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Abstract

Reach curves arise in advertising and media analysis
as they relate the number of content impressions to
the number of people who have seen it. This is es-
pecially important for measuring the effectiveness of
an ad on TV or websites (Nielsen| |2009; Pricewater-
houseCoopers|, 2010). For a mathematical and data-
driven analysis, it would be very useful to know the
entire reach curve; advertisers, however, often only
know its last data point, i.e., the total number of im-
pressions and the total reach. In this work I present
a new method to estimate the entire curve using only
this last data point.

Furthermore, analytic derivations reveal a surpris-
ingly simple, yet insightful relationship between
marginal cost per reach, average cost per impression,
and frequency. Thus, advertisers can estimate the
cost of an additional reach point by just knowing their
total number of impressions, reach, and cost.

A comparison of the proposed one-data point method
to two competing regression models on TV reach
curve data, shows that the proposed methodology
performs only slightly poorer than regression fits to
a collection of several points along the curve.

1 Introduction

Let k+ reach, 7, be the percentage of the population
that is exposed to a campaign at least k times. As
usual, we measure impressions in gross rating points
(GRPs), which is calculated as number of impressions
divided by total (target) population multiplied by 100
(measured in percent).

Equipped with a functional form of the reach curve, a
variety of quantities of interest can be computed, e.g.,
marginal cost per reach or maximum possible reach.
Advertisers, however, often only have two points of

the reach curve r(g): 71(0) = 0 and

r,(G) = R € [0,100], (1)
where G > 0 is the total GRPs and R is total reach.

With this information alone one is tempted to use a
. . . (1) _ R

linear approximation r,’(g) = #g. However, reach
curves are not linear and in particular, the marginal
reach per GRP would equal average reach per GRP
(= 1/frequency); thus alone is not helpful to get
a better estimate of marginal GRP (and thus cost)

per reach at g = G.

While the behavior of r;(g) around g = G is in gen-
eral unknown, the tangent at ¢ = 0 can be approxi-
mated quite well: starting with no exposure, adding
an infinitesimally small unit of GRPs (say €) one
reaches € - ¢ % of the population, where ¢+ = (k) is
the reciprocal of the expected number of impressions
needed for the first person to see k impressions. One
can lower bound ¢ by 1/k. For k = 1, the bound is
tight, ¢« = 1; getting an exact expression of ¢ for k > 1
is ongoing researchﬂ That is, for small g the reach
curve can be approximated with a line through (0, 0)
with slope ¢:

ri(g) =~ g - ¢ for small g. (2)

Thus, approximately,

3)
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Combining with allows us to estimate a
two-parameter model.

Section [2] reviews parametric models for reach curves.
Section |3| derives the parameter estimates based on

n practice we found that ¢ = (k + log, k)1 gives good
fits for several k > 1.



2.2 Conditional Logit

2 REACH CURVE MODELS

the total GRP and reach. Simulations and compar-
isons to full least squares estimates are presented in
Section [@ Finally, Section [f] summarizes the main
findings and discusses future work. Details on the
TV reach curve data and analytical derivations can
be found in the Appendix.

2 Reach curve models

Let X > 0 be the number of content impressions, e.g.,
TV shows, websites, or commercials. For a proba-
bilistic view of reach curves, it is useful to decompose
k+ reach as

P (X > k,reachable) =
P (X > k | reachable) - P (reachable)

<:>7Ak:pk'pa

(4)
(®)

where p is the maximum possible reach, and py, is the
probability of being reached k times, given that an in-
dividual is indeed reachable. This distinction allows
us to model p and py with separate probabilistic mod-
els. Since reach is usually denoted in percent, we also
use percent for maximum possible reach p € [0, 100],
while we use proportions for py, € [0, 1].

For further analytical derivations it is necessary to
parametrize pi(g). Below we review two functional
forms which are parsimonious (2 + 1 parameters),
have excellent empirical fits, and lend themselves for
simple analytical derivations.

2.1 Gamma-Mixture

Jin et al.|(2012)) propose a Poisson distribution for the
impressions g, with an exponential prior distribution
with rate 8 on the Poisson rate A. This yields a model
of the form

(6)

The exponential prior can be generalized to a I'(«, 8)
distribution, which yields

o= (%))

By construction, @ is nested in , which can be
tested using a hypothesis test for Hy : o = 1.

