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Abstract-Modern trojans are equipped with a functionality, 
called WebInject, that can be used to silently modify a web page 
on the infected end host. Given its flexibility, WebInject-based 
malware is becoming a popular information-stealing mechanism. 
In addition, the structured and well-organized malware-as-a­
service model makes revenue out of customization kits, which 
in turns leads to high volumes of binary variants. Analysis 
approaches based on memory carving to extract the decrypted 
webinject.txt and config.bin files at runtime make the strong 
assumption that the malware will never change the way such 
files are handled internally, and therefore are not future proof 
by design. In addition, developers of sensitive web applications 
(e.g., online banking) have no tools that they can possibly use to 
even mitigate the effect of WebInjects. 

WebInject-based trojans insert client-side code (e.g., HTML, 
JavaScript) while the targeted web pages (e.g., online banking 
website, search engine) are rendered on the browser. This 
additional code will capture sensitive information entered by 
the victim (e.g., one-time passwords) or perform other nefarious 
actions (e.g., click fraud or search engine result poisoning). The 
visible effect of a WebInject is that a web page rendered on 
infected clients differs from the very same page rendered on 
clean machines. We leverage this key observation and propose an 
approach to automatically characterize the WebInject behavior. 
Ultimately, our system can be applied to analyze a sample 
automatically against a set of target websites, without requiring 
any manual action, or to generate fingerprints that are useful to 
determine whether a client is infected. Differently from the state 
of the art, our method works regardless of how the WebInject 
module is implemented and requires no reverse engineering. 

We implemented and evaluated our approach against real­
world, live online websites and a dataset of distinct variants 
of WebInject-based financial trojans. The results show that our 
approach correctly recognize known variants of WebInject-based 
malware with negligible false positives. Throughout the paper, we 
describe some use cases that describe how our method can be 
applied in practice. 

I. INTRODUCTION 

Information-stealing trojans allows a mal ware operator to 
intercept credentials such as usernames, passwords, and second 
factors of authentication (e.g., PINs or token-generated codes) 
or to alter how pages are rendered on the client side at their 
will (e.g., search engine result poisoning, click fraud). These 
trojans are also referred to as "banking trojans", because they 
are often used to steal banking credentials when the victim 
is using an online banking service. However, their flexibility 
made them easily adaptable to various uses. According to a 
recent Symantec report [9], in 2012 more than 600 institutions 
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were targeted and a peak of more than 160,000 (October) of 
computers were compromised with financial trojans. 

As we detail in Section II, the typical information steal­
ers implement the interception mechanism through injection 
modules. An injection module, codenamed "WebInject", ma­
nipulates and inject arbitrary content into the data stream 
transmitted between an HTTP(S) server and the browser. This 
is implemented through function hooks placed between the 
rendering engine of the browser and the network-level libraries. 
Previous work [5] leveraged this observation to detect the 
hooking libraries as a sign of infection. As a result, WebInject­
based trojans are able to circumvent any form of transmission 
encryption such as SSL. Moreover, a recent incident analysis 
reported by NASK [2] shows that customized variants of ZeuS 
are used to create an effective attack scheme involving both a 
PC and mobile component. 

Nowadays, the common practice is that security researchers 
and professionals exchange samples, as soon as they become 
available, within private online communities. This makes it 
easy to obtain and run samples, resulting in quick reaction 
times, quicker than in the past. However, not all security 
analysts of targeted institution are equally equipped or skilled 
to perform accurate reverse engineering. Indeed, the analysis 
of these malware families, as well as others, require time­
consuming reverse engineering, which result in slower reac­
tion, even when samples are readily available. In fact, the 
detection rates of ZeuS are low. Another method used to 
extract the trojan configuration files is via memory forensics 
(e.g., by executing the sample in a sandboxed environment 
and extracting a memory dump for subsequent carving). The 
outcome of such analyses normally includes the decrypted 
webinjecttxt file, which is useful for security analysts of 
targeted institutions, because it allows to verify if and how their 
website is targeted by an information-stealing campaign. An­
other interesting use case is the automatic analysis of samples 
that perform search engine result poisoning. Last, we notice 
that developers of sensitive web applications (e.g., online 
banking), possibly targeted by WebInject-based malware, are 
left with no tools that they can use to mitigate the effect of this 
threat. For instance, it would be great if a developer could pro­
grammatically "annotate" a page as "potentially targeted" to 
have an automatically-generated JavaScript procedure attached 
whenever the page is delivered to the client. Once rendered on 
the client page, such procedure would perform a sanity check 
to determine the presence of injections from known samples. 

Unfortunately, the above mentioned techniques are based 
on the assumption that the mal ware will never change or alter 



the way configuration files are encrypted-decrypted in memory. 
This inherent limitation makes these methods not future proof, 
and shows the need for automatic methods that characterize 
the injection behavior of a malware, to tell whether an end 
host is infected by which known sample, or whether a given 
website is targeted by some known binary, before spending 
time to reverse engineer it. 

The goal of our approach, called ZARATHUSTRA, is to 
automatically characterize the WebInject-based behaviors re­
gardless of the underlying implementation. In addition, we 
want to isolate precisely the injected code, as if the config­
uration files of the mal ware variant were available. Our key 
observation is that, regardless of how the hooking mechanism 
works, the action of an injection module must eventually 
result in changes to the document object model (DaM). 
ZARATHUSTRA analyzes samples by first rendering a website 
page multiple times in instrumented browser instances that 
runs on distinct, clean machines. ZARATHUSTRA repeats the 
same procedure on an infected machine, and finally extracts 
the resulting, malicious differences in the form of an Xpath 
query along with metadata-which we call "fingerprints". A 
specific challenge that we tackle is the removal of legitimate 
DaM differences (e.g., due to ads, A-B testing, cookies, load 
balancing, anti-caching mechanisms). These differences would 
otherwise result in false positives. The fingerprint-generation 
system runs on dedicated machines with no interactions with 
real clients. 

