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Abstract. In this paper we study how to perform object classification in
a principled way that exploits the rich structure of real world labels. We
develop a new model that allows encoding of flexible relations between
labels. We introduce Hierarchy and Exclusion (HEX) graphs, a new for-
malism that captures semantic relations between any two labels applied
to the same object: mutual exclusion, overlap and subsumption. We then
provide rigorous theoretical analysis that illustrates properties of HEX
graphs such as consistency, equivalence, and computational implications
of the graph structure. Next, we propose a probabilistic classification
model based on HEX graphs and show that it enjoys a number of de-
sirable properties. Finally, we evaluate our method using a large-scale
benchmark. Empirical results demonstrate that our model can signifi-
cantly improve object classification by exploiting the label relations.

Keywords: Object Recognition, Categorization

1 Introduction

Object classification, assigning semantic labels to an object, is a fundamental
problem in computer vision. It can be used as a building block for many other
tasks such as localization, detection, and scene parsing. Current approaches
typically adopt one of the two classification models: multiclass classification,
which predicts one label out of a set of mutually exclusive labels(e.g. entries in
ILSVRC [9]), or binary classifications, which make binary decisions for each label
independently(e.g. entries in PASCAL VOC classification competitions [13]).

Both models, however, do not capture the complexity of semantic labels in
the real world. Multiclass classification tasks typically assume a set of mutually
exclusive labels. Although efforts have been made to artificially constrain the
label set in benchmarks (e.g. the ImageNet Challenges [9] select a subset of
mutually exclusive labels from WordNet), this assumption becomes increasingly
impractical as we consider larger, more realistic label sets. This is because the
same object can often be described by multiple labels. An object classified as
“husky” is automatically a “dog”; meanwhile it may or may not be a “puppy”.
Making “husky”, “dog”, and “puppy” mutually exclusive labels clearly violates
real world semantics.
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Fig. 1. Our model replaces traditional classifiers such as softmax or independent logis-
tic regressions. It takes as input image features (e.g. from an underlying deep neural
network) and outputs probabilities consistent with pre-specified label relations.

Independent binary classifiers, on the other hand, ignore the constraints be-
tween labels and can thus handle overlapping labels. But this can lead to incon-
sistent predictions such as an object being both a dog and a cat, or a husky but
not a dog. In addition, discarding the label relations misses the opportunity to
transfer knowledge during learning. For example, in practical settings training
images are not always annotated to the most specific labels — many Internet
images are simply labeled as “dog” instead of “husky” or “German Shepherd”.
Intuitively, learning a good model for “dog” should benefit learning breeds of
dogs (and vice versa) but training independent binary classifiers will not be able
to capitalize on this potential knowledge transfer.

In this paper we study how to perform classification in a principled way
that exploits the rich structure of real world labels. Our goal is to develop a
new classification model that allows flexible encoding of relations based on prior
knowledge, thus overcoming the limitations of the overly restrictive multiclass
model and the overly relaxed independent binary classifiers (Fig. 1).

We first introduce Hierarchy and Exclusion (HEX) graphs, a new formalism
allowing flexible specification of relations between labels applied to the same ob-
ject: (1) mutual exclusion (e.g. an object cannot be dog and cat), (2) overlapping
(e.g. a husky may or may not be a puppy and vice versa), and (3) subsumption
(e.g. all huskies are dogs). We provide theoretical analysis on properties of HEX
graphs such as consistency, equivalence, and computational implications.

Next, we propose a probabilistic classification model leveraging HEX graphs.
In particular, it is a special type of Conditional Random Field (CRF) that en-
codes the label relations as pairwise potentials. We show that this model enjoys
a number of desirable properties, including flexible encoding of label relations,
predictions consistent with label relations, efficient exact inference for typical
graphs, learning labels with varying specificity, knowledge transfer, and unifica-
tion of existing models.

Finally, we evaluate our approach using the ILSVRC2012 [9], a large-scale
benchmark for object classification. We also perform experiments on zero-shot
recognition. Empirical results demonstrate that our model can significantly im-
prove object classification by exploiting the label relations.

Our main contribution is theoretical, i.e. we propose a new formalism (HEX
graphs), a new classification model, and a new inference algorithm, all grounded
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on rigorous analysis. In addition, we validate our approach using large-scale data,
showing significant empirical benefits.

2 Related Work

Our approach draws inspirations from various themes explored in prior litera-
ture, including hierarchies, multilabel annotation, large-scale classification, and
knowledge transfer. The main novelty of our work is unifying them into a single
probabilistic framework with a rigorous theoretical foundation.

