The SMAPH System for Query
Entity Recognition and Disambiguation

Marco Cornolti,
Paolo Ferragina
Dipartimento di Informatica
University of Pisa, Italy
{cornolti,ferragina}@di.unipi.it

ABSTRACT

The SMAPH system implements a pipeline of four main
steps: (1) Fetching — it fetches the search results returned
by a search engine given the query to be annotated; (2) Spot-
ting — search result snippets are parsed to identify candidate
mentions for the entities to be annotated. This is done in a
novel way by detecting the keywords-in-context by looking
at the bold parts of the search snippets; (3) Candidate gen-
eration — candidate entities are generated in two ways: from
the Wikipedia pages occurring in the search results, and
from an existing annotator, using the mentions identified
in the spotting step as input; (4) Pruning — a binary SVM
classifier is used to decide which entities to keep/discard in
order to generate the final annotation set for the query. The
SMAPH system ranked third on the development set and
first on the final blind test of the 2014 ERD Challenge short
text track.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]:
Information Services, Web-based services

Online

Keywords
Entity linking, query disambiguation, ERD 2014 Challenge

1. INTRODUCTION

This paper describes the SMAPH system that partici-
pated in the short track of the 2014 Entity Recognition and
Disambiguation (ERD) Challenge [2] hosted by SIGIR. The
purpose of the short track challenge is to develop and evalu-
ate a working system that performs entity linking on search
engine queries.

Entity mention recognition and linking towards large knowl-
edge repositories (aka knowledge bases or knowledge graphs),
is quickly emerging as one of the key pre-processing compo-
nents for natural language understanding of open domain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

ERD’14, July 06 - 11 2014, Gold Coast, QLD, Australia

Copyright 2014 ACM 978-1-4503-3023-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2633211.2634348.

Massimiliano Ciaramita
Google Research
Zirich, Switzerland
massi@google.com

Stefan Rld,
Hinrich Schitze
Center for Information &
Language Processing
University of Munich, Germany
inquiries@cislmu.org

text [15, 23]. Concerning web search, annotating (open do-
main) queries with entities is an important part of query
intent understanding [2, 13, 24]. Due to their idiosyncratic
structure, search queries are particularly challenging for mod-
ern natural language processing tools. Two key issues are
(i) the noisy language, characterized by misspellings, unre-
liable tokenization, capitalization and word order, and (ii)
brevity, as queries typically consists of just a few terms. Is-
sue (i) has the main effect of degrading the coverage of the
string-to-entity mapping, which is a primary component of
entity annotators and is typically generated from well-edited
text such as Wikipedia. Issue (ii) affects the availability of
context that can be leveraged to assist the disambiguation
of the spotted strings. As a consequence, the “coherence” es-
timates that are typically implemented in entity annotators
on top of a pairwise entity similarity function (see e.g. [6,
9]), and are used to assess a set of candidate assignments, are
much less reliable when applied on queries rather than on
well-formed documents, such as tweets, blog posts or news.

We propose to deal with these problems by piggybacking
on web search engines [22]. The intuition behind the pig-
gyback approach is that search engines can be viewed as
the closest available substitute for the world knowledge that
is required for solving complex language processing tasks.
Specifically, search engines tend to be robust to the issues
raised by queries, because they have been designed to deal
with them. Search engines typically deal effectively with sur-
face problems like misspellings, tokenization, capitalization
and word order; e.g., a query such as “armstrog mon landign”
is quickly resolved to “armstrong moon landing”. The pig-
gyback approach is also robust with respect to the lack of
context because search engines can leverage extremely large
indexed document collections (the whole web), link graphs
and log analysis. Also, the typical entity annotator might
not find much support, in terms of coherence, because of a
small entity candidate set, e.g., in the query “In what year
did the first moon landing occur?” there is just one entity
to be detected; in contrast, a search engine makes full use
of all n-grams.