We evaluated ZARATHUSTRA against 213 real, live URLs 
of banking websites and 56 distinct samples of ZeuS. In all 
cases, our system generated fingerprints correctly. We analyzed 
the low fraction of false positives and found that most of them 
were caused by legitimate differences found in the original 
web pages, which are tackled by ZARATHUSTRA with specific 
post-processing heuristics, which can be safely enabled under 
realistic conditions, as detailed in Section V. ZARATHUSTRA 
scales well, and can process on average I URL in less than 
3 seconds even on our limited infrastructure. Furthermore, 
as fingerprint generation can be performed independently on 
samples and URLs, the process is fully parallelizable and 
scalable. 

As discussed in Section IV-E, the generality of the gen­
erated fingerprints make them suitable for various purposes, 
beyond mal ware analysis, that can help at mitigating the 
threat posed by WebInject-based malware. For example, we 
ZARATHUSTRA offered as a web service or prograrmning 
API that, given a database of samples (which are abundant 
today) and a list of URLs, tells which URLs are targeted by 
which injection. Fingerprint matching is as fast as evaluating 
an Xpath query, which is trivial and supported by any XML­
based client-side software. 

In sununary, in this paper we make the following contributions: 

• We characterize the WebInject mechanism in an 
implementation-idependent, forward-looking fashion, 
without needing a-priori knowledge about the API 
hooking method, nor on the specific configuration 
encryption-decryption mechanisms used by the mal­
ware. 

• We propose an approach to automatically generate 
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fingerprints of the injections, requiring only the binary 
sample and the target URLs; as a matter of fact, we 
automatically generate the relevant information that 
would normally be available only by reversing and 
extracting the configuration file of the malware with 
a manual or non-future-proof process. 

• We describe and discuss some case studies and how 
vendors can incorporate our approach in the browser­
monitoring components of their antivirus products. 

The source code of the ZARATHUSTRA proof of concept is 
available online at https://code.google.com/p/zarathustra/. 

II. W EBINJ ECT-BASED TROJANS 

Information-stealing trojans are a growing [4, 11], so­
phisticated threat. The most famous example is ZeuS, from 
which other descendants were created. This mal ware is actually 
a binary generator, which eases the creation of customized 
variants. For instance, as of Feb 4, 2013, according to ZeuS 
Tracker', there are 7,457 distinct variants that are yet to 
be included to the Malware Hash Registry database2 (these 
variants were 7,384% six months ago). Notice that this is 
an under estimate, limited to the binaries that are currently 
tracked. This high number of variants results in a low detection 
rate overall (39.17% as of Feb 4, 2013, decreased since six 
months ago). 

State-of-the-art mal ware is very sophisticated and the de­
velopment industry is quite mature. Trend Micro [1] reports 
a 29% increase of financial trojan activity between Ql and 
Q2 of 2013 (from 37-39K to 71K infections, and from 113K 
to 146K targeted institutions worldwide). Lindorfer et al. [10] 

recently measured that trojans such as ZeuS and GenericTro­
jan are actively developed and maintained. These and other 
modern malware families live in a complex environment with 
development kits, web-based administration panels, builders, 
automated distribution networks, and easy-to-use customiza­
tion procedures. The most alarming consequence is that vir­
tually anyone can buy a mal ware builder from underground 
marketplaces and create a customized sample. Interestingly, 
cyber criminals also offer paid support and customization, or 
sell advanced configuration files that the end users can include 
in their custom builds, for instance to extract information and 
credentials of specific (banking) websites. Lindorfer et al. [10] 
also found an interesting development evolution, which indi­
cates a need for forward-looking malware-analysis methods 
that are less dependent on the current or past characteristics of 
the mal ware. This also relates to the fact that the source code 
is sometimes leaked (e.g., CARBERP, ZeuS), which leads to 
further creation of new (banking trojan) variants [l] to keep 
up with the never-ending arms race. 

A. Web/nject Functionality 

As part of their functionalities, modern trojans include 
data-injection and data-stealing capabilities. For instance, since 
version 1.0.0, SpyEye features a so-called "Form Grabber" 
module, which can be arbitrarily configured to intercept the 
data that the victim types into (legitimate) websites' forms. 

, https://zeustracker.abuse.ch/statistic.php 
2http://www.team-cymru.org/Services/MHR/ 
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Figure 1: Example of a real WebInject found on a page of extranet. banesto. es, performed by a ZeuS variant (MD5 
15a4947383bf5cd6d6481d2bad82d3b6), along with the respective webinject. txt configuration file. Injections are not limited 
to this type of pages but include, for instance, search engine results. 

The main goal of money-motivated criminals that rent or 
operate information-stealing services is to retrieve valid, full 
credentials from infected systems. In the case of online bank­
ing sites, these credentials comprise both the usual username 
and password, and a second factor of authentication such as 
a PIN or a token. This (one-time) authentication element is 
normally used only when performing money transfers or other 
sensitive operations. As a security measure, many banking 
websites use separate forms, and do not ask for login creden­
tials along with the second factor of authentication. The goal 
of the attacker in this scenario is to lure the user into entering 
the token up front, together with username and password. This 
tactic gives the attacker enough time to use the token. 

As of version 1.1.0, Spy Eye incorporates the so-called 
"WebInject" module, which can be used to manipulate and 
inject arbitrary content into the data transmitted between 
an HTTP(S) server and the browser. The WebInject module 
is placed between the browser's rendering engine and the 
HTTP(S) API functions. For this reason, the trojan has access 
to the decrypted data, if any encryption is used (e.g., SSL). 

The WebInject module is leveraged to selectively insert the 
HTML or JavaScript code that is necessary to steal information 
or to make the targeted pages behave differently (e.g., click 
fraud, malicious advertising). WebInject allows to do this with 
surgical precision. For example, as shown in Figure 1, the 
WebInject module inserts an additional input field in the main 
login form of an online banking website. The goal is to lure 
the victim such that he or she believes that the web page is 
legitimately asking for the second factor of authentication up 
front. In fact, the victim will notice no suspicious signs (e.g., 
invalid SSL certificate or different URL) because the page is 
modified "on the fly" right before display, directly on the local 
workstation. Another nefarious action implemented through 
this type of functionality is search engine result poisoning or 
other forms of illicit content injection (e.g., to perform click 
fraud or click jacking). 