Exploiting hierarchical structure of object categories has a long history [34].
In particular, label hierarchies have been used to share representations [15, 2, 8,
17] and combine models [18, 38, 27].

Correlations between labels have been explored in multilabel annotation (e.g.
[20]), but most prior work addresses contextual relations between co-occurring
objects (e.g. [10]), as opposed to our setting of multiple labels on the same object.
Lampert et al. and Bi and Kwok studied hierarchical annotations as structured
predictions [24, 4, 3]. Chen et al. considered exclusive relations between labels [6].
To our knowledge we are the first to jointly model hierarchical and exclusive
relations. By treating unobserved labels as latent variables, our approach also
connects to prior work on learning from partial or incomplete labels [19, 7, 5].

Our model is a generalized multiclass classifier. It is designed to run efficiently
and can thus be adapted to work with techniques developed for large-scale clas-
sification involving many labels and large datasets [32, 29].

Finally, by modeling the label relations and ensuring consistency between
visual predictions and semantic relations, our approach relates to work in trans-
fer learning [31, 30], zero-shot learning [28, 12, 25], and attribute-based recog-
nition [1, 36, 33, 14], especially those that use semantic knowledge to improve
recognition [16, 30] and those that propagate or borrow annotations between
categories [26, 22].

3 Approach

3.1 Hierarchy and Exclusion (HEX) Graphs

We start by introducing the formalism of Hierarchy and Exclusion (HEX) graphs,
which allow us to express prior knowledge about the labels. Due to space limit,
all proofs and some lemmas are provided in the supplemental material.

Definition 1. A HEX graph G = (V,Eh, Ee) is a graph consisting of a set
of nodes V = {v1, . . . , vn}, directed edges Eh ⊆ V × V , and undirected edges
Ee ⊆ V × V , such that the subgraph Gh = (V,Eh) is a directed acyclic graph
(DAG) and the subgraph Ge = (V,Ee) has no self loop.

Each node v ∈ V represents a distinct label. An edge (vi, vj) ∈ Eh is a
hierarchy edge, indicating that label i subsumes label j, e.g. “dog” is a parent,
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Fig. 2. HEX graphs capture relations between labels applied to the same object.

or superclass of “husky”. The subgraph with only those edges form a semantic
hierarchy. An edge (vi, vj) ∈ Ee is called an exclusion edge, indicating that label
vi and vj are mutually exclusive, e.g. an object cannot be dog and cat. If two
labels share no edge, it means that they overlap, i.e. each label can turn on or
off without constraining the other.

Alternatively one can think of each label as representing a set of object
instances and the relations between labels as relations between (distinct) sets
(Fig. 2). A hierarchy edge corresponds to one set containing the other. An ex-
clusion edge corresponds to two disjoint sets. No edge corresponds to overlapping
sets—the only remaining case.

It is worth nothing that while it is convenient to assume mutually exclusive
children in a hierarchy, this is not the case for real world hierarchies, e.g. “child”,
“male”, “female” are all children of “person” in WordNet. Thus we need a HEX
graph to express those complexities.

Each label takes binary values, i.e. vi ∈ {0, 1}. Each edge then defines a
constraint on values the two labels can take. A hierarchy edge (vi, vj) ∈ Eh
means that an assignment of (vi, vj) = (0, 1) (e.g. a husky but not a dog) is
illegal. An exclusion edge (vi, vj) ∈ Ee means that (vi, vj) = (1, 1) (both cat and
dog) is illegal. These local constraints of individual edges can thus define legal
global assignments of labels.

Definition 2. An assignment (state) y ∈ {0, 1}n of labels V in a HEX graph
G = (V,Eh, Ee) is legal if for any (yi, yj) = (1, 1), (vi, vj) 6∈ Ee and for any
(yi, yj) = (0, 1), (vi, vj) 6∈ Eh. The state space SG ⊆ {0, 1}n of graph G is the
set of all legal assignments of G.

We now introduce some notations for further development. Let α(vi) the set
of all ancestors of vi ∈ V and ᾱ(vi) = α(vi) ∪ {vi} (ancestors and the node
itself). Let σ(vi) be the set of all descendants of vi ∈ V and σ̄(vi) = σ(vi)∪{vi}.
Let ε(vi) be the set of exclusive nodes, those sharing an exclusion edge with vi.
Let o(vi) be the set of overlapping nodes, those sharing no edges with vi.