The SMAPH system is conceptually quite simple, it works
as follows. Given an input query it uses a web search engine
to fetch the corresponding search-result snippets. We use
the bolded text highlighted in these snippets as mentions
and the Wikipedia URLs in the search results as candidate
entities. The candidate entity set is augmented with the out-
put of an existing annotator, WAT (an improved version of
TagMe [6, 20]), applied to the set of mentions. A binary clas-

sifier is eventually used to make a final decision on whether
to add an entity candidate to the final set of predictions. Ex-
periments on the online ERD development evaluation sys-
tem showed that the basic TagMe, a strong baseline having
been developed mainly for short texts, achieves about 51%
F1 whereas our system obtains about 63% F1. The SMAPH
system ranked third on the development set and first on the
final blind test.

The reminder of the paper is structured as follows. Sec-
tion 2 compares our approach to related work. Section 3
presents the SMAPH system in detail. Section 4 summarizes
the main outcomes of our experiments. Section 5 presents
some conclusions and ideas for future research.

2. RELATED WORK

According to [8, 24], over 70% of web search queries con-
tain named entities (NEs). Entity analysis is becoming an
important component of web search technology as systems
implement more user-oriented strategies with changes geared
towards improving the precision, contextualization, and per-
sonalization of search results. In particular, NEs are nor-
mally utilized for devising the layout and the content of the
result page of a search engine. However, we do not simply
piggyback on the entities already detected by the search en-
gine. Rather, our approach can be seen as a second-order
method, where the search engine is used as mention gener-
ator and as one of the sources for entity candidate genera-
tions.

In recent years, the linguistic annotation of search queries
has received increasing attention specifically with respect
to the problem of finding NEs occurring in queries. The
first paper dates back to 2003 [21]. Then the number of
publications increased rapidly covering query segmentation,
POS tagging, NER tagging with a limited number of classes
(e.g. person, organization, location), tagging with linguistic
structures, NE recognition (possibly associated to intent or
a few pre-defined classes), just to cite a few. One of the first
papers on the subject of disambiguating query terms is [12],
which determines the senses of (single) words in queries by
using WordNet. More recently, first [16] and then [1] studied
the problem of linking search queries to Wikipedia concepts.
The former used training data and performed worse than
TagMe [14], the latter avoided training but its experiments
were limited to 96 queries. The piggyback approach, applied
to the task of named entity recognition on web queries, was
introduced in [22].

In our system we will make use of entity annotators that
were designed and optimized for short texts — such as tweets,
news items and blog posts — that are somewhat longer than
queries. So these short-text entity annotators cannot be
successfully applied to queries without some modification.
These annotators have attracted a lot of interest in the last
few years, with several interesting and effective algorithmic
approaches to solve the mention-entity match problem, pos-
sibly using other knowledge bases such as DBpedia, Freebase
or Yago (see e.g. [5, 6, 9, 16, 18, 7, 17, 10]). According to
[4], TagME is one of the best performing systems to date,
in terms of F1 and efficiency. In the annotation step of the
SMAPH pipeline we use a recent variant of TagMe, called
WAT [20], which will be applied to a short text suitably con-
structed to include proper mentions, or variations of them,
of the input query (for details see Section 3.2).

3. THE SMAPH SYSTEM

3.1 Overview

The approach implemented by the SMAPH system con-
sists of two main phases: candidate entity generation and
entity pruning. The goal of the first phase is to generate a
broad set of entities that may be linked to the query. Candi-
date entities are generated from three different sources. In
this phase, the focus is on recall rather than precision, as
the ideal outcome of this phase is a set containing all cor-
rect entities, at the cost of some amount of false positives.
The second phase is meant to prune away all wrong entities,
refining the set of candidate entities to the final output. The
first phase is heuristic, the second phase uses a binary SVM
classifier trained on a set of annotated queries.