(7)

2.1.1 Marginal reach

The derivative of (@ with respect to g equalsﬂ

ka(g) =2 <6> aH :

dg B\g+8
with
.0 _pa
;li% 8*97%(9) =5 9)

Eq. @D has three degrees of freedom; since only two
data points are available, one parameters has to be
fixed. Given the nested structure of the exponential
model, it is natural to set a = 1.

2.2 Conditional Logit
As an alternative we propose a logistic regression

logit(px(g)) = Bo + b1 - logg, (10)

p

where logit(p) = log 2, and B9 and 3, are intercept

efE
1+e® =

and slope Using the logit inverse expit(x) =
Eq. can be rewritten as

1
14e—2=>

. eBo+B1logg
pi = expit(fo + Bilogg) = Tz gy
1

(11)

—Bo
e
=1- e (13)

which shows similarity to (7). In fact, identifying
B = e P, both models coincide if &« = 1 and f; =1,
respectively.  Again, this can be tested using a
two-sided hypothesis test for Hy : 81 = 1.

The Logit conditional model can also be interpreted
as the baseline Gamma mixture model with a = 1,
but with transformed GRPs, § = ¢, in (7). Here
B1 can be interpreted as a parameter that measures
the efficiency of GRPs: for f; > 1 GRPs are more
efficient than baseline; for 81 = 1 GRPs are spent
according to the baseline model; and for 5, < 1 are
not spent as efficiently as expected. For an empirical
estimates see Section [l

2See Section for details.

3We deliberately do not use a and 3 to parametrize inter-
cept and slope, as it is prone to confusion with the (reversed)
roles of a and S in .
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3.1 p <100 case

3 METHODOLOGY

2.2.1 Marginal reach

The derivative of with respect to ¢ equals

) 951—1
— oPo
—pi(g) =ef———. 14
5g7+(9) Heho 1 ghr)? (14)
Here limg_, r},(g) falls into three cases:
+oo, if g <1,
_(}1—>H10 rk(Q) = 6%07 if /81 = la (15)
0, if 61 > 1.

Thus for the logit model one has to assume 51 = 1 to
use the linear approximation of R(g) at g = 0 for 1+
reach [f]

3 Methodology

Equipped with the two parameter model

r(g;p.B) =p (1 €[0,p], (16)

B+y B+y
we can use the tangent approximation in and to-
tal GRP and reach to estimate p and 5. Note that
[ > 0 is a saturation parameter and controls how

efficient GRPs are: for small 8 reach grows quickly
with GRPs, for large 3 it grows slowly.

Its derivative equals

_ B
(B+9)°

which at g = 0 evaluates to r'(0) = 4.

' (gip,B) =p (17)

This gives a system of two equations (maximum GRP
and reach & marginal reach at 0) with two unknowns,
p €[0,100] and 8 > 0:

Letop=0-1, (18)

G R(G + )

= —= 19

P51 a p e (19)

First note that for 14 reach, p = B since t(k = 1) = 1.

Moreover, p in satisfies p > 0 for all £, but it
satisfies p < 100 only for g < G - %.

4For k > 1, the Logit model with $; > 1 might become
useful as the marginal k+ reach for the very first impression is
0. However, one then has to estimate three parameters again,
which is not possible without any further assumptions or more
than one data point.

Solving for 8 and plugging in to p = p(B) gives
G-R

s min [ G 9
p mm<G—R/e’ 00), (20)
S 2=GBL i p <100
and 5: {L 1(%:1;/u 1 P ) (21)
G- =, if p = 100.
100 _R

Condition p < 100 is equivalent to G < == 150=x;
thus GRPs must be less or equal to a constant times
the odds ratio of reach.

Plugging them back into yields expressions for
reach solely as a function of R and G (details see
Appendix . According to we consider the two
scenarios separately.

