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Abstract
Previous work presented a proof of concept for sequence
training of deep neural networks (DNNs) using asynchronous
stochastic optimization, mainly focusing on a small-scale task.
The approach offers the potential to leverage both the effi-
ciency of stochastic gradient descent and the scalability of par-
allel computation. This study presents results for four different
voice search tasks to confirm the effectiveness and efficiency
of the proposed framework across different conditions: amount
of data (from 60 hours to 20,000 hours), type of speech (read
speech vs. spontaneous speech), quality of data (supervised vs.
unsupervised data), and language. Significant gains over base-
lines (DNNs trained at the frame level) are found to hold across
these conditions. The experimental results are analyzed, and
additional practical details for the approach are provided. Fur-
thermore, different sequence training criteria are compared.
Index Terms: deep neural networks, sequence training, asyn-
chronous stochastic gradient descent, unsupervised training.

1. Introduction
This study significantly expands the evaluation of the proposal
in [1] for sequence training based on asynchronous stochastic
optimization. The context for this work is as follows.

In the last few years, Deep Neural Networks (DNNs) have
replaced Gaussian Mixture Models (GMMs) as the state-of-
the-art acoustic model (AM) for automatic speech recognition
(ASR) [2]. DNN optimization based on a Cross-Entropy (CE)
loss function reflecting classification of temporally local speech
frames into context-dependent states for using in a “hybrid”
DNN/HMM system [3] is a simple, easily implemented ap-
proach used successfully in several studies [4] [5].

Simplicity notwithstanding, frame-discriminative training
is not guaranteed to optimize the ultimate target, word accu-
racy over the entire utterance, decoded with a full language
model (LM) [6] [7]. “Sequence” discriminative training, based
on cost functions defined at the utterance level and reflecting
actual performance of the speech recognition process [8] [9]
[10] [11] [12], is therefore still highly relevant. The first de-
scription of DNN optimization using an utterance-level Maxi-
mum Mutual Information (MMI) criterion incorporating large-
vocabulary word recogntion may be that in [13]. More recent
work [14] re-ignited the topic of sequence training for DNNs,
with active further research [15] [16] [17], among other studies,
most confirming the effectiveness of sequence-discriminative
training for DNNs.

A focal issue for sequence training of DNNs is the opti-
mization method. Two distinct approaches stand out: Stochastic
Gradient Descent (SGD) [18], typically implemented on a sin-
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Figure 1: Asynchronous, stochastic sequence training of DNNs
using a parameter server and model replication.

gle GPU [5] [15], and batch-based second-order optimization
[17]. Conventional SGD has remarkable convergence proper-
ties [19], converging quickly in terms of number of steps, but
must be run on a single processor, limiting scalability, and suf-
fers from limited data shuffling given the utterance-level chunk-
ing of sequence-discriminative optimization criteria [15]. The
second approach can be parallelized over many machines and
does not need data shuffling, but requires far more steps to con-
verge, resulting in better, but still limited, scalability.

In contrast, the approach described in [1] for sequence
training via Asynchronous Stochastic Gradient Descent (ASGD)
attempts to bring the best of both worlds to sequence training:
rapid convergence and scalability through parallel processing
[20]. The study in [1] offers both theoretical and empirical
support for the approach’s salient features such as (1) superior
data shuffling, (2) tolerance of additional sources of asynchrony
arising for sequence training and (3) good resulting scalabil-
ity and rapid convergence. The first evaluation focused on a
small, supervised, read speech task, and the use of just MMI
as the objective function. Here, the evaluation is substantially
expanded to assess whether the approach scales to additional
languages and much larger datasets (both supervised and unsu-
pervised). Results are also presented for additional optimization
criteria, state-level Minimum Bayes Risk (sMBR) [14] [21] and
the MMI variant proposed in [16].

ASGD is well suited to the use of very large data sets.



Learning is incremental, and convergence doesn’t depend on
data set size [19] [22]. For small data sets, training tokens
are typically recycled, possibly leading to generalization issues
(that would arise for batch training too), but for large datasets,
learning keeps going, often resulting in good convergence with-
out full use of all training data. The training set is flexibly lever-
aged, as needed. This is a highly desirable property for the Big
Data era of speech recognition.