An overview of the algorithm is shown in Figure 1. Schemat-
ically, the candidate generation phase implements the follow-
ing three components:

S1 - Annotator. It consists of four steps:

1. The input query q is issued to a search engine.

2. Snippets returned by the search engine are parsed to
identify bold text regions (bolds for short), which are
generally a modified (often corrected) version of the
keywords (or sequences of keywords) of the original
query.

3. Bolds are filtered, so to discard those that do not ap-
pear in the input query. The filter is based on the min-
imum edit distance between the bolds and the query
n-grams (see Algorithm 1 for details).

4. The string concatenation of the bolds is issued, as a
single document, to the annotator for disambiguation.
This way, the disambiguation is informed with a richer
context and a richer mention corpus than that pro-
vided by the query. Ids in the annotations returned
by the annotator form the set of entities provided by
Source 1.

S2 - NormalSearch. The top-k web search results for query
q are searched for Wikipedia pages. Results that are Wikipedia
pages form the set of entities provided by Source 2.

S3 - WikiSearch. The input query ¢ is concatenated with
the word wikipedia and issued again to the search engine.
Similarly to Source 2, the results that are Wikipedia pages
form the set of entities provided by Source 3.

The union of the sets of candidates generated by the three
sources constitutes the final entity candidate set for the
query. Each source also provides a few features for each
candidate that are used by the binary classifier to decide
whether the entity should be kept or not. In the following
sections, we provide details, motivation and examples for
these modules. First, we describe the first pass annotator
used in source 1.

3.2 A text annotator

Since the concatenation of snippets that need to be anno-
tated do not compose a well-formed text, we need to use a
tagger that does not rely on a natural language parser. To
this end, we decided to use WAT, an improved version of
TagMe.

TagMe searches the input text for mentions defined by the
set of Wikipedia page titles, anchors and redirects. Each

source 1

query features

source 3

Search query bolds - | Boid filter boldsﬁ Concalenalg annolatloni Compute S1
. oo i bolds, tag with >
on bing (edit distance) features
an annotator .
sentities + 51 features
wikiped sourcez . .
results entities + S2 features _ | Entity pruning entities
Compute 52 = {SVM}

Search

“query wikipedia” — > ?Ompute S3

on Bing wikipedia ‘eatures
results

entities + 53 features

Figure 1: Overview of the SMAPH query-annotation system.

mention is associated with a set of candidate entities. Dis-
ambiguation exploits the structure of the Wikipedia graph,
according to the relatedness measure introduced in [19] which
takes into account the amount of common incoming links be-
tween two pages. TagMe’s disambiguation is enriched with
a voting scheme in which each possible binding between a
mention and an entity is scored and then it expresses a vote
for all other bindings. The best annotation for each men-
tion is then selected heuristically. TagMe has been mainly
designed to deal with short texts that are somewhat longer
than queries.!

WAT follows the main algorithmic structure of TagME with
two notable changes: it uses Jaccard similarity between the
inlinks of two pages as a measure of their relatedness (instead
of [19]) and it uses PageRank (instead of their commonness)
to sort the candidate entities that may annotate a mention.
This improved variant of TagME was released in June 2014
for efficient and accurate annotation of both long and short
texts [20]. In the algorithm of Source 1 presented in this
paper, we employ the D2W interface of WAT, namely the
interface that takes as input both the text and its mentions
and returns the entities associated to those mentions.

3.3 Source 1 - Annotator

Here follows a detailed description of the algorithm em-
ployed by Source 1.

Querying the search engine. The query ¢ to be anno-
tated is issued to the Bing search engine, by deploying
its public API and enabling the spelling correction feature.
This way the results will not be affected by spelling-errors
possibly present in the query.?

