
Meta-Learning Bidirectional Update Rules

Mark Sandler 1 Max Vladymyrov 1 Andrey Zhmoginov 1 Nolan Miller 1 Andrew Jackson 1 Tom Madams 1

Blaise Agüera y Arcas 1

Abstract
In this paper, we introduce a new type of general-
ized neural network where neurons and synapses
maintain multiple states. We show that classi-
cal gradient-based backpropagation in neural net-
works can be seen as a special case of a two-
state network where one state is used for acti-
vations and another for gradients, with update
rules derived from the chain rule. In our gen-
eralized framework, networks have neither ex-
plicit notion of nor ever receive gradients. The
synapses and neurons are updated using a bidirec-
tional Hebb-style update rule parameterized by a
shared low-dimensional “genome”. We show that
such genomes can be meta-learned from scratch,
using either conventional optimization techniques,
or evolutionary strategies, such as CMA-ES. Re-
sulting update rules generalize to unseen tasks
and train faster than gradient descent based opti-
mizers for several standard computer vision and
synthetic tasks.

1. Introduction
Neural networks revolutionized the way ML systems are
built today. Advances in neural design patterns, training
techniques, and hardware performance allowed ML to solve
tasks that seemed hopelessly out of reach less than ten years
ago. However, despite the rapid progress, their basic neuron-
synapse design has remained fundamentally unchanged for
nearly six decades, since the introduction of perceptron mod-
els in the 50s and 60s (Minsky & Papert, 1969; Rosenblatt,
1957) that modeled the complex biology of a synapse firing
as a simple combination of a weight and a bias combined
with a non-linear activation function.

With such models, the next question was “How should we
best find the optimal weights and biases?” and great suc-
cesses have come from the use of stochastic gradient descent,

1Google Research. Correspondence to: Mark Sandler <san-
dler@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

traced back to Robbins & Monro (1951). Since its intro-
duction, many of the more recent remarkable improvements
can be attributed to improving the efficiency of the gradient
signal: adjusting connectivity patterns such as in convolu-
tional neural networks and residual layers (He et al., 2015),
improved optimizer design (Kingma & Ba, 2014; Duchi
et al., 2011; Schmidt et al., 2020), and normalization meth-
ods such as (Ioffe & Szegedy, 2015; Ulyanov et al., 2016).
All these methods improve the learning characteristics of
the networks and enable scaling to larger networks and more
complex problems.

However the underlying principle behind these methods
remained the same: minimize an engineered loss function
using gradient descent. Instead, we propose a different
approach. While we still follow the general strategy of for-
wards and backwards signal transmission, we learn the rules
governing both forward and back-propagation of neuron
activation from scratch. The key enabling factor here is a
generalization where each neuron can have multiple states.

We define a space of possible transformations that specify
the interaction between neurons’ feed-forward and feed-
back signals. The matrices controlling these interactions
are meta-parameters that are shared across both layers and
tasks. We term these meta-parameters a “genome”. This
reframing opens up a new, more generalized space of neural
networks, allowing the introduction of arbitrary numbers
of states and channels into neurons and synapses, which
have their analogues in biological systems, such as the mul-
tiple types of neurotransmitters, or chemical vs. electrical
synapse transmission.

Our framework, which we call BLUR (Bidirectional
Learned Update Rules) describes a general set of multi-state
update rules that are capable to train networks to learn new
tasks without ever having access to explicit gradients. We
demonstrate that through meta-learning BLUR can learn
effective genomes with just a few training tasks. Such
genomes can be learned using off-the-shelf optimizers or
evolutionary strategies. We show that such genomes can
train networks on unseen tasks faster than comparably sized
gradient networks. The learned genomes can also generalize
to architectures unseen during the meta-training.

ar
X

iv
:2

10
4.

04
65

7v
2 

 [
cs

.L
G

] 
 1

1 
Ju

n 
20

21



Meta-Learning Bidirectional Update Rules

2. Related Work
Alternatives to stochastic gradient descent Replacing
the backpropagation of loss function gradients with a dif-
ferent signal has been explored before. One example is a
family of methods building upon difference target propaga-
tion (Bengio, 2014; Lee et al., 2015), which uses the desired
output “targets” or “errors” as the primary signals commu-
nicated during the backpropagation stage. A recent paper
by Ahmad et al. (2020) builds on the target propagation
approach and proposes an alternative, a more biologically
plausible local update that is shown to be equivalent to the
SGD update. Similarly, SGD can be expressed as a special
case of a more general family of update rules, which we
explore for the best-performing learning algorithm.

Another related line of work builds upon the feedback align-
ment method that replaces backwards weights in SGD with
fixed random matrices (Lillicrap et al., 2016; Nøkland,
2016). In Akrout et al. (2019), the authors extend this
idea by separately evolving backward weights for automatic
“synchronization” of forward and backward weights. In ad-
dition, Xiao et al. (2018) have demonstrated empirically that
many of the biologically inspired methods listed above train
at most as good as SGD.

The bidirectional nature of networks was explored in
(Pontes-Filho & Liwicki, 2019; Adigun & Kosko, 2019),
where the backward pass is treated as a generative inference
rather than learning update.

The common feature of approaches above is that all these
methods rely on a standard forward pass, and a hand-
designed backward pass. While some variants of feedback
alignment are contained within the family of update rules
we explore in this paper, in contrast to them our approach
learns the meta-parameters that control both the forward
and backward passes.

Another line of inquiry are methods that utilize greedy layer-
wise training (Bengio et al., 2006; Belilovsky et al., 2019;
Löwe et al., 2019; Xiong et al., 2020), a pseudoinverse
(Ranganathan & Lewandowski, 2020), or like Taylor et al.
(2016) reformulate the end-to-end training as a constrained
optimization problem with additional variables. While these
methods do not share as many common elements with the
present approach, we believe that exploring layer-wise train-
ing in conjunction with our method is a promising direction
for future research.

Meta-Learning Recently, researchers have turned to
meta-learning (Schmidhuber, 1987) approaches that aim on
improving existing functional modules (Munkhdalai et al.,
2019) or learning methods by meta-training optimal hyper-
parameters (often called meta-parameters) in a problem-
independent way (Andrychowicz et al., 2016; Wichrowska
et al., 2017; Maheswaranathan et al., 2020; Metz et al., 2019;

2020). The important difference with our method is that
these work by directly using the gradient of a given loss
function, whereas our method proposes a holistic learning
framework that does not correspond to any known optimizer
or even rely on a predefined loss function.

It has long been recognized that SGD is a biologically im-
plausible mechanism (Bengio et al., 2015). Another direc-
tion that is explored in the literature is more biologically
plausible mechanisms (Soltoggio et al., 2018) including
those based on Hebb’s rule (Hebb, 1949) and its modifica-
tion Oja’s rule (Oja, 1982). Meta-learning has been used
to learn the plasticity of similar update rules (Miconi et al.,
2018; 2019; Lindsey & Litwin-Kumar, 2020; Confavreux
et al., 2020; Najarro & Risi, 2020) as well as different neuro-
modulation mechanisms (Bengio et al., 1995; Norouzzadeh
& Clune, 2016; Velez & Clune, 2017; Wilson et al., 2018).
Recent work by Camp et al. (2020) followed a related di-
rection learning the sub-structure of individual neurons by
representing them as perceptron networks while keeping
gradient-based backpropagation. In yet another alterna-
tive approach, Kaplanis et al. (2018) proposed to introduce
more nuanced memory to synapses, while in Randazzo
et al. (2020), authors meta-learn parameters of a complex
message-passing learning algorithm that replaces the back-
propagation while leaving the forward pass intact.

