We now proceed with the proofs. The d = 1 case for Lemma 8 was was proved in McMahan
and Abernethy (2013).

Before proving the other results, we simplify a bit the formulation of the minimax problem. For
the other results, the maximization wrt g of a convex function is always attained when ‖g‖ = G.
Moreover, in the case of ‖θ‖ = 0 the other results are true, in fact

min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) = min

w
max
‖g‖=G

〈w, g〉+ h(‖g‖) = min
w
G‖w‖+ h(G) = h(G) .

Hence, without loss of generality, in the following we can write w = α θ
‖θ‖ + ŵ, where 〈ŵ, θ〉 = 0.

It is easy to see that in all the cases the optimal choice of g turns out to be g = β θ
‖θ‖ + γŵ, where

γ ≥ 0. With these settings, the minimax problem is equivalent to

min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) = min

α,ŵ
max

β2+‖ŵ‖2γ2=G2
αβ + γ‖ŵ‖2 + h(

√
‖θ‖2 − 2β‖θ‖+G2) .

By inspection, the player can always choose ŵ = 0 so γ‖ŵ‖2 = 0. Hence we have a simplified and
equivalent form of our optimization problem

min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) = min

α
max
β2≤G2

αβ + h(
√
‖θ‖2 − 2β‖θ‖+G2) . (22)

For Lemma 13, it is enough to set β = 0 in (22).
For Lemma 5, we upper bound the minimum wrt to αwith the specific choice of α. In particular,

we set α = ‖θ‖√
‖θ‖2+G2

h′
(√
‖θ‖2 +G2

)
in (22), and get

min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) ≤ max

β2≤G2

β‖θ‖h′(
√
‖θ‖2 +G2)√

‖θ‖2 +G2
+ h(

√
‖θ‖2 − 2β‖θ‖+G2) .

The derivative of argument of the max wrt β is

‖θ‖h′
(√
‖θ‖2 +G2

)
√
‖θ‖2 +G2

−
‖θ‖h′

(√
‖θ‖2 − 2β‖θ‖+G2

)
√
‖θ‖2 − 2β‖θ‖+G2

. (23)

We have that if β = 0 the first derivative is 0. Using the hypothesis on the first and second derivative
of h, we have that the second term in (23) increases in β. Hence β = 0 is the maximum. Comparing
the obtained upper bound with the lower bound in Lemma 13, we get the stated equality.

For Lemma 8, the second derivative wrt β of the argument of the minimax problem in (22) is

−‖θ‖
−‖θ‖h′′(

√
‖θ‖+G2 − 2β‖θ‖) + h′(

√
‖θ‖+G2 − 2β‖θ‖) ‖θ‖√

‖θ‖+G2−2β‖θ‖

‖θ‖+G2 − 2β‖θ‖

17
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that is non negative, for our hypothesis on the derivatives of h. Hence, the argument of the minimax
problem is convex wrt β, hence the maximum is achieved at the boundary of the domains, that is
β2 = G2. So, we have

min
w

max
g∈G
〈w, g〉+ h(‖θ − g‖) = max (−Gα+ h(‖θ‖+G), Gα+ h(|‖θ‖ −G|)) .

The argmin of this quantity wrt to α is obtained when the the two terms in the max are equal, so we
obtained the stated equality.

A.6. Lemma 14

Lemma 14 Define f(θ) = β exp ‖θ‖
2

2α , for α, β > 0. Then

f∗(w) ≤ ‖w‖

√
2α log

(√
α‖w‖
β

+ 1

)
− β .

Proof From the definition of Fenchel dual, we have

f∗(w) = max
θ
〈θ, w〉 − f(θ) ≤ 〈θ∗, w〉 − β .

where θ∗ = arg maxθ〈θ, w〉 − f(θ). We now use the fact that θ∗ satisfies w = ∇f(θ∗), that is

w = θ∗
β

α
exp

(
‖θ∗‖2

2α

)
,

in other words we have that θ∗ and w are in the same direction. Hence we can set θ∗ = qw, so that
f∗(w) ≤ q‖w‖2 − β. We now need to look for q > 0, solving

qβ

α
exp

(
‖w‖2q2

2α

)
= 1⇔ ‖w‖

2q2

2α
+ log

βq

α
= 0

⇔ q =

√
2α

‖w‖2
log

α

qβ
=

√√√√√ 2α

‖w‖2
log

 √
α‖w‖

β
√

2 log α
qβ

 .

Using the elementary inequality log x ≤ m
e x

1
m , ∀m > 0, we have

q2 =
2α

‖w‖2
log

α

qβ
≤ 2mα

e‖w‖2

(
α

qβ

) 1
m

⇒ q
2m+1
m ≤ 2mα

m+1
m

e‖w‖2β
1
m

⇒ q ≤
(

2m

e‖w‖2

) m
2m+1

α
m+1
2m+1β−

1
2m+1

⇒ α

βq
≥
(
e‖w‖2

2m

) m
2m+1

α1− m+1
2m+1β

1
2m+1

−1 =
α

βq
≥
(√

e

2m

‖w‖
√
α

β

) 2m
2m+1

.

Hence we have

q ≤

√√√√√ 2α

‖w‖2
log

 √
α‖w‖

β
√

4m
2m+1 log

√
e

2m
‖w‖
√
α

β

 .
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We setm such that
√

e
2m
‖w‖
√
α

β =
√
e, that is 1

2

(
‖w‖
√
α

β

)2
= m. Hence we have log

√
e

2m
‖w‖
√
α

β =

1
2 and

‖w‖
√
α

β√
2m

= 1, and obtain

f∗(w) ≤ ‖w‖

√√√√√2α log

√(√α‖w‖
β

)2

+ 1

− β ≤ ‖w‖√2α log

(√
α‖w‖
β

+ 1

)
− β .

A.7. Lemma 17

Lemma 15 Let f(x) = b exp
(
x2

a

)
− exp

(
x2

c

)
. If a ≥ c > 0, b ≥ 0, and b c ≤ a, then the

function f(x) is decreasing for x ≥ 0.

Proof The proof is immediate from the study of the first derivative.

Lemma 16 Let f(t) = a
3
2 t
√
t+1

(a (t+1)−b)
3
2

, with a ≥ 3/2b > 0. Then f(t) ≤ 1 for any t ≥ 0.

Proof The sign of the first derivative of the function has the same sign of

(2 a− 3b)(t+ 1) + b,

hence from the hypothesis on a and b the function is strictly increasing. Moreover the asymptote
for t→∞ is 1, hence we have the stated upper bound.

Lemma 17 Let ft(x) = βt exp
(
x

2at

)
, βt+1 ≤ βt, ∀t. If a ≥ 3πG2

4 , then

arg max
x

E
φ∼N(0,σ2)

[ft+1(x+ φG)]− ft(x) = 0,

where σ2 = π
2 .

Proof We have

E
φ∼N(0,σ2)

[ft+1(x+ φG)] = βt+1

√
a (t+ 1)

a (t+ 1)− σ2G2
exp

(
x2

2 [a (t+ 1)− σ2G2]

)
,

so we have to study the max of

βt+1

√
a (t+ 1)

a (t+ 1)− σ2G2
exp

(
x2

2 [a (t+ 1)− σ2G2]

)
− βt exp

(
x2

2 a t

)
.
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The function is even, so we have a maximum in zero iff the function is decreasing for x > 0.
Observe that, from Lemma 16, for any t ≥ 0√

a (t+ 1)

a (t+ 1)− σ2G2

a t

a (t+ 1)− σ2G2
≤ 1 .

Hence, using Lemma 15, we obtain that the stated result.
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