Fetching result snippets. The first 50 snippets returned
by Bing are analyzed, and all bold-highlighted substrings
are identified: say bo, b1, ...b..> Notice that a snippet may
contain zero or more bolds, depending on the query. Ac-
cording to the way search engines compose snippets, those
substrings offer to the user an effective highlighting of the
query terms within the result pages, providing many forms
in which a keyword appearing in the query could look like

"http://acube.di.unipi.it/tagme.
Zhttp://datamarket .azure.com/

3We tried other values for the number of fetched results, but
50 gave the best performance on the development set.

in an actual (generally well-composed) web page. This is
a key feature as these bolds are used to form the input
of a text annotator, and taking keyword forms that ap-
pear in actual documents increases the probability that the
form is contained in the annotator’s dictionary. Looking at
those bold-spots offers three clear advantages with respect
to segmenting directly the query terms: (i) an automatic
correction of the possible spelling errors, which may occur
in terms present in ¢; (ii) an automatic reordering of the
query terms, according to their most relevant occurrences
on the web, given the assumption that top results in web
search engines are the most relevant ones; (iii) we get a
plethora of possible segmentations of the permutations of
the query terms, according to their most notable occur-
rences on the web.

Filtering out poor bold-spots. The collected bolds are
analyzed in order to filter out b;s that do not appear in
the query. This is necessary as the search engine does not
only return bolds contained in the query, but also other
parts of the snippets to assist users eyeballing Bing’s re-
sults. Specifically, we use a method to find the word-by-
word edit distance between the bold and the query. Using
our own training dataset (see below), we empirically found
the best threshold value to be 0.7.

The algorithm employed to compute the minimum edit dis-
tance between a bold b and the query ¢ is Algorithm 1.
For each word in the bold, we find the closest word in the
query and get the (normalized) Levenshtein distance be-
tween them. We return the average of those distances. We
call this value D(b, q). E.g. for b = “neil armstrong junior”
and ¢ = “neil amstrng moon” (note the typo!), the edit
distance is (0 + 2 + £)/3.

Annotating bold spots. Bolds that survived the previous
filtering step are concatenated to form an artificial text
which is submitted to WAT for annotation. Together with
the text, we submit to WAT the list of mentions (one for
each bold) that it has to consider. This way we override
WAT’s spotter and force it to tag the bolds as they appear
in the snippets. Describing the internal mechanism em-
ployed by WAT to disambiguate the bolds is beyond this
paper’s scope*. In short, for each bold, WAT spots a set
of candidate entities (i.e. entities that have been linked in

“See [20, 6] for a detailed description.

Algorithm 1 Word-by-word minimum edit distance
E(b,q) between a bold b and a query ¢. Function
repl_non_words_lc(t) turns ¢ lower-case and replaces all
non-word characters of the input text with a space; function
tokenize (t) splits ¢ into substrings using whitespace as de-
limiter; lev(a, b) is the Levenshtein distance between a and
b.

ty < tokenize(repl_non_words_lc(b))

tq < tokenize(repl_non_words_lc(q))

d<«0

for all b; € t, do

d 4 d+ ming ey, {lev(bi, gi) / max(|bs, |gi|)}/[ts)|
end for
return d

a Wikipedia article using that bold as anchor), and picks,
among the candidates, the one that maximizes the coher-
ence with the other candidates. This returns at most one
(pertinent) entity e; per bold b;.

Features. Source 1 provides features 1-9 described in Table
1. For each annotation (b;, €;) spotted by WAT for bold b;,
Source 1 provides the SVM pruner with a set of nine fea-
tures, some concerning the entity e;, and some concerning
the bold b;. About the entity, Source 1 provides the fol-
lowing four features: (i) a score p(b;, e;), which quantifies
the strength of the WAT’s annotation (b;, e;); (ii) the lo-
cal coherence cohy(e;), that is the average coherence with
the entities found by WAT for the other bolds; (iii) the
PageRank pr(e;) of the entity e; in the Wikipedia graph;
(iv) the commonness comm(b;, e;), which denotes the fre-
quency with which b; links to e; in Wikipedia. Five more
features depend on the bold only: (v) the frequency of the
bold b; in the results returned by Bing (i.e. how many
results featured b;); (vi) the average rank of the results
featuring bold b;; (vii) the link probability Ip(b;), which
denotes the probability that bold b; occurs as an anchor in
Wikipedia; (viii) the ambiguity of bold b;, that is the num-
ber of distinct entities that anchor b; links to in Wikipedia;
(ix) the minimum edit distance between b; and the query,
as computed in Algorithm 1.