Kirsch & Schmidhuber (2020) propose a generalized learn-
ing algorithm based on a set of RNNs that, similar to our
framework, does not use any gradients or explicit loss func-
tion, yet is able to approximate forward pass and back-
propagation solely from forward activations of RNNs. Our
system, in contrast, does not use RNNs and explicitly leaves
(meta-parametrized) bidirectional update rules in place.

Different from traditional meta-learning, Real et al. (2020)
and Ha et al. (2016) devise a specialized learning algorithm
to directly find the optimal parameters of another target
algorithm that they want to learn.

To the best of our knowledge, our paper is the first work that
customizes both inference and learning passes by success-
fully finding the update rule for both forward and backward
passes that does not rely on neither explicit gradients or a
predefined loss function.

3. Learning a New Type of Neural Network
3.1. A generalization of gradient descent using

neuronal state

To learn a new type of neural network we need to formally
define the space of possible configurations. Our proposed
space is a generalization of classical artificial neural net-
works, with inspiration drawn from biology. For the pur-
pose of clarity, in this section we modify the notation by



Meta-Learning Bidirectional Update Rules

x

x x

x

xx

Figure 1. Generalization of a three layers feed-forward neural networks as a multi-state systems. Left: Forward pass and chain-rule
backpropagation organized as a generalized two-state network. Arrows indicate the flow of information from forward and backward passes
to synapse updates. Right: Our proposed generalized formulation. Green nodes, defined in the genome, control the amount of mixing
between the states. They are fixed during the synapse update (inner-loop) and are optimized during the meta-training (outer-loop). Grey
boxes indicate multi-state variables. Orange boxes represent activation functions. Notice the symmetry between forward and backward
passes.

abstracting from the standard layer structure of a neural
network, and instead assume our network is essentially a
bag-of-neuronsN of n neurons with a connectivity structure
defined by two functions: “upstream” neurons I(i) ⊂ N
that send their outputs to i, and the set of “downstream”
neurons J(i) ⊂ N that receive the output of i as one of
their inputs. Thus the synapse weight matrixwij can encode
separate weights for forward and backward connections.

Normally we think of a neuron in an artificial neural network
as having a single scalar value, it turns out that one state is
not enough once we incorporate a back-propagation signal,
which uses both feed-forward state and feedback state to
propagate through the network. The standard forward pass
over a densely connected neural network updates the state
of each neuron j ∈ N according to

hj = σ
(∑

i∈I(j) wijhi

)
, (1)

where hj is the activation for neuron j ∈ N resulting
from applying a function σ(·) to the product of the network
weights wij and the incoming stimulus from I(j). Here and
further we combine the bias and the weights into a single
vector by adding a unit element at the end of each hidden
vector. For the first layer, the activation is given by the input
batch. Let us define h′j := σ′

(∑
i∈I(j) wijhi

)
as a deriva-

tive of the activation with respect to its argument. Then we
can write chain rule, describing the back-propagation of a
loss function as:

∂L
∂hi

=
∑
j∈J(i) wij

∂L
∂hj

h′j . (2)

For the last layer, the first step of backpropagation is given
by the derivative of the loss function with respect to the last
activations. After the backpropagation, using the notation
above, the gradient descent updates the synapses wij using

wij ← wij − η̃ ∂L∂hj
h′jhi, (3)

where η̃ is a learning rate.

Notice that the update has a form of the Hebbian learning
rule (Hebb, 1949) with pre-synaptic activation given by
hi and post-synaptic one given by ∂L

∂hj
h′j . We can make

this connection even more explicit using neurons with two
states, i.e., activations above are now replaced with a two-
dimensional vector ai = (a

(1)
i , a

(2)
i ). One of these states

would be used for a feed-forward signal and another for
a back-propagated feedback signal. During the forward
pass we set aj ← (hj , h

′
j) and during the backward pass

the second state is updated multiplicatively using (2) as
a
(2)
i ← ∂L

∂hi
h′i = a

(2)
i

∑
j∈J(i) wija

(2)
j . Then the synapse

update is given by wij ← wij − η̃a(2)j a
(1)
i . The left side

of Figure 1 demonstrates the described operations as a two-
state neural network.

We can further generalize the learning procedure with the
following constant matrices: ν = ( 1 0

1 0 ), µ = ( 0
1 ), ν̃ =

( 1
0 ), µ̃ = ( 0

1 ) and a generalized binary activation function

φ
(

( xy )
)

=
(
σ(x)

σ′(y)

)
. Then the operations above can be

equivalently rewritten as

Forward pass: acj ← φc
( ∑
i∈I(j),d

wija
d
i ν
cd
)

Backward pass: a
(2)
i ← a

(2)
i

∑
j∈J(i),d

wija
d
jµ

d

Weights update: wij ← wij − η̃
∑
c,d

acj µ̃
cadi ν̃

d.

(4)

Here c, d = {1, 2} represent the states of the network and
we use superscript to index over the states. Thus, traditional
gradient backpropagation can be expressed as a general two-
state network, whose update rules are controlled by a pre-
defined set of very low-dimensional matrices {ν, µ, ν̃, µ̃, η̃}.
These matrices are fixed during the weight update phase and
optimized during the meta-optimization to achieve a more
general update rules.



Meta-Learning Bidirectional Update Rules

Name Dimension Description
Constants

n - total number of neurons.
k - total number of states.

Network params
aci i ∈ [n], c ∈ [k] state c of neuron i.
wcij i, j ∈ [n], c ∈ [k] channel c of synapse be-

tween i and j.
Meta-learning params (genome)

f , η 1 neuron forget and
update gates.

f̃ , η̃ 1 synapses forget and
update gate.

νcd, µcd c ∈ [k], d ∈ [k] forward/backward neu-
ron transform matrix.

ν̃cd, µ̃cd c ∈ [k], d ∈ [k] pre- and post-synaptic
transform matrix.

Table 1. Description and dimensions of variables.

3.2. Multi-state bidirectional update rules

The two-state interpretation of the backpropagation algo-
rithm outlined above is asymmetrical and contains several
potentially biologically implausible design details like the
use of the same weight matrix on the forward and backward
passes and a multiplicative update during the backpropa-
gation phase. Being inspired by this update mechanism,
we propose a general family of bidirectional learned up-
date rules (BLUR) that: (a) use multi-channel asymmetrical
synapses, (b) use the same update mechanisms on the for-
ward and backward paths, and finally (c) allow for informa-
tion mixing between different channels of each neuron. In
its final state, this family can be described by the following
equations:

Forward pass: acj ←σ
(
facj + η

∑
i∈I(j),d

wcijν
cdadi

)
(5)

Backward pass: aci ←σ
(
faci + η

∑
j∈J(i),d

wcjiµ
cdadj

)
(6)

Weights update: wcij←f̃wcij + η̃
∑
e,d

aei ν̃
ec · µ̃cdadj . (7)

The right side of Fig. 1 demonstrates the proposed frame-
work and Table 1 tracks the description and dimensional-
ity of variables used in the formulae above. The matri-
ces {f, f̃ , ν, ν̃, µ, µ̃, η, η̃} used in (5–7) form our complete
genome G.