WebInjects allow attackers to modify only the portion of 
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page they need by means of site-specific content-Injection 
rules. More precisely, the attackers can set two hooks (da t a_ -

before and data_after) that identify the web page por­
tion where the new content, defined with the data_inject 
variable, is injected. These variables are set at configuration 
time into a proper file, named webinjects. txt in the case 
of ZeuS, SpyEye, and descendants. Additionally, at runtime, 
the malware may poll the botnet conunand-and-control (C&C) 
server for further configuration options-including new injec­
tion rules. 

The configuration files embody the actual value of an 
information stealer. Indeed, these files, and in particular 
webinjects. txt files, are traded3 or sold4 on underground 
marketplaces. 

B. Library Hooking 

The WebInject module of ZeuS and descendants relies on 
API hooking. Although distinct families such as ZeuS and 
SpyEye have a COlmnon WebInject module, new builds and 
other (future) families may implement WebInject differently. 
In addition, the mal ware binaries can be packed and obfuscated 
in various ways (e.g., different packing method or encryption 
key). Moreover, the custom configuration files are encrypted, 
and embedded in the final executable. This characteristic, com­
bined with the evolving nature of modern trojans, makes it even 
more difficult to extract the static and dynamic configuration 
files-besides through time-consuming reverse-engineering ef­
forts, or in the lucky case that the mal ware itself exposes some 
vulnerabilities (e.g., SQL injection, weak cryptography). 

III. GOALS, ApPROACH AND CHALLENGES 

The current "solution" against trojans is to use anti-viruses 
on the client side. Since the host is compromised, we are 

3 http://trackingcybercrime.bJogspot.itl20 12/08/ 
high-quality-webinject -for-banking-bot.html 

4 https://www.net-securi ty.org/maJ ware_news. php?i d=2163 
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Figure 2: The HTML source code produced by the banking 
website transits encrypted over the Internet. When it reaches 
the OS and thus the Wininet. dll library, the source code 
is decrypted and intercepted. ZeuS modifies it on the fly and 
sends it through the same pipeline, up to the browser rendering 
engine. 

well aware that client-side-only approaches are not an actual 
solution. There is no solution when the end host is not trusted. 
However, we believe that research should focus on mitiga­
tion approaches that (1) capture the inherent behavior of the 
targeted family (e.g., Weblnject trojans) and, based on those 
behaviors, (2) speedup the generation of signatures. In the case 
of Weblnject-based malware, the competitive advantage is that 
they exhibit their behavior in the browser. This makes solutions 
similar to the successful Google Safebrowsing feasible, with 
the added benefit of centralized deployments such as those 
described in Section IV-E. 

To pursue our two goals, we believe that a good analysis 
approach should not rely too much on the implementation 
details of a malware. To this end, we observe the behavior of 
Weblnject-based trojans (and other Weblnject-based families) 
from the point of view of the browser. From hereinafter we 
use the term "Weblnject" to refer to any mechanism used by 
malware to inject arbitrary content in the (decrypted) data that 
transits between the network layer and the rendering engine of 
a browser. 

A. Approach Overview 

Our approach is to fingerprint the behavior of any 
Weblnject-based information stealer by looking for the visible 
effects of the injection in the targeted websites, regardless 
of the underlying implementation (e.g., API hooking, DLL 
patching, other yet unknown techniques). Our approach does 
not leverage any malware-specific component or vulnerability 
to observe and characterize the injection behavior. Therefore, 
it is more generic by design. 

Our key observation is that a page rendered on an infected 
machine unavoidably includes the injected portions of code. In 
contrast, the same page rendered on a clean machine contains 
the original source code. 

To automatically characterize the Weblnject behavior of 
a given mal ware sample, our approach requires the mal ware 
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sample executable and a list of target URLs. For example, 
in the generic case of an anti-virus company that wants to 
produce signatures for the top 1,000 online baking applica­
tions, the list of target URLs would contain the URLs of the 
respective websites. Another use case is the security officer of 
an organization, who receives a daily feed of malware samples 
and wants to automatically generate a signatures to quickly 
determine whether the organization website is targeted. 

As output, our approach produces one Xpath expression 
per URL, which precisely identifies the portion of injected or 
changed code. For instance, for a given URL, the output looks 
like Ihtml [1 ]/body[ 1 ]/center[3]/table[ 1 ]/tbody [1 ]/tr[ 1 ]/form[ 1] 
linput[13]. This is, per se, a valuable piece of information for 
the analyst. The simplicity of its output makes ZARATHUSTRA 
applicable to many different use cases. For instance, as part of 
a browser-monitoring component (e.g., based on matching the 
Xpath expression against the rendered DOM). In the remainder 
of this paper we focus on the details of characterization 
process, which is the core part of our contribution. 

B. Challenges 

Although our approach is conceptually simple when ap­
plied at a small scale (e.g., by manual analysis of a handful 
of target websites and samples, as shown in an example 
by Ormerod [12]), streamlining it and making it accurate is 
far from trivial. Indeed, websites may vary legitimately as a 
consequence of client- and server-side caching or upgrades of 
the (banking) web application code. 

The problem of telling malicious and benign differences 
apart is hard to solve in general. In fact, a generic solution 
is beyond the scope of our research. However, in the well­
defined case of an attacker that needs to inject at least one 
DOM node (e.g., <script I>, onclick=, l<input I»�, 

we can address these challenges with specific heuristics as 
described in Section IV-B and IV-C. 