Tackling truly “Big” datasets inevitably raises the topic
of unsupervised training, which in turn raises the question of
whether sequence training can be effective in that context [23].
Here this issue is addressed with evaluation on 20,000 hour un-
supervised datasets for two languages. This may relate to the
choice of optimization criterion. Given the difficulty of guar-
anteeing high quality transcripts for large training datasets, the
ability of a criterion to filter out utterances with poor transcripts,
far away from decision boundaries, is of great interest.

Paper organization: The asynchronous optimization frame-
work for sequence training introduced in [1] is outlined, focus-
ing on key features and advantages and providing additional
practical details. Objective functions for both the frame-level
CE baseline and sequence training criteria are summarized. Ex-
perimental results for 4 datasets of different quality, type and
quantity are then presented and analyzed.

2. Sequence training using asynchronous
stochastic optimization

In essence, [1] adapts the general asynchronous optimization
framework described in [24] to the specific case of sequence
training. A brief overview follows.

2.1. Asynchronous stochastic optimization

Though the effectiveness of SGD has been known for decades
[18][19], schemes to scale it via parallelization have run into
the fundamental problem of memory-locking and synchronous
model updates, which drastically slows down learning perfor-
mance. It was shown in [20] that for sparse problems, where
only a fraction of the coordinates of the gradient vector are non-
zero for any given training example, SGD can be implemented
as ASGD, i.e. without memory-locking during model updates,
outperforming other approaches by an order of magnitude. This
was one of the motivations for the large-scale optimization soft-
ware framework based on ASGD described in [24]. This frame-
work was successfully applied to frame-level, CE based opti-
mization of DNNs for ASR [24] [25]. The key features are:

• A parameter server that (1) Holds a snapshot of the cur-
rent parameter set, which it can communicate on request;
(2) Updates the parameter set, given incoming parameter
gradients and a learning rule;

• A set of model replicas that (1) Make requests to the
parameter server to obtain the latest version of the pa-
rameter set; (2) Update a local representation of the cost
function gradient according to their local parameter set
and the data shard being processed; (3) Communicate
their local gradient back to the parameter server.

Crucially, the parameter set updating is lock-free, i.e. asyn-
chronous. The replicas are not made to wait for the latest ver-
sion to be updated; rather, they compute derivatives using a
model that is typically out of date. The asynchrony allows for
faster optimization, at the risk of divergence if the parameter
updates are too big [20].

2.2. Extension to sequence training

It has up to now been an open question whether this optimiza-
tion strategy would work for sequence training, with its by-
definition utterance-level chunking of data. In this context, se-
quence training poses significant new challenges, in particular,
(1) How frequently to update the “decoder” parameters, used to
compute the sequence training outer derivatives, and (2) How
to shuffle the data properly.

Concerning the first point, [1] uses a weak-sense auxiliary
function to model the situation, and reports an empirical com-
parison of different decoder parameter update schedules. Re-
garding shuffling, each replica in [1] manages a multi-tiered
pool of randomized utterances and selects a batch of N frames,
one frame per utterance, from that pool. Shuffling is amplified
by the number of replicas; the overall shuffling of data seen by
the parameter server is much larger than could be achieved if
using a single processor or GPU. This property, made possi-
ble by the asynchrony of the approach, is particularly beneficial
to sequence training, as it helps circumvent the utterance-level
chunking of the objective function.

Some simple heuristics are applied to filter frames before
passing them to the optimization process. Minimum posterior
filtering is applied to reject states where numerator and denom-
inator posteriors have essentially canceled out. Missing refer-
ence filtering [16] can also be applied to MMI (“MMI-FR”).
Silence filtering [15] was not found to be necessary.

The numerator and denominator lattices used for MMI and
sMBR are generated on the fly. This offers two important ad-
vantages:

• Freshness: barring search errors, the lattices reflect the
current AM. This reduces the need for heuristics to cope
with mismatches between model and lattices [15].

• Processing of Big Data: On very large data sets, ASGD
may converge well before all training tokens are used.
There is then no advantage to pre-generating lattices for
all training data, and in fact doing so would be wasteful.