An example. The power of this new spotting step is that it
could identify bold-spots which do not match exactly sub-
strings of ¢ because of misspellings or query-term permu-
tations. In order to appreciate this novelty let us consider
the query ¢ = “Armstrong landing mon”, which presents a
misspelling in the writing of the term “moon”, and a swap-
ping of the terms “moon” and “landing”. This type of input
would be troublesome for classic topic annotators, such as
TagMe or WAT. In fact, they would not find any annota-
tions at all. Using the approach described above we would
get bold-spots for “moon”; “moon landing” and also “Arm-
strong”, thus simplifying significantly the disambiguation
task of a standard annotator.

It goes without saying that the situation is not as easy as
the example could lead to argue, because there are cases in
which the returned bold-spots are not all useful/pertinent.
Take as an example the query “armstrong moon”. The
API-interface of Bing returns, among others, the bold-spot
“Armstrong World Industries”, a company headquartered
in Pennsylvania. This spot should be discarded, and this
motivates the latest step of this phase.

ID Name Definition

1 p(b,e) p-score, see [20]

2 cohy(e) local coherence, see [20]

3 pr(e) Wikipedia graph PageRank of e

4 comm(b, e) commonness, see [20]

5 freq(b) (lre R : be B(r)|)/IR|
(Xizo—|r| Ti)/| | where

6 | avgRank(b, R) i/|R| if i € Z(b)
T = .

1 otherwise

7 Ip(b) link probability, see [20]

8 ambig(b) ambiguity, see [20]

9 EditDist(b,q) | £(b,q)

10 rank(e) i R[i] =U(e)

11 webT otal(q) W(q)

12 | EDTitle(t,q) | E(T(e),q), see Algorithm 1
13 | EDTitNP(t,q) | E(T"(e),q), see Algorithm 1
14 | avgEDBolds(e) | u{E(b,q) : b€ BU(e))}

Table 1: Features used by the SVM pruner. R is the
array of (max. 50) URLs returned by Bing; B(u) is
a function that maps an URL u returned by Bing to
the list of bolds contained in the snippets associated
to u; Z(b) is a function that maps a bold b to the list
of result indexes whose snippets contain b; £(b,q) is
the word-by-word minimum edit distance between
b and ¢ as computed by Algorithm 1; W(q) is the
total number of webpages found by Bing for query
g; U(e) is the Wikipedia URL of entity e; 7 (e) is
the title of entity e; 7" (e) is 7 (e) excluding the final
parenthetical, if any.

On the other hand, in the above query “Armstrong landing
mon”; the spot “moon” is right but the corresponding entity
should be discarded because it is not totally pertinent to
the intent of the query. The next steps are intended to
address the issues of spot pruning, spot disambiguation for
entity generation, and entity pruning.

3.4 Source 2 - NormalSearch

Entity candidates. The second source re-uses the search
results from Source 1. The idea is to check whether in
the top-10 results occurs a link to a Wikipedia page, and
in this case add this page as a candidate entity. Not all
URLs starting with en.wikipedia.org/wiki/ are actual
Wikipedia articles, hence we need to filter out service pages.
This is done heuristically by keeping only pages that do
not start with Talk:, List of:, Special:, and a few other
keywords.

Features. Source 2 provides features 10-14 described in Ta-
ble 1: (i) the rank(e;) of the Wikipedia page in the search
results; (ii) the number of web pages returned for that
query; (iii) the minimum edit distance between the title
of the entity and the query (see Algorithm 1); (iv) the
minimum edit distance (see Algorithm 1) between the ti-
tle (excluding final parentheticals) and the n-grams of the
query®; (v) the average minimum edit distance (see Algo-
rithm 1) between the bolds and the the query.