IV. SYSTEM DETAILS AND IMPLEMENTATION 

The implementation of our approach in ZARATHUSTRA 

is sUlmnarized in Figure 3. The input of our approach is a 
list of URLs that we want to check and a sample. For each 
URL we repeat the following procedure. Since we want to 
eliminate false positives due to non-significant differences, we 
first need to make sure that each URL, if visited from two 
clean machines, do not exhibit any difference. If they do, then 
we need to ignore such benign difference, as not caused by 
the mal ware behavior. To this end, in the DOM Collection 
phase (Section IV-A), ZARATHUSTRA collects a set of DOMs 
from a set of identical clean (virtual) machines, and one DOM 
from the machine infected with the malicious executable. 
The DOMs are compared in the DOM Comparison phase 
(Section IV-B), which finds the differences between the "clean 
DOMs" and the "malicious DOM". In the Fingerprint Gen­
eration phase (Section IV-C), the differences are analyzed to 
eliminate obvious duplicates (e.g., due to legitimate changes or 
caching) and other recurring patterns of legitimate differences. 

We implemented the DOM Collection phase on top of 
Oracle VirtualBox. We wrote a thin library on top of its API 
to create, snapshot, start-stop the VMs, and a library based 
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Figure 3: Server side architecture of ZARATHUSTRA, which is 
in charge of analyzing a given URL against a given trojan. 

on WebDriver5, a platform- and language-neutral interface 
that introspects into, and controls the behavior of, a web 
browser and dumps the DOM once a page is fully loaded. The 
DOM Comparison relies on XMLUnit 's DetailedDiff 

class functions. The Fingerprint Generation phase does not 
rely on 3rd-party libraries. 

A. Phase 1: DOM Collection 

This phase receives a target URL as input. It starts n 
clean VMs plus one infected VM. Each VM automatically 
starts the browser with Web Driver, visits the URL, lets the 
page load completely, and saves the resulting DOM. We then 
access and store the DOM as computed by the browser, thus 
including all the manipulations performed by client-side code 
at runtime while the page loads. The DOM encompasses the 
content of the nodes in the page, including script tags. This 
phase outputs the n "clean DOMs" that result from visiting the 
target URL with the clean VMs, plus one "malicious DOM" 
for the infected machine. The "malicious DOM" contains the 
injection that we want to extract. 

B. Phase 2: DOM Comparison 

This phase compares DOM, the "malicious DOM" against 
the "clean" DOMi E [I, n] to find distinct differences. 
We rely on XMLUnit 's DetailedDiff. getAllDiff­

erences ( ) , which walks the tree of DOM and, for each 
node, walks the tree of DO Mi to look for the following 
differences: 

• New node: This catches one of the most com­
mon manifestations of information stealers (e.g., new 
<input /> fields). This phase takes into account 
any element type (e.g., forms, scripts, iframes, text). 

5 http://www.w3 .orgiTR/webdriver/ 

143 

• New attribute: This reveals the presence of possibly 
malicious attributes such as the 0 n eli c k event, used 
to bind JavaScript code that performs (malicious) 
actions whenever certain user-interface events occur. 

• Attribute value modification: This catches manipu­
lations on existing attribute values (e.g., to change the 
server that receives the data submitted with a form, or 
modifies the JavaScript code already associated to an 
action). 

• Text node content modification: This occurs when 
a malware modifies the content of an existing node, 
for instance to add new code within a script tag, or to 
change the displayed text. 

A pure removal of a DOM node (i .. e, not followed by a 
node insertion) would be against the goals of the malware 
operator. Substitutions of DOM nodes are accounted for by 
ZARATHUSTRA as a modification (3rd and 4th case). The 
output of this phase is a set of DOM differences. 

C. Phase 3: Fingerprint Generation 

This phase prunes the DOM differences from the DOM 
Comparison and generates a set of fingerprints. First, we 
remove the differences between each couple DO Mi and 
DO Mj, 'Vi i= j to take into account the legitimate changes 
between "clean DOMs", which could cause false positives. In 
other words, we obtain a pruned set of differences: 

F = difI(DOMi, DOM) \ difI(DOMi, DOMj) , " , " v v 
all differences benign differences 

'Vi,j E [l,nJ,i i= j 

where "difI(A, B)" indicates the distinct differences between 
DOM A and B, and the malicious differences are those 
obtained in Phase 2. 

The rationale is that by visiting the same URL multi­
ple times we obtain multiple versions of the same DOM, 
thus mitigating the effect of legitimate differences caused by 
session-sensitive content (e.g., caching, cookies). Furthermore, 
the heuristics 1-4 described in the remainder of this paper 
eliminate other legitimate differences. 

The reader may wonder why, instead of comparing one 
infected vs. many clean DOMs, we do not compare many 
infected vs. many clean DOMs. Indeed, this would, in theory, 
create more variants of both the DOMs (i.e., benign vs. 
malicious), eliminating the benign differences more effectively. 
In practice, we would need to visit each URL from multiple 
infected virtual machines and compare the collected "malicious 
DOMs" against the "benign DOMs". This creates a potential 
performance problem. Moreover, with a pilot study we noticed 
that one "malicious DOM" per target URL is sufficient. In 
fact, visiting the same URL from multiple infected machines 
results in collecting DOMs that contain elements that are 
already present in the benign DOMs, so that will be eliminated. 
In simple words, increasing the number of malicious DOMs 
beyond one, only increases the required resources without 
adding any benefit. 



An example generated fingerprint for a given URL and 
sample is: 

''rrBlicious_node'' : 

"parent": "form", 
Ilvaluell: "input", 

/page/ sensi ti va/res/ 

"xpath": "/html[l] /body[l] /table[3] /tbocly[l] /tr[l] /form[l] /input[l 

which specifies the <input /> field injected in the real case 
of Figure 1. The set of fingerprints F already contains valuable 
information that precisely characterizes if and how an injection 
takes place. As F is generated in a fully automated way, it 
may still contain some false differences. These are addressed 
by two heuristics. 