Consistency So far our definition of the HEX graph allows arbitrary placement
of exclusion edges. This, however, can result in non-sensible graphs. For example,
it allows label vi and vj to have both hierarchy and exclusion edges, i.e. vi
subsumes vj and vi and vj are exclusive. This makes label vj “dead”, meaning
that it is always 0 and thus cannot be applied to any object instance without
causing a contradiction: if it takes 1, then it’s parent vi must take value 1 per
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the hierarchy edge and also take 0 per the exclusion edge. This demonstrates the
need for a concept of consistency: a graph is consistent if every label is “active”,
i.e. it can take value either 1 or 0 and there always exists an assignment to the
rest of labels such that the whole assignment is legal.

Definition 3. A HEX graph G = (V,Eh, Ee) is consistent if for any label vi ∈
V , there exists two legal assignments y, y′ ∈ {0, 1}n such that yi = 1 and y′i = 0.

Consistency is in fact solely determined by the graph structure—it is equiva-
lent to the condition that for any label, there is no exclusion edge between its
ancestors or between itself and its ancestors:

Theorem 1. A HEX graph G = (V,Eh, Ee) is consistent if and only if for any
label vi ∈ V , Ee ∩ (ᾱ(vi)× ᾱ(vi)) = ∅.

We thus have an algorithm to check consistency without listing the state space.
As will become clear, consistency is very important algorithmically.

3.2 Classification Model

A HEX graph encodes our prior knowledge about label relations. We can thus
define a probabilistic classification model based on a HEX graphG = (V,Eh, Ee).
Let x ∈ X be an input and f(x;w) : X → Rn be a function with parameters
w that maps an input image (or bounding box) to a set of scores, one for each
label. The form of f is not essential (e.g. it can be a linear model wTi x or a deep
neural network) so we leave it unspecified. We define a joint distribution of an
assignment of all labels y ∈ {0, 1}n as a Conditional Random Field (CRF) [23]:

P̃ (y|x) =
∏
i

efi(x;w)[yi=1]
∏

(vi,vj)∈Eh

[(yi, yj) 6= (0, 1)]
∏

(vi,vj)∈Ee

[(yi, yj) 6= (1, 1)],

(1)
where P̃ is the unnormalized probability. The probability is then Pr(y|x) =
P̃ (y|x)/Z(x), where Z(x) =

∑
ŷ P̃ (ŷ|x) is the partition function. To compute

the probability of a label, we marginalize all other labels. The scores fi(x;w)
can be thought of as raw classification scores (local evidence) for each label and
our model can convert them into marginal probabilities.

It is easy to verify a few facts about the model: (1) the probability of any
illegal assignment is zero; (2) to compute the probability of a legal assignment, we
take all labels with value 1, sum their scores, exponentiate, and then normalize;
(3) the marginal label probabilities are always consistent with the label relations:
probability of “dog” is always bigger than that of “husky” and probabilities of
“dog” and “cat” cannot add to more than 1; (4) the model assumes an open
world to gracefully handle unknown categories. For each node on the hierarchy,
it is legal to assign itself a value 1 and all its descendants value 0. e.g. an object
is a “dog” but none of the known dog subcategories. If the model sees novel dog
subcategory, it can produce a large marginal for dog but will not be compelled
to assign a large probability to a known subcategory.
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Special cases A nice property is that it unifies standard existing models. If
we use a HEX graph with pairwise exclusion edges and no hierarchy edges,
i.e. all nodes are mutually exclusive, it is easy to verify that we arrive at the
popular softmax (or multinomial regression) 1: Pr(yi = 1|x) = efi/(1 +

∑
j e
fj ).

Another special case is when the HEX graph has no edges at all, i.e. all labels
are independent. Eqn. 1 thus fully decomposes: Pr(y|x) =

∏
i e
fi[yi=1]/(1 + efi),

i.e. independent logistic regressions for each label.

Joint hierarchical modeling We highlight another property: our model al-
lows flexible joint modeling of hierarchical categories, thus enabling potential
knowledge transfer. It is easy to verify that for all graphs the marginal prob-
ability of a label depends the sum of its ancestors’ scores, i.e. Pr(yi = 1|x)
has the term exp(fi +

∑
vj∈α(vi)

fj), because all its ancestors must be 1 if the
label takes value 1. Thus the model allows the score for “dog” to influence deci-
sions about “husky”. If the score function fi(x;w) is a linear model wTi x, then
Pr(yi = 1|x) ∝ exp(w̃Ti x), where w̃i = wi +

∑
vj∈α(vi)

wj , i.e the weights decom-
pose along the hierarchy—the weights for “husky” are a combination of weights
for “husky-ness”, “dog-ness”, and “animal-ness”. This enables a form of sharing
similar to prior work [8]. Note that depending on the applications, sharing can
also be disabled by using constant scores (e.g. zeros).