3.1 p <100 case

Here

(24)

Thus after G GRPs one additional GRP acl%ieves an
additional reach of (approximately) %(%) . Con-

versely, to get one additional reach point advertisers

need approximately ¢ (%)2 additional GRPs. Since

one GRP costs C/G, where C is total cost of the
campaign, the marginal cost of one additional reach

point is
(GY . C_.c6
R G 'RR

Both and give two surprisingly simple, yet
insightful identities which can be computed from to-
tal GRPs, reach, and cost: first, marginal reach
per GRP equals a ¢ times squared average frequency

(= %); secondly, marginal cost per reach equals

(25)

d(r=R)=1- cperp - frequency , (26)
where cperp is average cost per effective reach point
(Rossiter and Danaher|, [1998)), and ¢/(r) is the first

derivative of cost as a function of reach, ¢(r).
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3.2 p =100 case

If leads to p = 100, then 3 must be set to GL0-R
to guarantee that r(G) = R. In this case (see Ap-

pendix

g-R
= 2
"9 = G =G B0 (27)
with derivative
G-(1—-R/100)- R
(g = SRR gy
(G+ (9g—G)-R/100)
which at g = G evaluates to
o=y = B2
r(g—G)—G 1 00 ) (29)

Again, this yields a simple identity for marginal reach
as 1/frequency times the proportion of the population
that has not been reached.

Thus marginal cost per reach is

G 1 C
— = cperp-

)= R R0 G (30)

1
1— R/100°

Here, marginal cost per reach is average cost per ef-
fective reach point times a factor that is inverse pro-
portional to the proportion of the population that has
not yet been reached.

4 Applications

Here we compare the proposed one data point
methodology to two competing regression methods
using 1+ reach curves from a selection of 50 histor-
ical TV campaigns (See Appendix |A| for details on
TV measurement and data processing). Note that
for this comparison we do have several (typically hun-
dreds of) data points along a single curve. Regression
models use all the data points; the one data point
methodology only uses the last data point. We eval-
uate the competing methods via typical model fit-
ting metrics and ability to estimate marginal reach
at g = G.

The two alternative regression methods are 1) the
Gamma mixture model, where p and g are estimated
using non-linear least squares (set « = 1), and ii) the
Logit model with logistic regression estimates for Sy
and S (no restriction on fy).

Figure [If shows three reach curves with different de-
grees of fit: black dots are historical GRP and reach
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Figure 1: Sample reach curves with different degrees
of Gamma tangent fit (bottom: lowest R?; middle:
median R?; top: highest R?).

data, and colored lines are the model fits. The dashed
horizontal lines represents the estimated p for each
method. The top shows a particularly good fit of all
three models, the middle has a typical (median R?)
fit, and the bottom panel shows a reach curve where
they do not coincide at all.

In fact, none of the proposed models provides a truth-
ful representation of the GRP and reach relationship
in the bottom panel. The raw data has several in-
stances along the curve where reach flattens out al-
ready, but suddenly (at about 180 GRPs) it gains
momentum and reaches again more people at a faster
rate. One explanation could be that several creatives
within the same campaign were shown sequentially;
or the marketing strategy might have changed as a
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Figure 2: Parameter estimates and inference about
marginal reach at 0 GRPs.

consequence of the flattening out of the curve.

The bottom panel shows that in such cases the one
data point methodology will fail since the campaign
in fact consists of several sub-campaigns. However,
while they give better fit, even the regression models
are not really a good representation of the underly-
ing GRP to reach dependency. For such campaigns
a more general model which allows for multiple
sub-campaigns should be used.

Figure [2] shows the estimated parameters for the
Gamma mixture and the Logit model. Recall that
in the Gamma Mixture model the slope at 0 equals
Q- %. Since @ = 1 was fixed in the estimation, the
estimated slope is simply the ratio 2, Similarly to

Fig. the slope estiamtes in Figure show that
the one data point assumption (slope = 1) largely
overestimates reach for small GRPs.

The Logit regression does not impose a $; = 1 con-
straint, but all parameters were estimated from the
data. Recall that (1 can be interepreted as an effi-
ciency parameter (see Section . According to 34
in Fig. about 80% of these campaigns do not use
their GRPs as efficient as the baseline model would
suggest.

Figure [3| compares the models according to several
measures of fit. The Logit model stands out as a
particularly good interpolation method (high R? and
cor(data, fit)). Thus we use this — presumably clos-
est to the truth — model as the baseline (x-axis) and
check how the other two fare against it. Both the
Gamma-mixture as well as the Tangent model in-
fer much lower maximum possible reach. Note that

cor(data, fit) Marginal reach per GRP
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Figure 3: Comparing Gamma and Tangent estimates
to — significantly better fitting — Logit model across
several metrics.

the Logit regression estimate hits the boundary of
p = 100% for 28% of the 50 campaigns.