1) Heuristic 1: Ignoring Dynamic DOM Differences: We 
observe that several legitimate differences are actually due to 
DOM modifications performed by the browser that executes 
JavaScript routines while rendering the page. At a first glance, 
disabling JavaScript may lead to excluding malicious DOM 
modifications caused by the mal ware. However, WebInject 
malware always insert at least one static node or attribute, 
which would be still visible even when JavaScript is disabled. 
As we discuss in Section VI, even in the corner case of 
malware that injects code inside an existing <script /> 

tag, by adding static code that performs the actual DOM 
manipulation, ZARATHUSTRA still generate a fingerprint of 
the static code injection in the first place. 

2) Heuristic 2: Caching Server Responses: By caching 
server responses-using the URL as the caching key-we 
reduce the false differences due to dynamic code generation 
on the server side, which may insert, for instance, a unique 
element in each response (e.g., to avoid cross-site request 
forgery or caching). This simple heuristic can be safely enabled 
and, as showed in Section V-D, helps at effectively reducing 
the false positives. 

D. Post-processing Heuristics 

The output of the previous phase is the set F of finger­
prints, which is post processed through the following two 
heuristics that minimize the occurrence of false differences. 

1) Heuristic 3: Filtering Special Attributes: Several at­
tributes can be safely ignored, because they would not lead 
to new DOM nodes. We assume that if a mal ware attempts 
to forcefully inject a DOM node (e.g., <input I»� into an 
attribute value, this would lead to parsing errors, and thus to 
a useless DOM node (e.g., style="<input . . .  />"). 

Specifically, we ignore value, style, class, width, 

height, sizset, sizcache, and alt. The style at­
tribute may be used maliciously, to inject JavaScript code. 
However, Heuristic 1 prevents this case. 

2) Heuristic 4: Filtering Text Nodes: Text nodes are harm­
less, because they can only contain pure text. We ignore all 
the text nodes, unless they are children of <script /> tags. 
There are many other ways through which a malware can insert 
custom client-side code, but ZARATHUSTRA already accounts 
for these types of WebInjects during DOM Comparison. 
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Scenario 1 Scenario 2 

(3) 
/page/login/ response 

+ 
obfuscated JavaScript 

+ 
fmgerprints 

(4) 

Scenario 3 

Figure 4: Three application scenarios described in Sec­
tion IV-E. 

E. Application Scenarios 

ZARATHUSTRA produces fingerprints in the form of Xpath 
expressions, which allow to check, on the client side, whether 
a web page is currently being rendered on an infected machine. 
The most natural application is the antivirus scenario. In 
practice, as depicted in Figure IV-E, we foresee a centralized 
server, which runs Phase 1-3 on a feed of malware samples 
and URLs. 

In Scenario 1 the URLs are received by the clients 
(e.g., antivirus component, browser plugin, web application). 
The server replies with the list of fingerprints related to the 
requested URL(s). In the case of an antivirus, the browser­
monitoring component (e.g., similar in spirit to Google 
Safebrowsing) can request the fingerprint of each browsed 
URL, and verify if any of the fingerprint match. 

The second scenario that we envision, Scenario 2, has to 
do with large-scale monitoring. More precisely, we believe that 
ZARATHUSTRA could be a good companion for initiatives such 
as ZeuS or SpyEye Tracker, Virustotal, Anubis, Wepawet and 
similar web services that receive large daily feeds of mal ware 
samples and URLs to analyze. In this context, ZARATHUSTRA 

can be used to automatically determine whether a sample 
performs web injection against a given URL-regardless of 
whether it is ZeuS or SpyEye, or some other unknown 
family-and to extract the portion of injected code. 

One last application (Scenario 3) is that of a developer 
of high-profile web applications (e.g., online banking), which 
are likely to be targeted by WebInject-based malware once in 
production. This scenario was suggested to us by a developer 
working for a large national bank, who noticed the lack 
of a centralized solution to determine whether their clients 
where infected with some banking trojan. In this context, the 
developer would like the web framework to offer an API to 
programmatically mark sensitive resources (e.g., /page/login/, 
or those that contain forms) as such. 

Marked resources will be processed by the web framework 
right before the HTTP response is sent to the requesting client. 
In our vision, the web framework will append a Javascript 



procedure that, once executed on the client, performs a check 
similar to the one described in the aforementioned "Safebrows­
ing" scenario. The JavaScript can be obfuscated and inserted in 
randomized positions, so as to make it difficult for the malware 
author to selectively remove it. The trojan on the client side 
may still attempt to disable that JavaScript procedure. Note 
that disabling Javascript completely is against the attacker goal, 
because it would disrupt the page. 

V. EXPERIMENTAL EVALUATION 

Between January and February 2013 we evaluated our 
implementation of ZARATHUSTRA against 213 real, live URLs 
of banking websites and 56 distinct samples of ZeuS (see 
Appendix). Our main goal was to measure the correctness 
of the fingerprints, generated with and without the heuristics. 
Then, we wanted to assess the resource required to analyze a 
given amount of URLs and samples. 

A. Dataset 

With the above premises, our decision fell on ZeuS, be­
cause it is by far the most widespread information stealer that 
performs injections: According to ZeuS Tracker, as of Feb 4, 
2013 there are 556 known C&C servers (242 active), and an 
alarmingly low estimated antivirus detection rate (39.17%, zero 
for the most popular and recent samples). We also conducted 
a series of explorative experiments with SpyEye, which is less 
monitored than ZeuS (184% C&C servers, 69 active, and an 
average detection rate of 27.94%); thus, it is more difficult 
to obtain an ample set of recent samples. However, SpyEye 
uses the same Weblnject module of ZeuS, as described by 
Binsalleeh et al. [3], Buescher et al. [5], Sood et al. [14]. 
For these reasons, for the purpose of evaluating the quality 
of our fingerprint-generation approach, we decided on ZeuS 
as the most representative information stealer that generated 
real-world injections. We downloaded 76 samples, but 20 of 
these failed to install or crashed, leaving 56 distinct samples. 