Conversely, the probability of an internal node of the hierarchy also depends
on the probabilities of its descendants because we need to marginalize over all
possible states of the descendants. For example, if we have a tree hierarchy with
mutually exclusive siblings, it can be shown that the unnormalized probability
P̃ of an internal node is a simple recursive form involving its own score, its
ancestors’ scores, and the sum of unnormalized probabilities of its direct children

c(vi), i.e. P̃ (yi = 1|x) = exp
(
fi +

∑
vk∈α(vi)

fk

)
+
∑
vj∈c(vi) P̃ (yj = 1|x). Again

we can use constant scores for internal nodes, in which case the model is a
collection of “local leaf models” and we simply sum the probabilities of leaves.

Learning In learning we maximize the (marginal) likelihood of the observed
ground truth labels using stochastic gradient descent (SGD). Given training
examplesD = {(x(l), y(l), g(l))}, l = 1, . . . ,m, where y(l) ∈ {0, 1}n is the complete
ground truth label vector and g(l) ⊆ {1, . . . , n} is the indices of the observed
labels, the loss function is :

L(D, w) = −
∑
l

log Pr(y
(l)

g(l)
|x(l);w) = −

∑
l

log
∑

y:y
g(l)

=y
(l)

g(l)

Pr(y|x(l);w) (2)

In training we often have incomplete ground truth. Labels can be at any level
of the hierarchy. We may only know the object is a “dog” but uncertain about
the specific breed. Incomplete ground truth also occurs with labels that are
not hierarchical but can still overlap (“husky” and “puppy”). Our model can

1 There is an additional constant 1 in the denominator because for n labels there are
n + 1 states. The extra one is “none of the above”, i.e. all labels zero. This makes
no practical difference. See supplemental material for further discussions.
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naturally handle this by treating the unobserved labels as latent variables and
marginalizing them in computing the likelihood.

3.3 Efficient Inference

Inference—computing the partition function and marginalizing unobserved labels—
is exponential in the number of labels if performed with brute force. Treated as
a generic CRF, our model can easily be densely connected and full of loops,
especially when there are many mutual exclusions, as is typical for object labels.
Thus at first glance exact inference is intractable.

However, in this section we show that exact inference is tractable for a large
family of HEX graphs with dense connections, especially in realistic settings.
The main intuition is that when the graph is densely connected, the state space
can be small due to the special form of our binary potentials—all illegal states
have probability zero and they can simply be eliminated from consideration.
One example is the standard multiclass setting where all labels are mutually
exclusive, in which case the size of the state space is O(n). On the other hand,
when a graph is sparse, i.e. has small treewidth, then standard algorithms such
as junction trees apply. Our algorithm will try to take the best of both worlds
by transforming a graph in two directions: (1) to an equivalent sparse version
with potentially small treewidth; (2) to an equivalent dense version such that
we can afford to exhaustively list the state space for any subset of nodes. The
final algorithm is a modified junction tree algorithm that can be proven to run
efficiently for many realistic graphs.

Equivalence Two HEX graphs are equivalent if they have the same state space:

Definition 4. HEX graphs G and G′ are equivalent if SG = SG′ .

Intuitively equivalent graphs can arise in two cases. One is due to the tran-
sitivity of the subsumption relation—if “animal” subsumes “dog” and “dog”
subsumes “husky” then “animal” should be implied to subsume “husky”. Thus
a hierarchy edge from “animal” to “husky” is redundant. The other case is that
mutual exclusion can be implied for children by parents. For example, if “cat”
and “dog” are exclusive, then all subclasses of “dog” should be implied to be
exclusive with “cat”. Thus an exclusion edge between “husky” and “cat” is re-
dundant. Formally redundant edges are those that can be removed or added
without changing the state space:

Definition 5. Given a graph G = (V,Eh, Ee), a directed edge e ∈ V × V (not
necessarily in Eh) is redundant if G′ = (V,Eh \ {e}, Ee) and G′′ = (V,Eh ∪
{e}, Ee) are both equivalent to G. An undirected edge e ∈ V ×V (not necessarily
in Ee) is redundant if G

′ = (V,Eh, Ee \{e}) and G′′ = (V,Eh, Ee∪{e}) are both
equivalent to G.