Here we make the following generalizations with respect to
the backpropagation update rules:

• The neuron transform matrices ν, µ and synapse trans-
form matrices ν̃, µ̃ all have dimension k × k and allow

for mixing of every input state to every output state as
well as possibility using more than two states in the
genome.

• We expand the genome to include f, η, f̃ , η̃ that con-
trol how much of the information is forgotten and how
much is being updated after each step. A similar ap-
proach has been studied in Ravi & Larochelle (2017),
however we learn these scalars directly and do not
model them as a function of a previous iteration.

• We propose an additive update for both neurons and
synapses. Note that in order to generalize to backpropa-
gation, an additive update for the backward pass has to
be replaced with a multiplicative one and applied only
to the second state. Experimentally, we discovered
that both additive and multiplicative updates perform
similarly.

• We extend the activation function to be applied on both
forward and backward pass and, to make things simple,
make it unitary (same function applied to every state).

• We generalize the synapse matrices to be asymmetric
for a forward and backward pass (wij 6= wji) as well
as contain more than one state. Symmetric weight ma-
trices are ordinarily used for deep learning, but distinct
weight matrices are more biologically plausible.

• The synapse update has a general form of a Hebbian-
update rule mixing pre- and post-synaptic activity ac-
cording to the synapse transform matrices ν̃, µ̃.

In addition to generalizing existing gradient learning, not
relying on gradients in backpropagation has additional ben-
efits. For example, the network doesn’t need to have an ex-
plicit notion of a final loss function. The feedback (ground
truth) can be fed directly into the last layer (e.g. by an up-
date to the second state or simply by replacing the second
state altogether) and the backward pass would take care of
backpropagating it through the layers.

Notice that the genome is defined at the level of individual
neurons and synapses and is independent from the network
architecture. Thus, the same genome can be trained for
different architectures and, more generally, genome trained
on one architecture can be applied to a genome with differ-
ent architectures. We show some examples of this in the
experimental section.

Since the proposed framework can use more than two states,
we hypothesize that just as the number of layers relates to
the complexity of learning required for an individual task
(inner loop of the meta-learning), the number of states might
be related to complexity of learning behaviour across the
task (outer loop). More informally: synapses regulate “how



Meta-Learning Bidirectional Update Rules

hard is a given task” vs genome’s “how hard it is to learn
the task given a variety of other tasks available”.

Our resulting genome now completely describes the com-
munication between individual neurons. The neurons them-
selves can be arranged in any of the familiar ways – in
convolutional layers, residual blocks, etc. For the rest of the
paper we focus on the simplest types of networks consisting
of one or more fully connected layers.

3.3. Meta-learning the genome

Once we have defined the space of possible update rules, the
next step is to design an algorithm to find a useful genome
capable of successful training and generalization. In this
work we concentrate on meta-learning genomes that can
solve classification problems with multiple hidden layers.

For a d-class classification problem with l-dimensional in-
put, we use the first layer as input and the last layer with d
neurons as predictors. We denote those neurons as x1 . . . xl
and y1 . . . yd respectively.

During the learning process, in the forward pass we apply
equation (5) to compute a logit prediction for a given class i
to the first state of the last layer a(1)yi . During the backward
pass, we set the second state a(2)yi as 1 or−1 from the ground
truth based on the class attribute. In experiments with more
than two states per neuron, we fill the other states of the
last layer with zeros. We then use equations (6) and (7) to
compute updated synapse state.

To evaluate the quality of a genome we apply equations (5–
7) for multiple unroll steps and then test learned synapses on
a previously unseen set of inputs. To meta-learn using SGD
we use standard softmax-cross entropy loss: Lmeta(G) =

Es

[
pi(s) log a

(0)
yi (s)

]
where pi(s) is one-hot vector repre-

senting the true category for a sample s, and a(0)yi (s) is the
prediction of that sample from the forward pass, after apply-
ing our forward and backward updates for a given number
of unroll steps. We then can minimize this function with
standard off-the-shelf optimizers to find an optimal genome.

In section 4.4 we also perform experiments using CMA-
ES (Hansen & Ostermeier, 1996) where we use training
accuracy as a fitness metric.

3.4. Activation normalization and synapse saturation

Synapse updates that rely on Hebb’s rule alone (∆wij ∼
aiaj) are generally unstable, as network weights w grow
monotonically with the training steps. One way to allevi-
ate this issue while also reducing the sensitivity of network
outputs to small synapse perturbations is to use activation
normalization. Normalization techniques are known to be
used by certain biological systems (Carandini & Heeger,

2012) to calibrate neuron activation to the optimal firing
regime and are widely used in conventional deep neural
architectures (Ioffe & Szegedy, 2015; Ulyanov et al., 2016).
In most of our experiments, we used per-channel normal-
ization similar to batch-normalization to normalize a pre-
nonlinearity activation distribution into one with a learnable
mean and deviation. To maintain the symmetry between the
forward and backward pass we apply normalization for both
forward and backward activations. This not only helps in
training deeper models, but also allows learned update rules
to generalize to different input sizes and number of classes.

However, activation normalization alone does not always
prevent an unbounded growth of synapse weights, and so
another mechanism for weight saturation is necessary. One
such approach is based on using Oja’s update rule (Oja,
1982) that modifies Hebb’s rule with an additional compo-
nent that by itself leads to the decay of the singular com-
ponents of the weight matrix. One of the most commonly
used forms of Oja’s update rule is ∆wij = γaiaj − γa2jwij
however there also exist other forms with similar proper-
ties. In linear systems, the interplay of the excitatory and
inhibitory driving forces leads to synapse saturation (Oja,
1982). But in our case, the linear component of the update
rule f̃w along with the usage of nonlinearities (like tanh)
or activation normalization may prevent Oja’s original rule
from saturating model weights. In Appendix B, we show
that the same principles that were used to derive Oja’s rule
can also be applied to our system and result in the following
inhibitory Oja-like update:

(∆wcij)
Oja = −(f̃ − 1)wcij

∑
r

(wcrj)
2−

− η̃wcij
∑
r

wcrj
∑
e,d

aerν̃
ec · µ̃cdadj . (8)

The first component of this update usually dominates the
second component, so in our experiments we only used this
term with an additional learnable multiplier.

Oja’s term is generally derived as an inhibitory additive
component that acts as a “counterweight” to the Hebbian
synapse update and keeps the weight norm fixed. Instead of
using such inhibitory terms, we could instead apply normal-
ization and saturating nonlinearities (like α tanh(x/α) with
a learnable α coefficient) directly to the synapses. In our
experiments, we empirically validated that both approaches
lead to very similar results and could thus potentially be
used interchangeably.

3.5. Is this update rule still a gradient descent?

Once we have used meta-learning to identify a promising
genome, one might ask if the resulting training algorithm
is in fact identical to a conventional gradient descent with
some unknown loss function Lequiv. In this section we



Meta-Learning Bidirectional Update Rules

0 50 100 150 200
k

0
25
50
75

100
125
150
175
200

m

−4

−3

−2

−1

Figure 2. Natural logarithm of |∂∆wk/∂wm − ∂∆wm/∂wk|
computed numerically for flattened and concatenated forward
weight matrices in a two-state model learning a 2-input Boolean
task (e.g. xor). The model has a single hidden layer of size 20
and thus 204 total forward weights and biases. The magnitude of
the numerical error is estimated to be below e−4. Bands in the
left-upper corner correspond to asymmetries between first-layer
connections to the same hidden neurons; other structures appear
to arise because of the asymmetries between the first- and the
second-layer weights.

empirically demonstrate that the answer is generally no.
Consider a full-batch training scenario and let ∆wcij(ŵ;a)
be the weight update rule defined by our learned genome.
Equivalence to the gradient descent would then mean that

∆wcij = −γ ∂Lequiv

∂wcij
(9)

and therefore

∂∆wcij
∂wdmn

= −γ ∂2Lequiv

∂wcij∂w
d
mn

.