We constructed a list of target URLs by merging 2 
webinjects. txt files found on underground forums, plus 
the webinjects. txt leaked as part of ZeuS 2.0.8.9 source 
code6. We so obtained 293 distinct URLs. To make it feasible 
to manually verify the results in a reasonable time, we selected 
213 URLs (143 organizations) among the URLs that were 
active at the time of evaluation. Building a list of URLs from 
webinjects. txt files found in the wild allowed us to 
deal with real-world targeted pages. As Weblnjects occur on 
landing or login pages, we concentrated our search on such 
pages. 

We created the ground truth by configuring ZARATHUSTRA 
with all the heuristics enabled. We then manually analyzed 
the results to ensure that no false or negatives were found: 
By design, if there is an injection, ZARATHUSTRA detects it. 
So, false negatives are not an issue. An alternative approach 
could have been to craft a proper webinjects. txt as the 
ground truth. However, we wanted to test ZARATHUSTRA on 
real injections found in the wild. 

6https://bitbucket.org/davaeronlzeus/ 
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Figure 5: Scalability of ZARATHUSTRA: Time required to pro­
cess 213 URLs with 76 samples (including crashing samples). 
the labeled points indicate the time to process 1 URL. 

B. Setup and Scalability 

We run all our experiments on a 1.6GHz, 4-cores x86-64 
Intel machine with 16GB of RAM. We installed Windows XP 
SP3 (Internet Explorer 6, 7, 8) on each VM and granted out­
bound and inbound Internet access. ZARATHUSTRA required 
256MB of RAM and 2 to 5GBs of disk space per VM. 

In our experiments we run Phase 1 (DOM Collection) 
with 2 to 35 VMs to collect the clean DOMs. Figure 5 shows 
that ZARATHUSTRA scales well overall: With 10 VMs running 
in parallel we are able to process 1 URL in less than 3 seconds. 
The architecture of ZARATHUSTRA has no central node, nor 
any dependency that prevent full parallel operations: As a 
result, its capacity scales directly with the amount of resources 
available. 

C. Correctness 

Table I summarizes the top-ten domains where 
ZARATHUSTRA correctly recognized injections caused 
by ZeuS. Some samples perform zero injections, although 
usually we found around 1 to 9 injections per distinct URL 
of the same domain. 

Table II summarizes the influence of each heuristic: We 
disabled one heuristic at a time and ran the same experiment. 
The last row reports the correctness of the fingerprints when all 
the heuristics are enabled: We manually verified the presence 
of actual injections and set this as the ground truth for the ex­
periments reported in the above rows. Overall, ZARATHUSTRA 
found that 23.48% of the URLs were targeted by one or more 
samples: All found injections were correct as confirmed by 
manual analysis. The second column is the most important 
one. It shows the fraction of URLs where ZARATHUSTRA 
(correctly) detected that a specific sample was performing an 
injection. We notice that the contribution of the first heuristic 
is fundamental, because such fraction of URLs decreases to 
39.58% (on average) when disabled. The second heuristic 
also provides a significant contribution, whereas the last two 
heuristics are not particularly influential in our dataset. 

D. False Positives 

False positives occur when ZARATHUSTRA confuses be­
nign differences as injections. On the data collected during 
the experiment described in Section V-C, we obtained zero 
false positives when using all the heuristics. 

In a more detailed analysis, we concentrated on the influ­
ence of Heuristic 1 versus the use of multiple clean VMs. 



Table I: Top ten target websites in our dataset. The minimum, 
maximum, total and average number of injections are calcu­
lated over the set of ZeuS 56 samples, and on the URLs within 
each domain. 

EFFECTIVE TLD # INJECTIONS 
min max tot avg 

ybonline.co.uk 0 28 952 9.0667 
cbonline.co.uk 0 45 699 2.6885 

lloydstsb.com 0 23 677 4.3121 
bbvanetoffice.com 0 14 312 5.7778 

virginmoney.com 0 279 279 5.6939 
if.com 0 77 231 4.2778 

banesto.es 0 10 194 0.7239 
rbkmoney.ru 0 8 112 2.1132 

accessmycardonline.com 0 31 93 1.7547 
smile.co.uk 0 29 87 1.6415 

The rationale is that this heuristic was the most effective at 
eliminating false positives, as the first row of Table II shows. 
Thus, after disabling Heuristic 1 we run ZARATHUSTRA with 
an increasing number n E [1,35] of clean VMs. In this way, 
we can assess how well ZARATHUSTRA can tell legitimate 
differences and true positives apart when using a sufficiently 
large number of emulated clean clients in Phase 1. 

As Figure 6 shows, without Heuristic 1 the false positives 
can still be mitigated by increasing n. The false positive rate 
approaches almost zero (l %) if at least 35 clean VMs are 
used. We manually observed that the vast majority of that 
1 %, at n = 35, was caused by JavaScript-based advertise­
ment networks and modifications performed by the browser, 
which lead to highly-dynamic DOMs. Thus, when deploying 
ZARATHUSTRA on URLs that have a dynamically-generated 
DOM, it is reconunended that either Heuristic 1 is enabled, or 
a large number of VMs is used to create a robust "baseline". 

V I. DISCUSSION AND LIMITATIONS 

From our experiments we can conclude that ZARATHUS­
TRA can reach zero false positives when all the heuristics 
are enabled-or with a decent number of clean VMs in their 
stead-and has zero false negatives by design. State-of-the-art 
approaches (e.g., via reverse engineering) may reach have zero 
false positives. However, considered the time required to gen­
erate signatures with these methods, the price is that of missed 

HEURISTICS AVG. CORRECT (± VAR.) %URLs 

2,3,4 39.58 ± 11.53% 52.17% 
1,3,4 74.98 ± 15.42% 23.48% 
1,2,4 97.97 ± 0.069% 22.61% 
1,2,3 98.42 ± 0.124% 23.04% 

All 100.0% 23.48% 

Table II: Contribution of each heuristic on the quality of the 
fingerprints. The second column reports the fraction of URLs 
with correctly-identified injections (this fraction is averaged 
over the set of 56 samples). The last column reports the 
fraction of URLs where at least one sample was detected while 
performing an injection, including false differences, which are 
analyzed separately in Section V-D. 
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Figure 6: False positives due to legitimate differences decrease 
for an increasing number, n E [2,35], of clean VMs, until it 
reaches 1.0%. With Heuristic 1 enabled, we achieve zero false 
positives. 

injections (i.e., false negatives). ZARATHUSTRA, instead, an­
alyzes WebInject-based malware automatically, quicker than 
a reverse-engineering-based approach, and with the same re­
quirement. 