5The motivation behind this feature is that many entities
have titles in the form Chicago (musical), and the edit dis-
tance removing (musical) is more informative.

3.5 Source 3 - WikiSearch

Entity candidates. The third source is similar to the sec-
ond one but the query issued to Bing is obtained by con-
catenating the original query with the term Wikipedia.
This way, we give a light suggestion to the search engine
to spot Wikipedia pages. The search engine will return
Wikipedia pages in its top-K results only in case there is
a reasonable evidence that the page is linked to the query,
otherwise it will return non-wikipedia pages, that get dis-
carded.

This approach is opposed to doing a site-constrained search
on Wikipedia by adding site:en.wikipedia.org to the
input query, thus limiting the scope of the search engine
to Wikipedia. We found that this site-constrained search
was too rigorous a constraint and returned too many false
positives if there were no good Wikipedia pages (but the
search engine was still forced to provide them). Instead,
with the proposed approach, the search engine is provided
with a soft suggestion that we’d like the result to include
mainly Wikipedia pages, but only if pertinent.

Features. The features extracted for this source are the
same as the ones described for Source 2.

3.6 Entity Pruning

A dataset of annotated queries. To train the final bi-
nary classifier for entity pruning, we used a dataset of
annotated queries. For the sake of space and focus, we
will not get into the details of the creation of the dataset
here, which was generated independently of the ERD con-
test, as a continuation of previous work [22, 4]. In short,
we randomly picked a 1000 query subset of the 800,000
queries provided by the KDD 2005 Cup. Then we set up
two crowd-sourcing jobs for annotating the queries on the
Crowdflower platform. In the first job, we asked contrib-
utors to spot meaningful mentions in the query and link
them to all possible candidate entities. In the second job,
we asked contributors to select only appropriate annota-
tions and discard the others. This process of annotation
was not limited to named entities as in the ERD contest
and we filtered out annotations not present in the ERD list
before training.

Binary classification. The last phase is aimed at pruning
the entities e; that are not pertinent for annotating ¢. In
order to solve this issue we designed a binary classifier, im-
plemented via LibSVM [3], and used the set of features re-
turned in the previous phase, rescaled to the [—1, 1] range.
The classifier was trained over our dataset, keeping as a
model selection objective function maximizing F1 over the
online development set. The entities positively classified
were added to the annotation set for q.

Parameters. We used a binary SVM classifier with an RBF
kernel. We set the values for v and C by means of a simple
grid search, the final values were respectively, 0.03 and 5.
We set the value of the class imbalance to 3.8 (positive) and
6 (negative). All parameter optimizations were performed
with respect to the online development set evaluation.

Finally, the Wikipedia Ids not in the provided list of named
entities were rejected and Ids mapped to Freebase Ids®.

5The list of named entities was defined by the ERD Chal-
lenge organizers.

3.7 Promising failures and known limitations

There are a few modifications to the above algorithm we
implemented and evaluated but did not yield any advan-
tage. We briefly describe the main one that seemed most
promising beforehand.

Since a significant number of queries (according to our
estimates, around 30% of the first 100-query, online NER
Challenge evaluation development set) did not contain any
entities, we thought of building a preliminary SVM classifier
to discriminate empty queries (queries with no associated
entities) from non-empty ones, and thus executed the above
algorithm only in the latter case, while returning an empty
set in the first case. We addressed this problem by design-
ing a statistical classifier implemented via LibSVM [3], and
used a set of features extracted from ¢ and from the bolds
b;s: number of pages found by Bing for the issued query g,
minimum average rank of the snippets containing each bold
b;; maximum frequency among the bolds b;; presence of a
result pointing to a Wikipedia page. This classifier has been
trained aiming for the maximization of the true megatives
(hence to detect correctly the empty queries), constraining
the false negatives rate under 2%. Though the filter worked
fine, it turned out it did not give any improvement, as all
queries that were marked as empty by this filter would any-
way have an empty set of entities using the above algorithm.
Following the “keep it simple” maxim, we removed this filter.