Since the partial derivatives are symmetric, we see that

∂∆wcij
∂wdmn

=
∂∆wdmn
∂wcij

(10)

is a necessary condition for the existence of the loss Lequiv

satisfying Eq. (9). This condition can be tedious to ver-
ify analytically, but we can instead check it numerically.
Computing |∂∆wcij/∂w

d
mn − ∂∆wdmn/∂w

c
ij | in a simple

experiment with Boolean functions and a single hidden layer
of size 20, we verified that the discovered update rules do
not satisfy condition (10) (see Fig. 2) and therefore Lequiv

does not generally exist for our update rule family.

The observation that learning trajectories obtained with
our update rule cannot be recovered using conventional
gradient descent does not rule out a potential equivalence
to other learning algorithms such as, e.g., a gradient de-
scent with a Riemannian metric ĝ(w) defined via ∆wi =
−γ
∑
j gij · (∂Lequiv/∂wj) (for details see Appendix A).

It is also worth noticing that the question of existence of a
loss function that is monotonically non-increasing along the
training trajectories is directly related to the well-established
theory of Lyapunov functions that currently includes many
general existence theorems (Conley, 1978; 1988; Farber
et al., 2003; Franks, 2017) and is subject of future work.

4. Experiments
In this section we describe experimental evaluation of
update rules using BLUR . Our code uses tensorflow (Abadi
et al., 2015) and JaX (Bradbury et al., 2018) libraries. All
our experiments run on GPU. Typically a single genome can
be trained on a single GPU in between 30 minutes and 20
hours depending on configuration. For some experiments
we run multiple identical runs to estimate variance. For all
our experiments we use the same set of basic parameters
as described in Appendix C.1. In section 4.5 we study
several alternative formulations to show their impact on
convergence and stability. Code for the paper is available
at https://github.com/google-research/
google-research/tree/master/blur

4.1. Meta-learning simple functions

We first consider a very simple setup where we try to learn
toy-examples with two variable inputs. The datasets are
shown in Fig. 3. The tasks we use for training are and,
xor, two-moon (Pedregosa et al., 2011) and several oth-
ers. We then validate it on held out datasets shown in Fig. 3.
These datasets include both in-domain (e.g. other 2-class
functions), five-class function of two variables blobs (Pe-
dregosa et al., 2011) and out-of-domain MNIST (Lecun
et al., 1998). We train a two-layer network using a two-
state genome, and use the same two-layer architecture for
meta-training and meta-validation. The results are shown in
Fig. 4.

4.2. Generalization capabilities

In this section we explore the ability of genomes that we
found to generalize to new datasets. We use MNIST as
a meta-training dataset. Since MNIST generally requires
more than 10 steps to converge we use a variant of curricu-
lum training to gradually increase the number of unrolls. We
start with 8-identical randomly initialized genomes and train
them for 10,000 steps with 10 unrolls. Then we increase the
unroll number by 5 for each consecutive 10,000 steps and
synchronize genomes across all runs. The example of meta-
training training accuracy is shown in Appendix. In Fig. 5
we show the performance of a curriculum-trained genome.
The genome was trained on 3 tasks: full MNIST, and two
half-size MNIST datasets, one with digits from 0 to 4 and
another from 5 to 9. Interestingly, even this naive setup that
uses just three slightly different tasks shows improved gen-

https://github.com/google-research/google-research/tree/master/blur
https://github.com/google-research/google-research/tree/master/blur


Meta-Learning Bidirectional Update Rules

Training datasets Validation datasets
xor and twomoon centercirc smallcentercirc pieslice blob5x1 cross triangle

Figure 3. Toy datasets. Left side: meta-training datasets, right side: meta-validation datasets. Top row: training data, bottom row:
prediction of the trained genome produces on a dense and enlarged grid.

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

xor

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 and

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 twomoon

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 centercirc

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 smallcentercirc

0 10 20 30 40 50
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 pieslice

Best meta-training run
Worst meta-training run

Training accuracy across multiple meta-train runs

0 10 20 30 40 50
0.0

0.5

1.0

Ac
cu

ra
cy

blob5x1

0 10 20 30 40 50

0.4

0.6

0.8
cross

0 10 20 30 40 50
Unroll steps

0.25

0.50

0.75

Ac
cu

ra
cy

triangle

0 10 20 30 40 50
Unroll steps

0.2

0.4

0.6
mnist:0-9

Best meta-training run
Worst meta-training run

Validation  accuracy across multiple meta-train runs

0.92 0.93 0.94 0.95 0.96
Mean accuracy (meta-train)

0.84

0.85

0.86

0.87

0.88

0.89

M
ea

n 
ac

cu
ra

cy
 (m

et
a-

va
l)

Training vs validation datasets

0 10 20 30 40 50

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

blob5x1

0 10 20 30 40 50

0.5

0.6

0.7

0.8

cross

0 10 20 30 40 50
Unroll steps

0.4

0.6

0.8

Ac
cu

ra
cy

triangle

0 10 20 30 40 50
Unroll steps

0.2

0.4

0.6

mnist:0-9

Mean accuracy

Eval variability for the best meta-training run

Figure 4. Meta-learning on toy datasets. Top row: the validation performance on training datasets. The spread indicates variation across
multiple meta-training runs. Bottom left: shows the variation on validation datasets. Bottom right: the variation within a single run, but
fora different synapse initializations. Bottom middle: the correlation between mean meta-validation and meta-training accuracy across
different runs at unroll 10. For all the graphs the blue line shows the run with the highest average meta-training accuracy and the red one
the lowest. Since genomes are selected based on their average meta-training, it is expected that for some tasks they are not the worst.

eralization abilities. For meta-training we used the MNIST
dataset cropped to 20x20 and resized to 10x10. For meta-
validation we always used 28x28 datasets. Specifically we
used MNIST, a 10-class letter subset of E-MNIST (Cohen
et al., 2017), Fashion MNIST (Xiao et al., 2017), and the full
62-category E-MNIST. This shows that the meta-learned
update rules can successfully learn unrelated tasks without
ever having access to gradient functions. We didn’t include
the graph of evaluation accuracy for meta-training variant
of MNIST that used cropped and down-sampled digits, but
we note that it generally produced results that were about
1% below 28x28 MNIST, thus suggesting excellent meta-
generalization.

Finally, on the same Figure 5 we show an example of
an MNIST-trained genome applied to an out-of-domain
Boolean task.

4.3. Comparison with SGD

In figure 6 we compare the convergence performance on
MNIST dataset of BLUR vs. SGD with and without mo-
mentum with different values of learning rate spanning 4
orders of magnitude.

4.4. Training using evolution strategies

Using the evolution strategies to train genomes are appealing
for two reasons. First, it enables us to train networks with a
much larger number of unrolls. Second, it allows us to find
genomes with non-differentiable objectives.