Our second discussion point is that malware operators 
could rewrite the injected code, introducing no-op DOM 
nodes with the goal of evading the fingerprints generated by 
ZARATHUSTRA: Adding an additional <di v / > wrapper to a 
page (in a random position), for instance, would circumvent a 
na'ive use of our fingerprints (i.e., if the full Xpath is considered 
from the root to the leaves). However, none of the samples 
in our dataset adopted this technique. In addition, and more 
importantly, modifying the structure of a page can easily result 
in user-visible, brittle modifications. This is clearly against the 
malware operators' goal of preserving the look of the page as 
much as possible. Although we leave the implementation of a 
proper fingerprints matching algorithm to future work, we are 
aware that there is an accuracy trade off between matching the 
entire XPath expression of a fingerprint versus matching only 
the leaf nodes. However, if the leaf nodes are detailed enough 
(e.g., they contain attributes), an algorithm that matches only 
the leaf nodes can achieve good accuracy and high generality. 

WebInjects are the only artifacts that we rely on to observe 
the action of an information stealer. As a result, if a banking 
trojan succeeds in hiding its behavior (e.g., by injecting 
content only under certain conditions), ZARATHUSTRA cannot 
guarantee to extract differences every time a targeted URL is 
visited. This discussion point relates to malware that adopt 
anti-emulation techniques. However, we rely on virtual ma­
chines solely for ease of implementation and flexibility during 
evaluation. ZARATHUSTRA works perfectly, and even faster, 
on bare metal. Hence, this obstacle is easily circumvented by 
adopting the method proposed by Kirat et al. [8] to obtain 
virtual-machine-equivalent snapshots on physical hardware. In 
this way, no malware can possibly recognize that it is running 
in a controlled environment. 

Last, a minor point of our current implementation of 
ZARATHUSTRA is that we take the (banking) website as an 
oracle. For reasons that fall outside our attacker model (e.g., 
client-side malware), an injection may match exactly with a 
benign difference. For example, this happens if the website 
is updated with a new form input that matches the very same 
Xpath expression of an injection. Not only this is very unlikely 
to happen, it is also very easy to remediate by leveraging 
feedback from the bank whenever their site is updated, or 



possibly by requesting an update of the fingerprints for that 
domain. It is indeed reasonable to envision ZARATHUSTRA 
deployed within a bank information system: This use case 
would avoid most, if not all, the venues for false positives as 
a fully up-to-date model of the clean website would always 
be available. Similarly, ZARATHUSTRA can easily monitor 
authenticated web pages, which are not a limitation when our 
system is deployed by the website provider (e.g., bank). 

V II. RELATED WORK 

Trojans have been studied in the past two years. Sood 
et al. [14] give a detailed overview of the components of 
Spy Eye, including its development kit, and describe how 
Spy Eye integrates in the whole criminal ecosystem. Binsalleeh 
et al. [3] performed a similar study on the ZeuS crimeware 
toolkit. 

The key intuition of Buescher et al. [5] is that WebInjects 
are currently implemented by hooking into the Windows API 
functions: Since version 2, ZeuS hooks into Wininet. dll, 

used by Microsoft IE to (e.g., HttpSendRequestA, 

I nternetReadFile). The authors analyzed all the possible 
hooking mechanisms that could be implemented in the Win­
dows OS (i.e., inline hooks, import address table hooks, export 
address table hooks, and hooking techniques that manipulate 
the windows loader mechanism) and, from them, they derived 
behavioral fingerprints. In practice, they look for extra code 
sections in the basic Windows libraries, by comparing the 
version stored on disk against the version loaded in the process 
memory. Extra code sections are a sign of hooking. 

Our approach is similar in spirit to [5], which however 
focuses on the binary libraries loaded in memory. Instead 
of focusing on the specific DLL hooking mechanism and 
functions adopted, we concentrate on the manifestation of such 
hooking in the browser. 

Also [6] is related to our work, since it protects the browser 
from malicious websites that perform dynamic changes of the 
DOM. Although not designed specifically to target information 
stealers, it could be applied to recognize WebInjects. The 
system instruments the ECMA script layer by proxying its 
functions so to profile their execution and recognize malicious 
patterns. However, the authors mention that their method can 
detect changes of the DOM that occur at runtime, whereas 
WebInjects work at the source-code level. 

Along a different line, Riccardi et al. [13] developed a 
chosen-plaintext attack against the encrypted stream that flows 
between ZeuS (1.x and 2.x) and its C&C. The chosen plaintext 
is a combination of the information from the analysis of the 
malware toolkit and the data collected while running a sample 
in a controlled environment (e.g., cookies, user credentials, 
or computer hostname). These attacks are effective against 
a specific version of a malware binary. Unfortunately, they 
require the reverse engineering of the mal ware. 

V III. FUTURE WORK 

Besides addressing the discussion points described in Sec­
tion VI, future research should concentrate on more advanced 
uses of WebInjects. 
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As described in Kharouni [7] targeted attacks may not 
result in DOM modifications. An example is a banking web 
application that allows to divert a wire transfer by simply 
modifying one, single parameter in an outgoing HTTP request, 
the respective HTTP response (e.g., page that confirms the 
result of a transaction), and all the subsequent pages. This 
threat will require modifications to ZARATHUSTRA, because 
the injections may occur in pure text nodes. Thus, the set of 
heuristics will need to be refined to cope with these corner 
cases. 