For consistent graphs, redundant edges can be found by searching for certain
graph patterns: for a directed hierarchy edge (vi, vj), it is redundant if and only
if there is an alternative path from vi to vj . For an undirected exclusion edge
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Fig. 3. Equivalent HEX graphs.

(vi, vj), it is redundant if and only if there is an another exclusion edge that
connects their ancestors (or connects one node’s ancestor to the other node).

Lemma 1. Let G = (V,Eh, Ee) be a consistent graph. A directed edge e ∈ V ×V
is redundant if and only if in the subgraph G = (V,Eh) there exists a directed path
from vi to vj and the path doesn’t contain e. An undirected edge e = (vi, vj) ∈
V ×V is redundant if and only if there exists an exclusion edge e′ = (vk, vl) ∈ Ee
such that vk ∈ ᾱ(vi), vl ∈ ᾱ(vj) and e 6= e′.

Lemma 1 in fact gives an algorithm to “sparsify” or “densify” a graph. We
can remove one redundant edge a time until we obtain a minimally sparse graph.
We can also add edges to obtain a maximally dense equivalent. (Fig. 3).

Definition 6. A graph G is minimally sparse if it has no redundant edges. A
graph G is maximally dense if every redundant edge is in G.

In fact for a consistent graph, its minimally sparse or maximally dense equiv-
alent graph is unique, i.e. we always arrive at the same graph regardless of the
order we remove or add redundant edges:

Theorem 2. For any consistent graphs G and G′ that are both minimally sparse
(or maximally dense), if SG = SG′ , then G = G′.

Thus given any consistent graph, we can “canonicalize” it by sparsifying or
densifying it 2. This can help us reason about the size of the state space.

Size of State Space If a graph has very dense connections, its state space tends
to be tractable, such as the case of pairwise mutually exclusive labels. Intuitively,
for labels applied to real world objects, there should be many mutual exclusions.
For example, if we randomly pick two labels from the English dictionary, most
likely they will have a relation of exclusion or subsumption when applied to
the same object. In other words, for the same object, there shouldn’t be too
many overlapping labels. Otherwise the state space can grow exponentially with
the amount of overlap. We can formalize this intuition by first introducing the
quantity maximum overlap.

Definition 7. The maximum overlap of a consistent graph G = (V,Eh, Ee) is
ΩG = maxv∈V |oḠ(v)|, where oḠ(v) = {u ∈ V : (u, v) 6∈ Ēh∧(v, u) 6∈ Ēh∧(u, v) 6∈
Ēe} and Ḡ = (V, Ēh, Ēe) is the maximally dense equivalent of G.

2 Note that Lemma 1 and Theorem 2 do not apply to inconsistent graphs because of
“dead” nodes. See supplemental materials for more details.
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Algorithm 1 Listing state space

1: function ListStateSpace(graph G)
2: if G = ∅ then return ∅
3: end if
4: Let G = (V,Eh, Ee) and n = |V |.
5: Pick an arbitrary vi ∈ V .
6: V 0 ← α(vi) ∪ ε(vi) ∪ o(vi).
7: G0 ← G[V 0]
8: SG0 ← ListStateSpace(G0)
9: S0

G ← {y ∈ {0, 1}n : yi =
0
∧
yσ(vi) = 0

∧
yV 0 ∈ SG0}.

10: V 1 ← σ(vi) ∪ o(vi).
11: G1 ← G[V 1]
12: SG1 ← ListStateSpace(G1)
13: S1

G = {y ∈ {0, 1}n : yi =
1
∧
yα(vi) = 1

∧
ε(vi) = 0

∧
yV 1 ∈

SG1}
14: return S0

G ∪ S1
G.

15: end function

That is, we first convert a graph to its maximally dense equivalent and then
take the max of the per-node overlap—the number of non-neighbours of a node.
In other words, the overlap of a label is the number of other non-superset and
non-subset labels you can additionally apply to the same object. We can now
use the maximum overlap of a graph to bound the size of its state space:

Theorem 3. For a consistent graph G = (V,Eh, Ee), |SG| ≤ (|V |−ΩG+1)2ΩG .

As an interesting fact, if a HEX graph consists of a tree hierarchy and exclusion
edges between all siblings, then it’s easy to verify that its maximum overlap is
zero and its state space size is exactly |V |+ 1, a tight bound in this case.