The upper-right panel in Figure [3| shows that the
Gamma and Logit regression marginal reach esti-
mates coincide very closely, while the Tangent modeﬂ
predicts lower marginal reach per GRP (below the
45° line), i.e., a flatter curve estimate. This is in
agreement with the previous finding that the ¢ = 1
slope at ¢ = 0 is too optimistic; since the Tangent
model always goes through the point (G, R) it must
compensate the slope overestimation for small g, with
a flatter curve for large G. As a consequence of the
minimum restriction in , the tangent approxima-
tion yields some of the marginal reach per GRP esti-
mates significantly below the 45° line.

Apart from these deviations, the scatterplots show
that the proposed tangent method provides good es-
timates and useful inference.

5Tt is important to note that none of the reach curves have
p = 100 in (20)); the Tangent model estimates are thus all based

on with ¢ = 1.
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5 Discussion

In this work we show how to estimate the entire reach
curve using only the total GRPs, reach, and cost.
While a historical fit might not mimic the behavior
for changes in future campaigns, it is very useful to
estimate other quantities of interest from a historical
campaign, such as maximum possible reach, marginal
reach per GRP, or marginal cost per reach. Further-
more, we derive a simple, yet insightful equivalence
between marginal cost per reach, average cost per
GRP, and frequency.

Applications on a collection of historical TV reach
curves show that the proposed method has good es-
timation properties and performs well against regres-
sion methods that use several data points at a time.
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A Data Sources

For the model fit comparison in Section [4] we use TV
measurement data from the Danish TV market. The
raw data is based on a panel provided by TNS Gallup
Denmark (TNS Gallup Denmarkl, 2014).

A.1 Panel recruitment

This panel consists of 1,000 households in Denmark,
with approximately 2, 250 panelists. Every household
in this panel has a metering box and a remote control
to log in when watching TV (including possibility to
add guests).

Panelists have been recruited to be representative of
Danish population, and weights are adjusted daily to
calibrate panel for in and out-of-tab panelists. With
a total population of about 5.6 millionEI one panelist
represents about 2,500 people.

A.2 Data selection and preparation

The metering box records TV viewing among
panelists, and TV-stations report airing time of
a campaign spots to TNS. GRPs per spot, and
14+-reach (in %) amongst others is calculated by
TNS. To obtain the reach curves in Section E we
compute cumulative GRPs and 1+-reach for each
campaign. This data is then used to fit the presented
models.

The data was collected on September 1, 2014 with a
window of + 2 months. The 50 campaigns we use
here are based on a random subsample of the top
quartile of all campaigns in the dataset. We use the
top quartile to get campaigns with significantly large
GRPs and reach.

6Source: http://denmark.dk/en/quick-facts/facts.
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B.2 Plug-in 8 and p

B ANALYTIC DERIVATIONS

B Analytic derivations

B.1 Marginal reach

B.2.2 p=100% case

When p=1and = G% then

g

=100 75— 43
The derivative of (7)) with respect to G equals r(9) W +g (43)
g-R
a—1 = , (44)
apk(g)=a<ﬁ ) P 5 (31) G+ R/100- (9 - G)
99 g+h (g+5) . _
5 atl with derivative
«
= 8 <g n 5) (32) t\i\)fhen p=land g = G% the derivative simplifies
a
= (1 - . 33
o (1= k(o) I ,
r(g) =100 X ——— (45)
(B+9)
100—R
B.2 Plug-in § and p =100 x ——& (46)
(@55 < )
B.2.1 p < 100% case 100 x G(100 — R)R (47)
(G(100 - R) + g- R)®
Plugging 8 = B(G, R, k) and p = p(G, R, k) back into 100 G(100 — R)R (48)
. = X
gives (G-100+R-(g—G))*
G-(1-R/100)-R
r(g) = px 70— = EaE g (34) - ( [100 3 (49)
Gtg G-R SRy (G + (9 —G)- R/100)
G-R 4
= C—R) " @ g RieC (35)
G—R/.
G-R-g
= 36
@) Rji+g-G (36)
and derivative
()
7 = 37
W =Gy AL 37
G-R/.
G— R/L
G R/L (38)
R/L
G R/ 2
—R/L
( (G—g)-R/1+g-G g) R/1+g-G ) (39)
—R/L
2
1
== 40
(e re) @
Finally, the derivative at ¢ = G equals
, 1 G-R ?
= == 41
rlo =) L((G—G)~R/L+G-G (41)
1 (R\?
=2 (). 42
(3) (42)
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