In this section we use a simplified setup without curriculum
learning. We train a network with a single hidden layer of
512 channels and 2 states on MNIST downsampled to 14x14.
Each meta-learning step represents training the network on



Meta-Learning Bidirectional Update Rules

0 20 40 60 80 100
Unroll steps

0.2

0.4

0.6

0.8

mnist:0-9

SGD (256,)
BLUR (256,)
SGD (256, 128)
BLUR (256, 128)
SGD (512, 256)

0 20 40 60 80 100
Unroll steps

0.2

0.4

0.6

0.8

emnist:0-9

0 20 40 60 80 100
Unroll steps

0.2

0.4

0.6

0.8

emnist:10-19

0 20 40 60 80 100
Unroll steps

0.2

0.4

0.6

0.8

fashion:0-9

0 20 40 60 80 100
Unroll steps

0.2

0.4

0.6

0.8

emnist:0-62
Genome trained on a two layer network

Figure 5. Generalization of a genome meta-trained with 2-layer/4-state architecture on MNIST to other datasets. Note that our search only
explored up to 50 unroll steps. Our method converges much faster than SGD in the explored training trajectory, however after about
100 steps SGD reaches the same accuracy and continues to grow. The rightmost visualization applies the same genome to learn a xor
function.

0 20 40 60 80 100
Unroll steps

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Sgd with different learning rates vs BLUR (MNIST)

BLUR
SGD w.o. Momentum
SGD w/Momentum

Figure 6. Performance of 4-state BLUR network vs. SGD with
different learning rates.

0 500 1000 1500
Meta-training step

0.25

0.50

0.75

Ac
cu

ra
cy

Best run accuracy during meta training

Gradient
CMA

0 20 40 60 80 100
Unroll step

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Validation accuracy at unroll

SGD
CMA

Figure 7. Using CMA to learn best non-differentiable accuracy
objective, against gradient based meta training. Left: meta-training
trajectory right: fully trained genome learning MNIST. Both meth-
ods show best run out of 8.

15 batches of 128 inputs, then evaluating its accuracy on 20
batches of 128 inputs. We use the CMA-ES/pycma (Hansen
et al., 2019) library to optimize the network genome with
respect to the (non-differentiable) 20 batch accuracy. Using
a population of 80 parallel experiments per time step, CMA-
ES is able to learn a genome that achieves 0.84 accuracy in
400 steps. Accuracy as a function of meta-learning steps
can be seen in Fig. 7. Evaluating the generalization of this
genome over different numbers of unrolls reveals that it
reaches full accuracy in 15 unroll steps as expected, and
plateaus without significant decay and results in comparable
performance as gradient-based search.

1 2 3
# hidden layers

0.0

0.5

Validating on 10x10 Mnist

1 2 3
# hidden layers

0.0

0.5

Validating on 28x28 Mnist
No norm
Backward only
Forward only
Both

Impact of neuron normalization

Figure 8. Importance of neuron normalization. The genomes that
do not use normalization produced did not generalize as well to
different resolutions and deeper networks.

4.5. Ablation study

In this section we explore the importance of several critical
parameter choices. We will be training with the same setup
as in section 4.1, but instead of verifying it on the meta-
validation dataset, we will measure the impact on MNIST.

Normalization Normalization plays a crucial role in the
stability of our meta-training process and improves the final
training accuracy. Fig. 8 shows a meta-training accuracy
comparison of identical runs with forward/backward nor-
malization turned off.

Impact of non-linearity In contrast with chain-rule back-
propagation, our learning algorithm uses symmetric non-
linearity for simplicity. Curiously, it appears that the inde-
pendent choice of non-linearity on the forward and back-
ward pass has relatively little impact on our ability to find
genomes that can learn. Generally the space seems to be
insensitive to the choice of non-linearity used on either for-
ward or backward pass. In Appendix we include a table
showing the variation in validation accuracy across different
non-linearities.

Symmetry of the synapses Here we compare our frame-
work across combinations of three different dimensions: (a)
using symmetric or asymmetric synapses for backward and
forward passes, (b) using single or multi-state synapses and



Meta-Learning Bidirectional Update Rules

Meta-train
MNIST 10-way Omniglot

M
et

a-
E

va
l

M
N

IS
T

100 101

Unroll steps

0.00

0.25

0.50

0.75

1.00
A

cc
ur

ac
y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

O
m

ni
gl

ot

Sym, single state, backprop init

Sym, multistate, random init

Asym, multistate, random init
SGD

Figure 9. Accuracy of different variants of BLUR trained on
MNIST (left) or 10 episodes from Omniglot (right) to 10 unrolls
and evaluated on MNIST (top) and Omniglot (bottom). Black line
corresponds to the SGD. Errorbars show standard deviation of the
accuracy over 10 different subsets of Omniglot. Only the best
result of 8 runs is plotted.

(c) initializing genome close to backpropagation (i.e. using
ν = ( 1 0

1 0 ), µ = ( 1 0
0 1 ), ν̃ = ( 1 0

0 1 ), µ̃ = ( 0 1
1 0 ) as defined in

Sec. 3.1). We trained eight different combinations above on
the MNIST dataset and on a 10-way episode learning from
Omniglot (at every meta-iteration sampling 10 different ran-
dom classes from the 1200 class subset of Omniglot). We
then evaluate the resulting genomes on test set of MNIST
or 10 different subsets of Omniglot tasks that were not part
of the training set. In Fig. 9 we show three best variants of
these parameters (the other five had much worse results and
available in the Appendix) as well as comparison with SGD
trained using cross entropy loss and a learning rate 0.001.
We noticed that while having asymmetric forward and back-
ward synapses allows our system to be strictly more general,
it does not always lead to better generalization. The simplest
variant with symmetric, single-state synapses tends to be the
winner, however it has to be initialized from the backprop
genome. Other two variants that performed well: symmet-
ric, multi-state genomes and the most general asymmetric,
multi-state genome.

Learning genomes for deeper and wider networks In
this experiment we meta-train our genome on networks that
contain 2, 3, and 4 hidden layers and explore their ability
to generalize across changes in layer sizes and architecture,
as measured by their performance on MNIST after 10 steps.
We use the same setup as in section 4.1. The results are
shown in Fig. 10. Interestingly we discover that genomes
generalize from more complex architectures to less complex

0 20 40 60 80 100
Unroll steps

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Meta-train with 1 layers.

0 20 40 60 80 100
Unroll steps

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Meta-train with 2 layers.

0 20 40 60 80 100
Unroll steps

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Meta-train with 4 layers.

Eval w/1 layers
Eval w/2 layers
Eval w/4 layers

Eval w/5 layers
Eval w/10 layers

1 2 4 5 10
# hidden layers at meta-eval

0.1
0.3
0.5
0.7
0.9

Accuracy at step 50

Meta-trained on 1 layers
Meta-trained on 2 layers
Meta-trained on 4 layers

Genome generalization across multiple architectures

Figure 10. Genome generalization across architectures. Here we
show that the genomes that were trained using deeper architectures
work well on shallower architectures but not vice versa.

architectures, but not vice versa! For instance genomes
trained using a 2-layer network performed well when tasked
to use a single-hidden layer. However they diverged when
training a 4-layer network. A 4-layer genome was able to
train networks both with shallower (e.g. 1 to 3 layers) and
deeper (10) architectures.

5. Conclusions and Future Work
In this work, we define a general protocol for updating
nodes in a neural network, yielding a domain of “genomes”
describing many possible update rules, of which gradient
descent is one example. Useful genomes are identified by
training networks on training tasks, and then their general-
ization is evaluated on unseen tasks. We have shown that it
is possible to learn an entirely new type of neural network
that can be trained to solve complex tasks faster than tradi-
tional neural networks of equivalent size, but without any
notion of gradients. Our approach can be combined with
many existing model representations with differentiable or
non-differentiable components.