2.3. ASGD via Adagrad

Given the total gradient, the parameter set can be updated using
a number of techniques. The classic SGD update [18][19] is

θu+1 = θu − ηu∇L (xu, θu) , (1)

with a number of different variants for setting the learning rate
ηu possible both in theory [18] and in practice [24]. One tech-
nique found to increase the convergence speed and possibly the
robustness of ASGD is the Adagrad [26] adaptive learning rate
procedure. Rather than use a single fixed learning rate on the
parameter sever (in Fig. 1), Adagrad uses a separate adaptive
learning rate for each parameter. Let ηi,u be the learning rate
of the i-th parameter θi at update step u and ∆θi,u its gradient,

then the rule is to set: ηi,u = γ/
√∑u

v=1 (∆θi,v)2. Adagrad
can converge prematurely, as the learning rate decreases with
the number of steps. This was not found to be an issue for se-
quence training when starting from a CE-trained DNN.

2.4. Chaining of outer & inner derivatives

The essential component of all gradient-based optimization ap-
proaches [27] [28] is the construction of the total gradient of the
cost function L (x, θ) w.r.t. individual model parameters θi, for
a given network input x.



The popular “hybrid” approach for using DNNs as the AM
in an HMM-based recognition system [1] [3] [14] [15] [16] is
to define the posterior for an HMM state k, given any one of T
feature vectors xt from an utterance X, in terms of the last layer
activations at (k) and resulting network outputs yt(k):

P (k|xt) , yt (k) =
exp (at (k))∑N

k′=1 exp (at (k′))
, (2)

whereN is the number of states. Normalization of the posterior
by the state prior is then used to define state log-likelihood:

log p (xt|k) , logP (k|xt)− logP (k) . (3)

The criteria considered here make different uses of the same
underlying, DNN-based log p (xt|k). The total gradient can be
decomposed into inner and outer derivatives via the at (k):

∂L (X, θ)
∂θi

=

T∑
t=1

N∑
k

∂L (X, θ)
∂at (k)

∂at (k)

∂θi
. (4)

Different optimization criteria will induce different outer
derivatives ∂L (X, θ)/∂at (k), while preserving the same inner
derivative, ∂at (k)/∂θi [29]. The chaining of outer and inner
derivatives to produce the total parameter gradient that is sent
to the parameter server is illustrated in Fig. 1.

2.5. Optimization criteria

In the following, different optimization criteria and their outer
derivatives are briefly summarized. The reader is referred to [1]
[14] [15] [16] for more details and derivations.

2.5.1. Frame-level Cross-Entropy (CE)

The baseline in this study is the simple frame-level CE opti-
mization criterion that helped propel DNN recognition accura-
cies past most GMM baselines [4] [5].

LXENT (X, θ) =

T∑
t=1

N∑
k=1

ŷt (k) log
ŷt (k)

yt (k)
(5)

with outer derivative

∂LXENT (X, θ)
∂at (k)

= yt (k)− ŷt (k) . (6)

The ŷt values are context-dependent HMM state targets, ob-
tained e.g. using a forced-alignment of the utterance transcript.

2.5.2. Maximum Mutual Information (MMI) for sequence
training

For DNNs, the log-likelihood for X given a word string Sj with
best Viterbi state sequence sj (t) is defined as

log p (X|Sj) =

T∑
t=1

log p (xt|sj (t)) . (7)

Closely related to CE, the MMI criterion [8] can then be defined
for X and the reference word string Sr:

LMMI (X, θ) = − log
p (X|Sr)κP (Sr)∑
j p (X|Sj)κP (Sj)

(8)

It can be shown [11] [14] that the MMI outer derivatives are

∂LMMI (X, θ)
∂at (k)

= κ
(
γdent (k)− γnumt (k)

)
, (9)

where γdent (k) and γnumt (k) are denominator and numerator
lattice occupancies for state k, respectively. These statistics can
be obtained efficiently from lattices represented as Weighted Fi-
nite State Transducers (WFSTs) using the Forward-Backward
algorithm on the Log semiring [30].

Boosted MMI [16] was evaluated but not found to give any
gains; these results are not detailed here.