Listing State Space A tractable size of the state space is useful for inference
only if the legal states can also be enumerated efficiently. Fortunately this is
always the case for HEX graphs. To list all legal assignments for an input, we
can first pick an arbitrary node as a “pivot” and fix its value to 1. Also we fix
all its parents to 1 and exclusive neighbours to 0 because otherwise we would
violate the constraints. We then recursively apply the same procedure to the
subgraph induced by the rest of the nodes (children and non-neighbours). For
each returned assignment of the subgraph, we generate a new assignment to the
full graph by concatenating it with the fixed nodes. Similarly, we fix the pivot
node to 0 and fix its children to 0, and then recurse on the subgraph induced by
the rest of the nodes. See Alg. 1 for pseudo-code. We can formally prove that if
the graph is consistent and maximally dense, this greedy procedure returns all
legal assignments and runs in time linear in the size of the state space:

Lemma 2. If graph G = (V,Eh, Ee) is consistent and maximally dense, Alg. 1
runs in O ((|V |+ |Eh|+ |Ee|)|SG|) time and returns the state space SG.

Full Inference Algorithm We now describe the full inference algorithm (Alg. 2).
Given a graph, we first generate the minimally sparse and maximally dense equiv-
alents. We treat the minimally sparse graph as a generic CRF and generate a
junction tree. For each clique of the junction tree, we list its state space using
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Algorithm 2 Exact Inference

Input: Graph G = (V,Eh, Ee).
Input: Scores f ∈ R|V |.
Output: Marginals, e.g. Pr(vi = 1).
1: G∗ ← Sparsify(G)
2: Ḡ← Densify(G)
3: T ←BuildJunctionTree(G∗).

4: For each clique c ∈ T ,
Sc ←ListStateSpace(Ḡ[c]).

5: Perform (two passes) message passing
on T using only states Sc for each
clique c.

the subgraph induced by the clique on the maximally dense graph. To do infer-
ence we run two passes of sum-product message passing on the junction tree,
performing computation only on the legal states of each clique.

This algorithm thus automatically exploits dynamic programming for sparse
regions of the graph and small state spaces for dense regions of the graph. For
example, it is easy to verify that for pairwise mutually exclusive labels, the
inference cost is O(n), the same as hand-coded softmax, due to the small state
space. For fully independent labels (no edges), the inference cost is also O(n),
the same as n hand-coded logistic regressions, because the junction tree is n
disconnected cliques, each containing a single label. We can formally bound the
complexity of the inference algorithm:

Theorem 4. The complexity of the exact inference (Line 5 in Alg. 2) for graph
G = (V,Eh, Ee) is O

(
min{|V |2w, |V |22ΩG}

)
, where w is the width of the junc-

tion tree T (Line 3).

Note that this is a worst case bound. For example, a graph can have two dis-
connected components. One has a large treewidth but small overlap (e.g. many
mutual exclusions between object labels). The other has a small treewidth but
large overlap (e.g. attribute labels). The bound in Theorem 4 for the whole graph
will assume the worst, but Alg. 2 can perform inference for this graph efficiently
by automatically treating the two components differently.

4 Experiments

4.1 Implementation

We implement our model as a standalone layer in a deep neural network frame-
work. It can be put on top of any feed-forward architecture. The layer takes as
input a set of scores f(x;w) ∈ Rn and outputs (marginal) probability of a given
set of observed labels. During learning, we use stochastic gradient descent and
compute the derivative ∂L

∂f , where L is the loss as defined in Eqn. 2 but treated
here as a function of the label scores f instead of the raw input x. This derivative
is then back propagated to the previous layers represented by f(x;w).

For exact inference as described in Alg. 2, Step 1 to Step 4 (processing the
graph, building the junctions trees, listing state space etc.) only depend on the
graph structure and are performed offline. Only the message passing on the
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junction tree (Step 5) needs to be performed for each example online. Given
a junction tree and the legal assignments for each clique, we perform a “dry
run” of message passing and record the sequence of sum-product operations.
Then the online inference for each example simply follows this pre-determined
sum-product sequence and thus has negligible extra overhead compared to hand-
coded implementations of softmax or independent logistic regressions.

4.2 Object classification on ImageNet

Dataset We evaluate our model using the ILSVRC2012 dataset [9]. It consists of
1.2M training images from 1000 object classes 3. These 1000 classes are mutually
exclusive leaf nodes of a semantic hierarchy based on WordNet that has 820
internal nodes. All images are labeled to the leaf nodes.

WordNet provides hierarchical relations but no exclusive relations. We thus
adopt the assumption of “exclusive whenever possible”, i.e. putting an exclusive
edge between two nodes unless it results in an inconsistent graph. This means
that any two labels are mutually exclusive unless they share a descendant. Note
that the WordNet hierarchy is a DAG instead of a tree. For example, “dog”
appear under both “domestic animal” and ”canine”.