There is also one obvious limitation of the current sys-
tem we are aware of, but we did not have time to fix, even
though it has the following simple solution. As each deci-
sion on whether to keep an entity or not is independent,
we may return multiple entities for the same mention. For
example, the SMAPH system can return both Teras and
Awustin,_Texas. The simplest fix possible is a filter that only
keeps the longest entity; we did not have time to implement
this before the deadline.

4. EXPERIMENTAL RESULTS

We carried out several experiments to assess the cover-
age of the three sources (thus, excluding the Entity Pruning
stage) on the fully-annotated 91-queries ERD dataset re-
leased by the Challenge organizers as development set. Re-
sults show that sources 1, 2 and 3 respectively cover 75%,
50%, and 78% of the gold standard. The union of the three
sources candidate sets yields an impressive coverage of 98.2%
(56 true positives, 252 false positives, 1 false negative). This
is evidence that search results complement well the prior
knowledge compiled from Wikipedia that the WAT annota-
tor can put to use.

The annotation evaluation was performed via the on-line
ERD evaluation system. According to it, the SMAPH sys-
tem reached an F1 of 62.9% (compared to a baseline of 50.9%
reached by Tagme) on the development data, and an F1
score of 68.6% in the final evaluation, obtaining the best re-
sult amongst the participants of the ERD short track Chal-
lenge. We believe that these convincing results are mainly
due to the novel design features of the system. First, the
mentions generation method, based on bolded snippets re-
gions, ingeniously exploits the search engine ability to nor-
malize and contextualize queries; this, we believe, provides a
significant technical contribution in and of itself. Secondly,
TagMe and piggyback nicely complement each other in the
candidate generation task providing excellent candidate cov-

erage. Finally, the simplicity of the final classifier which is
based on just 14 features proved robust to over-fitting.

5. CONCLUSION AND FUTURE WORK

As information technology increasingly focuses on conver-
sational and intelligent methods for human-machine interac-
tion, the natural language understanding problem becomes
more and more central. The ERD task has quickly estab-
lished itself as the first, crucial, step in language processing
in mainstream applications. The main reason is probably
that it has offered, for the first time, a practical handle on
long standing problems such as synonymy and ambiguity;
that is, on the problem of modeling “what is talked about”,
e.g., on the web. Notwithstanding its success, ERD is by no
means a solved problem, especially for less frequent entities.
The main intuition behind the SMAPH system has been to
investigate how search engines can be put to use in this task,
as, we argued, search engines can be viewed as the closest
available substitute for the world knowledge that is required
for solving complex language processing tasks.

As for future work, in the immediate future we are plan-
ning to investigate the following issues. First of all, mention
detection, which was not required in the 2014 ERD task but
is an important component of the ERD problem. Given that
queries are typically short one can envision a broad set of
combinatorial algorithmic approaches to search the space of
possible segmentations. The second problem we want to ad-
dress is modeling the selection of the set of entities returned
globally, rather than independently, as the SMAPH system
currently does. This problem is actually tightly related to
the segmentation problem and we envision solutions that
will deal with both sub-tasks jointly.

6. ACKNOWLEDGMENTS

We thank the ERD Challenge organizers for the opportu-
nity to focus on the challenging task of NE detection and
annotation in queries.

The WAT system [20] was developed by Francesco Pic-
cinno (University of Pisa) who kindly provided us access to
his code and continuous support in querying it. Our system
can be queried through an API that has been implemented
by Diego Ceccarelli (ISTI CNR) who kindly shared its code
with the other ERD Challenge participants.

This work, at the University of Pisa and the University
of Munich, was partially supported by two Google Faculty
research awards. The University of Pisa group was also par-
tially supported by the MIUR PRIN grant ARS-Technomedia.