2.5.3. MMI with Frame Rejection (MMI-FR) for “missing” ref-
erence

The MMI criterion (Equ. (8)) diverges when the reference pos-
terior goes to zero [30]. This means the criterion might be sus-
ceptible to instability when trained on poorly transcribed utter-
ances. A simple heuristic is simply to skip frames where the
reference state mass in the denominator is too small [16].

2.5.4. State-level Minimum Bayes Risk (sMBR)

The sMBR criterion [21] is in the family of Expected Error cost
functions [12]:

LsMBR (X, θ) = Ē (X) ,

∑
j p (X|Sj)κP (Sj)E (Sj , Sr)∑

j′ p (X|Sj′)κP (Sj′)
.

(10)
E (Sj , Sr) is a frame-wise state alignment matching error [14].
It can be shown [14] that the sMBR outer derivatives are

∂LsMBR (X, θ)
∂at (k)

= κγdent (k)
(
Ē (X, k, t)− Ē (X)

)
, (11)

where Ē (X, k, t) is expected error through lattice state k at
time t, and Ē (X) is overall expected error for the utterance.
These statistics (for both state occupancy and expected er-
ror) can be obtained efficiently from lattice WFSTs using the
Forward-Backward algorithm on the Expectation semiring [30].
sMBR is less prone to the “missing” reference problem than
MMI, as the derivative goes to zero away from decision bound-
aries [30] [31] [32].

3. Databases
All datasets are anonymized. The following training sets were
used: Icelandic (is IS): 60 hours of read speech, simulating
Voice Search queries; American English (en US): 3000 hours
of spontaneous speech from live Voice Search data, human-
transcribed; French (fr FR) and Russian (ru RU): 20,000 hours
each of unsupervised speech, described in the following. The
test sets for each language are human-transcribed Voice Search
datasets of about 25 hours each.

The unsupervised training sets for ru RU and fr FR were
harvested from an original set of 300M utterances (approxi-
mately 30 years worth of audio), selected at random from three
months of live Voice Search traffic. The utterances are rede-
coded with the best acoustic model available, with generous de-
coding parameters (beam size and maximum number of arcs),
and using a larger LM than the systems used in production. In
order to avoid too-frequent queries (like “facebook”) and to in-
crease triphone coverage and phonetic diversity, at most 50 ut-
terances are kept with the same transcription. The redecoded
utterances are sorted according to confidence score (average
frame posterior probability, excluding silence segments). Fi-
nally, the top 20M utterances (about 20,000 hours audio) ac-
cording to confidence score are selected.



Table 1: Word error rates for sequence-trained DNNs on Voice Search tasks in several languages using different optimization criteria.

Training data DNN Configuration Optimization Criterion WER Training Time
Lang. Type Quality Quantity Topology # Wts. CE MMI MMI-FR sMBR CE Seq.Tr.
is IS Read Sup. 60h 26x40:4x1024:2.5K 7M 13.0% 11.9% 11.3% 12.3% 12h 12h

en US Spont. Sup. 3,000h 26x40:8x2560:14K 85M 11.3% 11.7% 10.5% 10.4% 4d 4d
ru RU Spont. Unsup. 20,000h 26x40:8x2560:18K 95M 24.8% 23.4 % 23.3% 23.6% 9d 4d
fr FR Spont. Unsup. 20,000h 26x40:8x2560:23K 108M 13.6% 12.2% 12.3% 12.6% 9d 4d

4. Experiments
Asynchronous stochastic optimization using each criterion was
run for each training set. Rectified linear unit activations and
ADAGRAD are used throughout. The Adagrad learning rate
was initialized to be as large as possible without causing di-
vergence. Fifty multi-core machines were used for is IS and
en US, 100 multi-core machines for fr FR and ru RU. DNN
configurations (“CxF:LxN:O”, where C, F, L, N and O are num-
ber of context frames, features, hidden layers, nodes per hidden
layer, and output states, respectively), and corresponding ap-
proximate total number of parameters are shown in Table 1.

4.1. Frame-level Cross-Entropy baselines

CE was run on DNNs initialized with random weights and using
force-aligned utterances to generate the targets in Equ. (5). For
is IS, several epochs (full presentations of the entire training
set) are used; for the much larger training sets, about one epoch
is performed. A batch size of 200 frames was used.