There are many interesting directions for future exploration.
Perhaps, the most important one is the question of scale.
Here one intriguing direction is the connection between
the number of states and the learning capabilities. Another
possible approach is extending the space of update rules,
such as allowing injection of randomness for robustness, or
providing an ability for neurons to self-regulate based on
current state. Finally the ability to extend existing genomes
to produce ever better learners, might help us scale even
further. Another intriguing direction is incorporating the
weight updates on both forward and backward passes. The
former can be seen as a generalization of unsupervised learn-
ing, thus merging both supervised and unsupervised learning
in one gradient-free framework.



Meta-Learning Bidirectional Update Rules

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

Adigun, O. and Kosko, B. Bidirectional backpropagation.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 50(5):1982–1994, 2019.

Ahmad, N., van Gerven, M. A. J., and Ambrogioni, L.
GAIT-prop: A biologically plausible learning rule de-
rived from backpropagation of error. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Akrout, M., Wilson, C., Humphreys, P. C., Lillicrap, T. P.,
and Tweed, D. B. Deep learning without weight trans-
port. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pp. 974–982, 2019.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman,
M. W., Pfau, D., Schaul, T., and de Freitas, N. Learn-
ing to learn by gradient descent by gradient descent. In
Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pp. 3981–3989, 2016.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy
layerwise learning can scale to imagenet. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 583–593. PMLR, 2019.

Bengio, S., Bengio, Y., and Cloutier, J. On the search for
new learning rules for ANNs. Neural Process. Lett., 2(4):
26–30, 1995. doi: 10.1007/BF02279935.

Bengio, Y. How auto-encoders could provide credit assign-
ment in deep networks via target propagation. CoRR,
abs/1407.7906, 2014.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,
H. Greedy layer-wise training of deep networks. In
Schölkopf, B., Platt, J. C., and Hofmann, T. (eds.), Ad-
vances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, pp. 153–160.
MIT Press, 2006.

Bengio, Y., Lee, D., Bornschein, J., and Lin, Z. Towards bio-
logically plausible deep learning. CoRR, abs/1502.04156,
2015.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Camp, B., Mandivarapu, J. K., and Estrada, R. Con-
tinual learning with deep artificial neurons. CoRR,
abs/2011.07035, 2020.

Carandini, M. and Heeger, D. J. Normalization as a canon-
ical neural computation. Nature Reviews Neuroscience,
13(1):51–62, 2012.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EM-
NIST: an extension of MNIST to handwritten letters.
CoRR, abs/1702.05373, 2017. URL http://arxiv.
org/abs/1702.05373.

Confavreux, B., Zenke, F., Agnes, E. J., Lillicrap, T. P., and
Vogels, T. P. A meta-learning approach to (re)discover
plasticity rules that carve a desired function into a neural
network. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), NeurIPS, 2020.

Conley, C. The gradient structure of a flow: I. Ergodic
Theory and Dynamical Systems, 8(8*):11–26, 1988.

Conley, C. C. Isolated invariant sets and the Morse index.
American Mathematical Soc., 1978.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
J. Mach. Learn. Res., 12(null):2121–2159, July 2011.
ISSN 1532-4435.

Farber, M., Kappeler, T., Latschev, J., and Zehnder, E.
Smooth lyapunov 1-forms. arXiv preprint math/0304137,
2003.

Franks, J. Notes on chain recurrence and lyapunonv func-
tions. arXiv preprint arXiv:1704.07264, 2017.

http://tensorflow.org/
http://github.com/google/jax
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373


Meta-Learning Bidirectional Update Rules

Ha, D., Dai, A., and Le, Q. V. Hypernetworks. arXiv
preprint arXiv:1609.09106, 2016.

Hansen, N. and Ostermeier, A. Adapting arbitrary nor-
mal mutation distributions in evolution strategies: the
covariance matrix adaptation. In Proceedings of IEEE
International Conference on Evolutionary Computation,
pp. 312–317, 1996. doi: 10.1109/ICEC.1996.542381.

Hansen, N., Akimoto, Y., and Baudis, P. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634, Febru-
ary 2019. URL https://doi.org/10.5281/
zenodo.2559634.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CoRR, abs/1512.03385,
2015.

Hebb, D. O. The organization of behavior: a neuropsycho-
logical theory. Science editions, 1949.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Kaplanis, C., Shanahan, M., and Clopath, C. Continual
reinforcement learning with complex synapses. In Dy,
J. G. and Krause, A. (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
pp. 2502–2511. PMLR, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Kirsch, L. and Schmidhuber, J. Meta learning backpropaga-
tion and improving it. arXiv preprint arXiv:2012.14905,
2020.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Lee, D., Zhang, S., Fischer, A., and Bengio, Y. Difference
target propagation. In Appice, A., Rodrigues, P. P., Costa,
V. S., Soares, C., Gama, J., and Jorge, A. (eds.), Ma-
chine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2015, Porto, Portu-
gal, September 7-11, 2015, Proceedings, Part I, volume
9284 of Lecture Notes in Computer Science, pp. 498–515.
Springer, 2015. doi: 10.1007/978-3-319-23528-8\ 31.

Lee, J. M. Introduction to Smooth Manifolds. Springer,
2013.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman,
C. J. Random synaptic feedback weights support error
backpropagation for deep learning. Nature communica-
tions, 7(1):1–10, 2016.

Lindsey, J. and Litwin-Kumar, A. Learning to learn with
feedback and local plasticity. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Löwe, S., O’Connor, P., and Veeling, B. S. Putting an end
to end-to-end: Gradient-isolated learning of representa-
tions. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pp. 3033–3045, 2019.

Maheswaranathan, N., Sussillo, D., Metz, L., Sun, R., and
Sohl-Dickstein, J. Reverse engineering learned opti-
mizers reveals known and novel mechanisms. CoRR,
abs/2011.02159, 2020.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and
Sohl-Dickstein, J. Understanding and correcting patholo-
gies in the training of learned optimizers. In Interna-
tional Conference on Machine Learning, pp. 4556–4565.
PMLR, 2019.

Metz, L., Maheswaranathan, N., Freeman, C. D., Poole,
B., and Sohl-Dickstein, J. Tasks, stability, architecture,
and compute: Training more effective learned optimiz-
ers, and using them to train themselves. arXiv preprint
arXiv:2009.11243, 2020.

Miconi, T., Stanley, K. O., and Clune, J. Differentiable
plasticity: training plastic neural networks with backprop-
agation. In Dy, J. G. and Krause, A. (eds.), Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 3556–3565. PMLR, 2018.

Miconi, T., Rawal, A., Clune, J., and Stanley, K. O. Back-
propamine: training self-modifying neural networks with
differentiable neuromodulated plasticity. In 7th Interna-
tional Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019.

Minsky, M. and Papert, S. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, MA,
USA, 1969.

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167


Meta-Learning Bidirectional Update Rules

Munkhdalai, T., Sordoni, A., Wang, T., and Trischler,
A. Metalearned neural memory. arXiv preprint
arXiv:1907.09720, 2019.

Najarro, E. and Risi, S. Meta-learning through heb-
bian plasticity in random networks. arXiv preprint
arXiv:2007.02686, 2020.

Nøkland, A. Direct feedback alignment provides learning in
deep neural networks. In Lee, D. D., Sugiyama, M., von
Luxburg, U., Guyon, I., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pp. 1037–
1045, 2016.