Setup In this experiment we test the hypothesis that our method can improve
object classification by exploiting label relations, in particular by enabling joint
modeling of hierarchical categories. To this end, we evaluate the recognition per-
formance in the typical test setting—multiclass classification at the leaf level—
but allow the training examples to be labeled at different semantic levels. This
setting is of practical importance because when one collects training examples
from the Internet, the distribution of labels follow a power law with many more
images labeled at basic levels (“dog”,“car”) than at fine-grained levels (“husky”,
“Honda Civic”). While it is obvious that with a semantic hierarchy, one can
aggregate all training examples from leaf nodes to learn a classifier for internal
nodes, the other direction—how to use higher level classes with many training
examples to help train fine-grained classes with fewer examples—is not as clear.

Since ILSVRC2012 has no training examples at internal nodes, we create
training examples for internal nodes by “relabelling” the leaf examples to their
immediate parent(s) (Fig. 4), i.e. some huskies are now labeled as “dog”. Note
that each image still has just one label; an image labeled as “husky” is not
additionally labeled as “dog”.

We put our model on top of the convolutional neural network (CNN) devel-
oped by Krizhevsky et al. [21, 37]. Specifically, we replace the softmax classifier
layer (fully connected units with a sigmoid activation function followed by nor-
malization to produce the label probabilities) with our layer — fully connected
units followed by our inference to produce marginals for each label (see Fig. 1 for
an illustration). We only use fully connected units for the leaf nodes and fix input

3 Since ground truth for test set is not released and our experiments involve non-
standard settings and error measures, we use the validation set as our test images
and tune all parameters using cross-validation on the training set.
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Fig. 4. Instead of training with data all labeled at leaf nodes, we train with examples
leveled at different levels but still evaluate classification at leaf nodes during test.

scores (fi in Eqn. 1) of internal nodes to zero because we found that otherwise
it takes longer to train but offer no significant benefits on ILSVRC2012.

We compare our model with three baselines, all on top of the same CNN
architecture and all trained with full back propagation from scratch: (1) softmax
on leaf nodes only i.e. ignoring examples labeled to internal nodes; (2) softmax
on all labels, i.e. treating all labels as mutually exclusive even though “dog”
subsumes “husky”; (3) independent logistic regressions for each label 4. For the
logistic regression baseline, we need to specify positive and negative examples
individually for each class—we add to positives by aggregating all examples
from descendants and use as negatives all other examples except those from the
ancestors. During test, for each method we use its output probabilities for the
1000 leaf nodes (ignoring others) to make predictions.

Results Table 1 reports the classification accuracy on the leaf nodes with dif-
ferent amounts of relabelling (50%, 90%, 95%, 99%). As a reference, our imple-
mentation of softmax with all examples labeled at leaf nodes (0% relabeling)
gives a hit rate (accuracy) of 62.6% at top 1 and 84.3% at top 5 5.

Our approach outperforms all baselines in all settings except that in the ex-
treme case of 99% relabelling, our approach is comparable with the best baseline.
Even with 90% of labels at leaf nodes “weakened” into internal nodes, we can
still achieve 55.3% top 1 accuracy, not too big a drop from 62.6% by using all
leaf training data. Also independent logistic regressions perform very abysmally,
likely because of the lack of calibration among independent logistic regressions
and varying proportions of positive examples for different classes.

Interestingly the baseline of softmax on all labels, which seems non-sensible
as it trains “dog” against “husky”, is very competitive. We hypothesize that
this is because softmax treats examples in internal nodes as negatives. It is in
fact a mostly correct assumption: the “dog” examples contain some huskies but
are mostly other types of dogs. Softmax thus utilizes those negative examples
effectively. On the other hand, our model treats labels in internal nodes as weak
positive examples because the marginal of an internal node depends on the scores

4 They are trained jointly but, unlike softmax, without normalization of probabilities.
5 our model gives the same result—with scores for internal nodes fixed to zero it is

equivalent to softmax up to an additional constant in the partition function.
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relabeling softmax-leaf softmax-all logistic ours

50% 50.5(74.7) 56.4(79.6) 21.0(45.2) 58.2(80.8)

90% 26.2(47.3) 52.9(77.2) 9.3(27.2) 55.3(79.4)

95% 16.0(32.2) 50.8(76.0) 5.6(17.2) 52.4(77.2)

99% 2.5 (7.2) 41.5(68.1) 1.0(3.8) 41.5(68.5)

Table 1. Top 1 (top 5 in brackets) classification accuracy on 1000 classes of
ILSVRC2012 with relabeling of leaf node data to internal nodes during training.

of its descendants. This is semantically correct, but makes no assumption about
the proportion of real positive examples. This suggests a future direction of
including stronger assumptions during learning to further improve our model.