7. REFERENCES

[1] C. Boston, H. Fang, S. Carberry, H. Wu, X. Liu.
Wikimantic: Toward effective disambiguation and
expansion of queries. Data & Knowledge Engineering,
90: 22-37, 2014.

[2] D. Carmel, M. Chang, E. Gabrilovich, B. Hsu and K.
Wang. ERD 2014: Entity Recognition and
Disambiguation Challenge. SIGIR Forum, ACM, 2014.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. In ACM Transactions on
Intelligent Systems and Technology, 27:1-27:27, 2011.

[4] M. Cornolti, P. Ferragina, M. Ciaramita. A framework
for benchmarking entity-annotation systems. In
WWW, 249-260, 2013.

[5] S. Cucerzan. Large-scale named entity disambiguation
based on Wikipedia data. In Proc. EMNLP and
CNLL, 708-716, 2007.

[6] P. Ferragina and U. Scaiella. Fast and accurate
annotation of short texts with Wikipedia pages. IEEE
Software, 29(1): 70-75, 2012. Also in ACM CIKM,
1625-1628, 2010.

[7] E. Gabrilovich and S. Markovitch. Wikipedia-based
semantic interpretation for natural language
processing. J. Artif. Int. Res., 34(1):443-498, 2009.

[8] J. Guo, G. Xu, X. Cheng, H. Li. Named Entity

Recognition in Query. In SIGIR, 267-274, 2009.

J. Hoffart, M. A. Yosef, I. Bordino, H. Fiirstenau,

M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and

G. Weikum. Robust disambiguation of named entities

in text. In Proc. EMNLP, 782-792, 2011.

[10] N. Houlsby and M. Ciaramita. A Scalable Gibbs
Sampler for Probabilistic Entity Linking. In
Proceedings of ECIR, 335—346, 2014.

[11] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of Wikipedia
entities in web text. In ACM KDD, 457-466, 2009.

[12] S. Liu, C. Yu, W. Meng. Word Sense Disambiguation
in Queries. In CIKM, 525—532, 2005.

[13] M. Manshadi, X. Li. Semantic tagging of web search
queries. In ACL, 861-869, 2009.

[14] E. Meij. A Comparison of five semantic linking
algorithms on tweets. Personal Blog:
http://alturl.com/aujuc, 2012.

[15] E. Meij, K. Balog, D. Odijk. Entity linking and
retrieval for semantic search. In Procs ACM WSDM,
683-684, 2014.

[16] E. Meij, W. Weerkamp, and M. de Rijke. Adding
semantics to microblog posts. In Proc. WSDM,
563-572, 2012.

[17] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In Proc. ACM
CIKM, 233242, 2007.

[18] D. Milne and I. H. Witten. Learning to link with
wikipedia. In Proc. CIKM, 509-518, 2008.

[19] D. Milne and I. H. Witten. An effective, low-cost
measure of semantic relatedness obtained from
Wikipedia links. AAAI Workshop on Wikipedia and
Artificial Intelligence, 2008.

[20] F. Piccinno, P. Ferragina. From TagME to WAT: a
new entity annotator. In Entity Annotation and
Disambiguation Challange (ERD): Long track, ACM
SIGIR Forum, 2014.

[21] K. Risvik, T. Mikolajewski, P. Boros. Query
segmentation for web search. In WWW (poster), 2003.

[22] S. Riid, M. Ciaramita, J. Miiller, and H. Schiitze.
Piggyback: using search engines for robust
cross-domain named entity recognition. In Proc.
ACL-HLT, 965-975, 2011.

[23] F.M. Suchanek, G. Weikum. Knowledge harvesting in
the big-data era. In ACM SIGMOD, 933-938, 2013.

[24] X. Yin, S. Shah. Building taxonomy of web search
intents for name entity queries. In WWW, 1001-1010,
2010.

9

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140717090713
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 5
 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140717090713
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 5
 6
 5
 6

 1

 HistoryList_V1
 qi2base