Norouzzadeh, M. S. and Clune, J. Neuromodulation im-
proves the evolution of forward models. In Proceedings
of the Genetic and Evolutionary Computation Conference
2016, pp. 157–164, 2016.

Oja, E. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology, 15(3):267–
273, 1982.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pontes-Filho, S. and Liwicki, M. Bidirectional learning
for robust neural networks. In 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2019.

Randazzo, E., Niklasson, E., and Mordvintsev, A. Mplp:
Learning a message passing learning protocol. arXiv
preprint arXiv:2007.00970, 2020.

Ranganathan, V. and Lewandowski, A. ZORB: A derivative-
free backpropagation algorithm for neural networks.
CoRR, abs/2011.08895, 2020.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

Real, E., Liang, C., So, D., and Le, Q. Automl-zero: evolv-
ing machine learning algorithms from scratch. In Interna-
tional Conference on Machine Learning, pp. 8007–8019.
PMLR, 2020.

Robbins, H. and Monro, S. A stochastic approximation
method. Ann. Math. Statist., 22(3):400–407, 09 1951.

doi: 10.1214/aoms/1177729586. URL https://doi.
org/10.1214/aoms/1177729586.

Rosenblatt, F. The perceptron: A perceiving and recogniz-
ing automaton. Report 85-460-1, Project PARA, Cor-
nell Aeronautical Laboratory, Ithaca, New York, January
1957.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Schmidt, R. M., Schneider, F., and Hennig, P. Descending
through a crowded valley - benchmarking deep learning
optimizers. CoRR, abs/2007.01547, 2020.

Soltoggio, A., Stanley, K. O., and Risi, S. Born to learn:
the inspiration, progress, and future of evolved plastic
artificial neural networks. Neural Networks, 108:48–67,
2018.

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A. B.,
and Goldstein, T. Training neural networks without gra-
dients: A scalable ADMM approach. In Balcan, M. and
Weinberger, K. Q. (eds.), Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pp. 2722–
2731. JMLR.org, 2016.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016. URL http://arxiv.
org/abs/1607.08022.

Velez, R. and Clune, J. Diffusion-based neuromodulation
can eliminate catastrophic forgetting in simple neural
networks. PloS one, 12(11):e0187736, 2017.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W.,
Colmenarejo, S. G., Denil, M., de Freitas, N., and Sohl-
Dickstein, J. Learned optimizers that scale and generalize.
In Proceedings of the 34th International Conference on
Machine Learning, 2017.

Wilson, D. G., Cussat-Blanc, S., Luga, H., and Harrington,
K. I. Neuromodulated learning in deep neural networks.
CoRR, abs/1812.03365, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747, 2017. URL http:
//arxiv.org/abs/1708.07747.

Xiao, W., Chen, H., Liao, Q., and Poggio, T. Biologically-
plausible learning algorithms can scale to large datasets.
arXiv preprint arXiv:1811.03567, 2018.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747


Meta-Learning Bidirectional Update Rules

Xiong, Y., Ren, M., and Urtasun, R. LoCo: Local con-
trastive representation learning. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.



Meta-Learning Bidirectional Update Rules

A. Connection to Gradient Descent
Instead of verifying the equivalence of our update rule
∆w(w) to GD (with w including both forward and back-
ward weights), we may ask a more general question of
equivalence to a generalized gradient descent satisfying:

∆wj = −γ
∑
i

g−1ij
∂Lequiv

∂wi
, (11)

where gij are components of a Riemannian metric tensor
ĝ(w) and w are the model weights. Since Eq. (11) can
be rewritten as −γdLequiv = ĝ∆w, where dLequiv is the
exterior derivative of Lequiv, it follows that d(ĝ∆w) = 0,
or equivalently

∂

∂wr

∑
j

gij∆wj

 =
∂

∂wi

∑
j

grj∆wj

 . (12)

For contractible parameter spaces, this condition is also
sufficient for the existence of Lequiv (Lee, 2013).

Constant ĝ. Consider a special case where ĝ is constant,
i.e., independent of w. Then we can rewrite Eq. (12) as∑

j

gij
∂∆wj
∂wr

=
∑
j

grj
∂∆wj
∂wi

,

or introducing an n × n matrix Qij := ∂∆wi/∂wj with
n = dimw as:

Ẑ[ĝ, Q̂] := ĝQ̂− (ĝQ̂)> = 0. (13)

For ĝ to be a metric tensor, it has to be symmetric and
positive definite and Eq. (13) should be satisfied for all
possible Q̂(w) calculated at all accessible states w.

In our numerical experiments, we studied a pre-trained two-
state model learning a 2-input Boolean task with a single
hidden layer of size 5. Finding a null space of the matrix
corresponding to a linear system (13) for some Q̂(w∗), we
then checked the validity of Eq. (13) for the basis vectors of
this null space and 100 other Q̂(w) matrices calculated at
different other random statesw. Out of 265 basis vectors1, 4
solved Eq. (13) for all 100 of matrices Q̂, but as we verified
later, none of those 4 vectors (or ĝ candidates) were positive-
definite and actually had 0 eigenvalues. This shows that at
least in this particular case, our update rules ∆w(w) cannot
be represented as a generalized GD as shown in Eq. (11).

Equivalence to SGD and closed trajectories. Solving
Eq. (12) for a Riemannian metric ĝ in a more general case
is difficult. There are certain special cases, however, where

1Found by performing SVD and taking vectors corresponding
to singular values below a 10−8 threshold.

Eq. (12) does not have solutions. For example, if the vector
field defined by ∆w supports closed integral curves, there
are trivially no ĝ and Lequiv that would satisfy Eq. (11). In-
deed, if they existed, then parameterizing this closed integral
curve Γ by t ∈ [0, 1], we would obtain:

0 =

1∫
0

dLequiv(Γ(t))

dt
dt =

∫ 1

0

dLequiv(Γ̇) dt =

= −γ
∫ 1

0

ĝ−1dLequivdLequiv dt = 0,

which cannot hold for a Riemannian metric ĝ.

B. Modified Oja’s Rule
Oja’s rule is generally derived by augmenting weight update
with the normalization multiplier (Oja, 1982). Writing a
normalized weight update as:

w∗ij =
wij + γφ[wij , xi, yj ][∑

i (wij + γφ[wij , xi, yj ])
2
]1/2 , (14)

where x and y are pre-synaptic and post-synaptic activations,
and w∗ is the weight at the next iteration, we can see that in
the limit of γ → 0, this update rule can be rewritten as:

w∗ij = wij + γφ[wij , xi, yj ]−

− γwij
∑
i

wijφ[wij , xi, yj ] +O(γ2). (15)

For the Hebbian update φ = xiyj , the last O(γ) term in
Eq. (15) becomes a familiar Oja’s term:

−γwij

(∑
r

wrjxr

)
yj = −γwijy2j . (16)

For more complicated networks and families of update rules,
the canonical form of the Oja’s rule (16) is no longer ap-
plicable. Let us derive a saturating term for the family of
update rules from Section 3.2, where the updated weight
now has the form ŵ∗ = f̃ŵ+ η̃φ̂. Expressing f̃ as 1 + η̃β,
we can rewrite the update rule as ŵ∗ = ŵ + η̃φ̂◦, where
φ̂◦ = φ̂+ βŵ and the corresponding saturating term in the
update rule then becomes