Finally, in this paper we showed that the DOM is a simple 
yet effective observation point. We believe that other aspects 
of the browser behavior can be observed and compared on 
infected vs. clean clients, to assess whether the information 
stealers cause side effects in the browser that can be used as 
a detection criteria. 

IX. CONCLUSIONS 

In this paper we have presented ZARATHUSTRA, an auto­
mated system to observe the client side behavior of financial 
trojans that perform WebInjects. ZARATHUSTRA generates 
fingerprints of the DOM differences by comparing web pages 
as they are rendered in an instrumented browser running on 
clean and infected virtual machines. The first advantage of 
our system is that of requiring no reverse-engineering effort. 
Moreover, our approach is future proof by design. 

Our evaluation of ZARATHUSTRA against 213 real, live 
URLs of banking websites and 56 distinct samples of ZeuS 
show that, in all the cases, our system extracted all the 
injections correctly. The low rate of false positives (1.0%) were 
caused by legitimate differences in the original web pages. We 
have developed specific heuristics, which can reduce such false 
positives to zero. ZARATHUSTRA scales well, and can generate 
fingerprints for 1 URL in less than 3 seconds on average, even 
on our modest infrastructure. 

Although simple, our approach has the great advantage of 
being completely agnostic with respect to the source of the 
differences: As long as the manipulated data is observable, 
our approach can be generalized to create further "difference 
modeling" techniques that can be used to characterize the 
activity of an information stealer from other observation points. 
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ApP ENDIX 

M D 5  DETECTED INJ ECTIONS 
68ab93087e2bf697e48b9 1 2b4546e666 0/0 

93895e081 e679f8d9760de48b4ad349f 1 7/ 1 7  

757f4dcbBfb34e8d 1 68e632f1 6cebd53 1 31 1 3  

1 a45e46567b84d38ba868f702e 7959 1 3  4/4 

fd622057a28 1 8 1 3c32cade7ad54843a5 1 2/ 1 2  

9cd8fbd4 75c088d860bdc 1 371 924dd4f 1 31 1 3  

9ffe865c925bf06d35aa6b68cdaf3609 0/0 

8571 9c933ccdb42f37e8c4d9b5e6bcfd 0/0 

2 1  05082b794ecfa02 1 36eO 1 2f5ab4e6b 0/0 

1 5a494 7383bf5cd6d6481 d2bad82d3b6 1 3/ 1 3  

b2a52dabdc8 1 34 1 99cd7858dd8e41 0 1 3  1 7/ 1 7  

b68d88be4d65b29ad 1 7937d8a41 9d8ba 0/0 

bbOc5aOc 1 3682b996f5ab4b5dd79f430 1 7/ 1 7  

25471 2088ab8e0861 9f20705d7a09cf1 010 

6ba342b445092 1 5 1  d8 1 7 1  a62efe633cb 1 7/ 1 7  

7 1  d 1  a97b5776f3adc7f92ba6e82d 1 62b 1 31 1 3  

bB2eeaf8d5cOed3d442691 96865bebBO 1 31 1 3  

2 1  ef35e6e3f3494d 1 34e9928ca6f38e8 1 7/ 1 7  

e54d l b 1 1 92 1 1 907dad7dc33ff087d5be 1 3/ 1 3  

56f8a7c772 1 aa96e543d57bOfefOf98f 0/0 

2a 1 2ba5847cOfb58a8gea6b2f6dd 1 a97 0/0 

1 ad8e541 7ge8c2c7767ea3b039d542fc 2/2 

9b995 1 c50e048 1 8c41 3c8cdl a3096a6b 0/0 

d60487f05000 1 60d85dbOb354dbdd866 1 61 1 6  

cdf3bb9c75000fc49c7c 1 48b76c20b45 1 7/ 1 7  

3 1  ea03a2a33a 75ddf48d52f4605efObb 1 61 1 6  

b 1 a49aa03fcl a8226ebc 1 205bdcf5562 1 3/ 1 3  

6384e4fl b5eeefbcb99a281 ac5 1 4078a 0/0 

4df 1 446e841 9978a0999ff2fa3fd60a3 1 7/ 1 7  

04 1 c 1 7a7b97550fd69d25613dgef8f46 0/0 

9bcOe3d 1 9af91 5c608a784fda63b0076 1 3/ 1 3  

a4aa 1 627 45adcb84373e6a6231 25c650 1 2/ 1 2  

22788996e2381 bdb97480b8de 1 4  1 ec2c 0/0 
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39ad78a889a2b40a94dd700d67f 1 a5ed 2/2 

b2c82ffel 0763cdc241 c7fa8d97097ae 1 3/ 1 3  

bf45f27a403acfd3847fbbae88a8375f 010 

9abaffda80841 aa87c9f5786eOdb63ge 0/0 
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08eO 1 22 1 1 86cf82952c25d9951 7656 1 b 0/0 
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3ba31 4921 3e6b9091 c7271 04dbb26ea6 4 1 /4 1  

b62dbd30 1 f 1 30487dfbc 1 4  73dced8aad 1 7/ 1 7  

f75e3fa05762072e5e6471 f3fb982087 1 3/ 1 3  

c04fddfaab6bB79a25b036980a34908e 1 21 1 2  

ffcaf8a2f2f5geOf7b1 65d085842bd 1 7  1 61 1 6  

70dfde201 f6a9a66730d9ae6b69450f8 42/42 

eccOa5bdf51 74efcd9d292e81 5de06f4 1 1 /1 1 

5298f1fd6b300223f6bcdbc1 fa89c2cO 0/0 

7f280b73093e5b61 ab2eec7b6ebda420 1 7/ 1 7  

2 1 248f3752c84ee5866a95992dba08 1 3  1 7/ 1 7  

5 1  eef801 f61 4a0278c8b 79f7be9d2fdf 1 2/ 1 2  

be4f41 6d394b4e305fdOel 1 d40a4242c 1 7/ 1 7  

99646549006435d73efeddbbbcf43 1 3f 1 3/ 1 3  

c4ba4d84e5b401 32e82b40346geb13ca 0/0 