In the case of 99% relabelling, softmax-all is comparable to our model (41.5%
versus 41.5% top 1 accuracy). This is likely because there are too few images
labeled at the leaf nodes (around 10 images per class). During learning, our model
“softly” assigns the images labeled at internal nodes to leaves (by inferring the
distribution of unobserved labels), which improves the leaf models (weights for
generating leaf input scores). However, with too few training examples labeled
at leaf nodes, the leaf models can “drift away” with noisy assignment.

4.3 Zero-shot recognition on Animals with Attributes

In this experiment we evaluate whether our HEX graph based model can be
used to model relations between objects and attributes, although not by design.
We use the Animal with Attributes (AWA) dataset [25] that includes images
from 50 animal classes. For each animal class, it provides binary predicates for
85 attributes, e.g. for zebra, “stripes” is yes and “eats fish” is no. We evaluate
the zero-shot setting where training is performed using only examples from 40
classes and testing is on classifying the 10 unseen classes. The binary predicates
and the names of the unseen classes are both known a priori.

Here we show that our model can be easily adapted to perform zero-shot
recognition exploiting object-attribute relations. First we build a HEX graph
for all animals and attributes by assuming mutual exclusion between the ani-
mal classes and then adding the object-attribute relations: “zebra has stripes”
establish a subsumption edge from “stripes” to “zebra”; “zebra doesn’t eat fish”
means an exclusion edge between them.

We use the same published, pre-computed features x from [25] and use a
linear model to map the features to score fi(x) = wTi φ(x) for label i, where φ(x)
is computed by the Nystrom method [35] with rank 8000 to approximate the Chi-
squared kernel used in [25]. In training, we observe the class labels for examples
from the first 40 classes. The system is trained to maximize the likelihood of
the class labels, but indirectly it learns to also predict the (latent) attributes
given the image features. At test time, the class labels are not observed (and are
drawn from a distinct set of 10 new labels); however, the model can predict the
attributes given the image, and since the mapping from attributes to classes is
known (for all 50 classes), the model can also (indirectly) predict the novel class
label. This can be done by performing inference in the model and reading out
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Fig. 5. We can build a HEX graph using relations between objects and attributes.

the marginals for the 10 unknown classes. We achieve a 38.5% mean accuracy
(and 44.2% using the recently released DECAF features [11]) as compared to
40.5% in [25]. Given that our model is not explicitly designed for this task and
the kernel approximation involved, this is a very encouraging result.

4.4 Efficiency of Inference

We evaluate the empirical efficiency of inference by counting the number of basic
operations (summations and multiplications) needed to compute the marginals
for all labels from the scores (not including computation for generating the
scores). For the HEX graph used with ILSVRC2012, i.e. a DAG hierarchy and
dense mutual exclusions, the inference cost is 6 relative to softmax for the same
number of labels. For AWA, the cost is 294 relative to softmax. In both cases,
the overhead is negligible because while softmax costs O(n), simply computing
the scores from d-dimensional inputs costs O(nd) using a linear model (d = 4096
for ILSVRC2012 and d = 8000 for AWA), let alone multilayer neural networks.

Moreover, it is worth noting that the HEX graph for AWA (Fig. 5) has 85
overlapping attributes with no constraints between them. Thus it has at least
285 legal states. Also it has a large treewidth—the 50 animal classes are fully
connected with exclusion edges, a complexity of 250 for a naive junction tree
algorithm. But our inference algorithm runs with negligible cost. This again
underscores the effectiveness of our new inference algorithm in exploiting both
dynamic programming and small state space.

5 Discussions and Conclusions

We now briefly mention a couple of possible future directions. Efficient exact
inference depends on the relations being “absolute” such that many states have
probability zero. But it does not allow non-absolute relations (“taxi is mostly
yellow”). Thus it remains an open question how to use non-absolute relations
in conjunction with absolute ones. Another direction is to integrate this model
developed for single objects into a larger framework that considers spatial inter-
actions between objects.

To conclude, we have provided a unified classification framework that gener-
alizes existing models. We have shown that it is flexible, theoretically principled,
and empirically useful. Finally, we note that although motivated by object clas-
sification, our approach is very general in that it applies to scenes, actions, and
any other domains with hierarchical and exclusive relations.
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