−(f̃ − 1)wcij
∑
r

(wcrj)
2 − η̃wcij

∑
r

wcrjφ[wrj ,ar,aj ],

where both activations a and weights ŵ now also have
an additional “state” dimension. Substituting φ =



Meta-Learning Bidirectional Update Rules

EMNIST Subtasks (28x28) MNIST (28x28)

0-9 10-19 20-29 30-39 40-49 50-60
EMNIST Subtasks (Full resolution)

EMNIST Subtasks (10x10) Fashion MNIST (28x28)

0-9 10-19 20-29 30-39 40-49 50-60
EMNIST Subtasks (10x10 resolution)

Figure 11. Dataset subtasks at 10x10 and 28x28 resolution

line
ar/

line
ar

rel
u/r

elu

rel
u/l

ine
ar

rel
uta

nh
/re

lut
an

h

rel
uta

nh
/lin

ea
r

sig
moid

/sig
moid

sig
moid

/lin
ea

r

tan
h/t

an
h

tan
h/l

ine
ar

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88 Different forward/backward non-linearities

8-state
4-state
2-state

Figure 12. Performance of different non-linearities. All models
were meta-trained with two hidden layers and use 2-8 states per
neuron.

∑
e,d a

e
i ν̃
ecµ̃cdadj here, we finally obtain the following in-

hibitory component of the update rule:

(∆wcij)
Oja = −(f̃ − 1)wcij

∑
r

(wcrj)
2−

− η̃wcij
∑
r,e,d

wcrja
e
rν̃
ecµ̃cdadj .

C. Additional Experiments
C.1. Parameters

Meta optimizer Genome
Optimizer Adam States per neuron 2-8
LR 0.0005 Batch size 128
Gradient clip 10 Unroll length 10-50

Fig. 11 shows a sample from datasets used in the experi-
ments.

2 4 8 16
# states per neuron

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 a
fte

r 1
0 

st
ep

s

Multiple meta-train runs

2 4 8 16
# states per neuron

0.70

0.75

0.80

0.85

0.90

0.95 Best meta-training run
28x28 mnist after 10 unroll steps.

Figure 13. Performance after 10 unrolls with different number of
channels per neuron. All meta-trained runs were trained with the
same architecture.

0

20
k (

20
)

40
k (

30
)

60
k (

40
)

80
k (

50
)

10
0k

 (6
0)

Meta-training step (unroll length)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy during curriculum meta-training

Figure 14. Trajectory of training evolution during curriculum train-
ing.

C.2. Non-linearities

On Fig. 12 we show the performance of our meta-trained
while using different non-linearites. We explore using both
identical non-linearities on forward/backward pass as well
as not-using non-linearity in backward-ass at all at all. It can
be seen that we successfully meta-learned a configuration
for almost every combination of non-linearities. Also per-
haps not-surprisingly fully linear network while correctly
does not see any advantage of increasing number of states,
while networks with non-linearity improve with the number
of states.



Meta-Learning Bidirectional Update Rules

0 50 100
Unroll steps

10−1

100

101

102

Synapse Std

0 50 100
Unroll steps

0.3

0.4

0.5

0.6

0.7 Activation Std
Oja rule
No oja rule

0 50 100
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Training trajectory of neurons and synapses

Figure 15. The impact of Oja’s rule on synapse amplitude.

C.3. Channels per neuron

As we mentioned using only 2-states per neuron provides
a slightly richer space than gradient descent. So what hap-
pens if we increase the number of states? Fig. 13 suggests
that merely increasing the number of states improves perfor-
mance, but fully capturing the power of multi-state neurons
is subject of future work.

C.4. Curriculum metatraining

Fig. 14 shows the accuracy of 8-identical randomly initial-
ized genomes trained for 10,000 steps with initial unroll
length of 10 steps. We then increase the length of unroll by
5 steps for each consecutive 10,000 steps and synchronize
genomes across all runs.

C.5. Importance of Oja Rule

In our experiments using additional regularization Oja’s
term on synapse weights helps preventing synapse explosion.
For instance in Fig. 15 we show, that without modified Oja’s
rule the synapse weights tended to diverge, even though the
overall accuracy was not affected until overflow occurred.

C.6. Synapse normalization

While reaching a high accuracy at unroll step ntarget used
as a target for meta-learning, the model performance fre-
quently degrades when it is trained beyond that point. One
technique that proved useful for solving this issue is to nor-
malize synapse values during the computation of activations
of individual layers. Fig. 16 shows evolution of the test
accuracy for the best out of 10 runs in 4 different experi-
ments: with and without synapse normalization (and with or
without using Oja’s rule). Notice that while the peak accu-
racy in experiments with normalization may be lower than
in those without normalization, it continues to grow well
beyond ntarget. Furthermore, in models with Oja’s rule, the
synapses saturate during training and if we randomize the
labels after step 500, the model performance degrades soon
after, in other words, the model with synapse normalization
and Oja’s rule continue to learn. In contrast, synapses grow

0 100 200 300 400 500 600 700 800
Step

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

Long training trajectory

Oja
No Oja
Synapse norm, no Oja
Synapse norm, with Oja rule

Figure 16. MNIST test error measured in the process of train-
ing models with and without additional synapse normalization.
Synapse normalization (“Synapse norm” label) was only per-
formed when computing neuron activations and did not affect
the actual stored synapse values. Given stored synapse values wij

with i being the input dimension and j being the output dimension,
the effective weight used while computing the activations was
chosen as w′ij = wij/(

∑
i′ w

2
i′j)

1/2.

exponentially in models without the Oja’s rule, which pre-
vents them from learning after a certain stage and later their
synapses overflow and they eventually diverge.

C.7. Ablation study

In Fig. 17 we show the ablation study for the following
parameters:

• Type of the backward update: additive, multiplicative
or multiplicative second state only. This refers to the
states’ update on the backward pass.

• Forward and backward synapses: symmetric vs asym-
metric.

• Number of states in synapses: single state vs multi-
state.

• Initialization: random vs backprop genome initializa-
tion.

The backpropagation algorithm can be recovered as an ini-
tialization to “Multiplicative second state only, symmetric,
single state, backprop init” variant (dashed purple line). The
most general version of the algorithm that is used in most
experiments in the paper is “Additive, symmetric, multistate,
random init” variant (solid red line).

Depending on which backward update rule is chosen, differ-
ent combinations of parameters dominate over others. While
we couldn’t find a clear pattern to order the parameters by
their performance, surprisingly, most of the variants give
reasonable results, suggesting that the space of potentially
useful update rules is quite large.



Meta-Learning Bidirectional Update Rules

Meta-Train: MNIST Meta-Train: 10-way Omniglot
Meta-Eval: MNIST Meta-Eval: Omniglot Meta-Eval: MNIST Meta-Eval: Omniglot

Backward update: Additive

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Backward update: Multiplicative

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Backward update: Multiplicative second state only

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Asymmetric, multistate, random init
Asymmetric, multistate, backprop init
Asymmetric, single state, random init
Asymmetric, single state, backprop init

Symmetric, multistate, random init

Symmetric, multistate, backprop init

Symmetric, single state, random init

Symmetric, single state, backprop init

Figure 17. Testing different variants of our proposed learning method. See text for the description of each parameter. All variants were
trained on MNIST or Omniglot to 10 unrolls and evaluated on MNIST and 10 classes from Omniglot. Errorbars show standard deviation
of the accuracy over 10 different subsets of Omniglot. Only the best result of 8 runs is plotted.