4.2. Sequence training

The LM used to make denominator lattices on-the-fly is a uni-
gram (is IS, ru RU, fr FR) or bigram (en US) LM made from
the training utterance transcripts. This LM was also used on a
held-out set to help gauge convergence during training.

Training was performed using MMI, MMI-FR, and sMBR.
For is IS, several training epochs are again used. Remarkably,
on en US, training has largely converged after using just 50%
of the data; that is the model used in the WER evaluation here.
Similarly, for ru RU and fr FR, training has largely converged
after about 20% of the data is seen; that is the model used in
WER evaluation. Note that training beyond these points contin-
ues to improve the models on held out data; the generalization
of ASGD is excellent.

It was found that minimum posterior filtering (Section 2.2),
used with all sequence training criteria), rejects 85-90% of all
utterance frames for which numerator and denominator outer
derivatives essentially cancel, speeding up training consider-
ably. This sparseness may make sequence training well-suited
to optimization using ASGD [20]. A batch size of 32 frames af-
ter filtering was used. The overall processing time per learning
step for sequence training is about 2X that for CE. Approximate
training times and test WER for both CE and sequence training
are shown in Table 1.

5. Discussion
The results described here offer strong experimental confirma-
tion for the effectiveness of the asynchronous stochastic opti-
mization approach to sequence training first presented in [1].
The most salient result is simply that the approach scales well to
much larger datasets than examined before. These results were
obtained with 50-100 multi-core machines, and an efficient pa-

rameter communication framework [24]. Further assisted by
powerful data shuffling, training converges rapidly, making se-
quence training on datasets of up to 20,000 hours practical.

A related strong point is that sequence training on the larger
datasets converges without full presentation of the training sets.
This is a good example of the flexible leveraging of redundancy
in the training set afforded by stochastic optimization. This sup-
ports the use of on-the-fly lattice generation: it would be waste-
ful to pre-compute lattices for training tokens that will not be
needed. Superficially, the finding suggests that we don’t need
more than 3,000-4,000 hours of training data, but the sequence
training results are for CE-initialized models that were trained
from scratch using the full training sets, and for specific datasets
and model sizes. Sequence training from scratch, use of larger
models, and different datasets, may require use of more data,
that again should be leveraged flexibly.

Good results were obtained for the large unsupervised
datasets; the aggressive filtering and data-balancing heuristics
appear to be effective. The results for the different optimization
criteria can be related to data filtering. Both sMBR and MMI-
FR have built-in data filters, lessening the impact of frames with
low reference posteriors, while standard MMI does not. On the
unsupervised fr FR and ru RU sets, the automatically gener-
ated transcripts already pass a strong confidence filter, so one
could surmise that there wouldn’t be a difference between stan-
dard MMI and MMI-FR. It appears it is the human-generated
transcripts that need criterion-based filtering. On the super-
vised en US data, standard MMI is worse than CE, while both
MMI-FR and sMBR yield good results, suggesting some sort of
missing reference filter is critical. On the much smaller super-
vised is IS data, MMI-FR yields the best result, while here it is
sMBR that seems underpowered. Only on en US does sMBR
give the best result. Compared to sMBR, MMI-FR may offer
better combination of strong weighting of the reference up to
a point on the incorrect side of the decision boundary, and re-
jection beyond that point (cf Minimum Classification Error [27]
and “Differenced MMI” [32]). Further experiments are needed
to make firmer conclusions.

6. Conclusions
This paper extended the evaluation of the asychronous stochas-
tic optimization framework for sequence training described in
previous work to far larger datasets and additional optimiza-
tion criteria. The significant gains in word error obtained sug-
gest that not only does the approach scale well to very large
datasets, but it is capable of leveraging unsupervised data effec-
tively. Aided by asynchrony- and replica- amplified random-
ization of training data (particularly difficult to achieve for se-
quence training), training converges well even without full use
of the available set, showing excellent, highly practical use of
data redundancy. These are all attractive properties for address-
ing the challenges of “Big Data” speech recognition.
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