FIX IT WHERE IT FAILS:
PRONUNCIATION LEARNING BY MINING ERROR CORRECTIONS FROM SPEECH LOGS

Zhenzhen Kou, Daisy Stanton, Fuchun Peng, Frangoise Beaufays, Trevor Strohman

Google Inc., USA

ABSTRACT

The pronunciation dictionary, or lexicon, is an essential component
in an automatic speech recognition (ASR) system in that incorrect
pronunciations cause systematic misrecognitions. It typically con-
sists of a list of word-pronunciation pairs written by linguists, and
a grapheme-to-phoneme (G2P) engine to generate pronunciations
for words not in the list. The hand-generated list can never keep
pace with the growing vocabulary of a live speech recognition sys-
tem, and the G2P is usually of limited accuracy. This is especially
true for proper names whose pronunciations may be influenced by
various historical or foreign-origin factors. In this paper, we pro-
pose a language-independent approach to detect misrecognitions and
their corrections from voice search logs. We learn previously un-
known pronunciations from this data, and demonstrate that they sig-
nificantly improve the quality of a production-quality speech recog-
nition system.

Index Terms— speech recognition, pronunciation learning, data
extraction, logistic regression

1. INTRODUCTION
The speech recognition task is to find the word sequence W™ that has

the mixmimum posterior probability given the acoustic observations
X,

W* = argmax P(W;|X))
= arg max P(X|W;)P(W;).)

where P(X|W;) is the acoustic model and P(W;) is the language
model. Although some recent research [1] seeks to learn W; directly
from X, a pronunciation model is typically introduced to generate
phone sequences S} for a word W;:

W* = argmax » P(X, S;|W;)P(W;) 3)
J

= argmax » P(X|S))P(S;|[Wi)P(W:). (4)
J

With the Viterbi approximation, Eq. 4 becomes

W* = argmax P(X, S;|W;) P(S;) ®)
¥

= argmax P(X|S}) P(S;|Wi) P(Wi). ©)
gy

As suggested before, the model P(S}|W;) usually relies heavily
on a handwritten list of word pronunciations, and defaults to a G2P

engine for additional words. This often makes it a weak link across
the entire ASR system: a word with an incorrect pronunciation will
be systematically misrecognized for other words that better match
its actual pronunciation.

We previously proposed a method to learn better word pronunci-
ations through crowdsourcing [2]: words or phrases are sent to ran-
dom contributors who speak them, thereby providing audio samples
from which pronunciations can be automatically learned. Although
extremely effective, this approach has some shortcomings, notably
that unusually-pronounced words (like some street names) may be
unknown to crowdsourcers located in different geographic regions.
To alleviate this problem, we developed a new method to mine pro-
nunciation learning training data directly from anonymized speech
logs. Users confronted with a misrecognition may attempt to correct
the error in various ways. In a voice search application, for example,
they may repeat their query, rephrase it slightly differently, select
an alternate recognition from a list (if offered the choice), type in a
correction using the keyboard, or, of course, give up altogether.

In this paper, we focus on detecting and leveraging two types of
user corrections: Keyboard Correction data and Alternate Selection
data. The models we propose are language-independent. Side-by-
side experiments demonstrate that the pronunciations learned via our
methods significantly improve the quality of a production-quality
speech recognition system.

2. RELATED WORK

There is a lot of research on applying machine learning for grapheme
to phoneme conversion (G2P), including decision tree classifier to
learn pronunciation rules [3], joint ngram model [4], maximum en-
troy model [5], active learning [6], and most recently recurrent neu-
ral network [7]. In this paper, instead of focuing on improving ma-
chine learning G2P techniques, we strive to learn pronunciations
from recognition corrections data.

The literature contains many studies on detection speech recog-
nition errors. Levow [8] investigated using acoustic and prosodic
features to identify corrections. Orlandi et al. [9] proposed prosodic
features to detect recognition errors. Soltau and Waibel [10] exam-
ined features related to the user’s speaking style to detect speech er-
rors. Levitan and Elson [11] proposed a decision-tree based method
to detect voice query retries. Williams [12] investigated a dialog sys-
tem that tracked a distribution over multiple dialogue states, the goal
being to improve dialog ASR accuracy by modeling the entire N-
best list. Shi and Zhou [13] examined the impact of different knowl-
edge sources on human error correction. Sarpa and Palmer [14]
proposed a co-occurrence method for detecting and correcting mis-
recognition. Our work introduces two new data mining methods
to detect speech recognition errors from other retry behaviors. We
use these corrections to improve word pronunciations, and demon-
strate the end-to-end benefit of the proposed method on voice search

speech recognition accuracy.

3. KEYBOARD CORRECTION DATA

The first data source we propose mining is Keyboard Correction
data. These are (speech, keyboard) query pairs derived from two
consecutive actions observed in user session logs. If a user makes a
voice search query, and then issues a typed query only a few seconds
later, it may indicate an attempt at correcting a misrecognition (e.g.
“Christmas Alex” followed by “Crispus Attucks”). The keyboard
query can then be used as a supervised transcript to associate with
the preceeding spoken query.

The event sequence for such a correction is illustrated Figure 1.

30

voice query seconds

s

typed query

Fig. 1. Event sequence indicating a Keyboard Correction.

Since we expect corrections to come shortly after a failed recog-
nition attempt, we mine spoken/typed query pairs that occured no
more than 30 seconds apart. However, not all such candidate pairs
do indicate a useable correction: the keyboard query may rephrase
the spoken query in a slightly different way, or be completely un-
related. An analysis of candidate pairs across 11 languages showed
that, in practice, only 30-40% of such pairs are true keyboard cor-
rections. We thus propose a classification approach to identify pairs
where the typed query is the exact transcription of the spoken utter-
ance.

3.1. Correction Data Classifier

We treat the problem of identifying true Keyboard Corrections as a
binary classification problem which we model with a logistic regres-
sion classifier [15],

1

h(X) = 14+e0TX

Q)
where the weight 6 for the feature vector X can be optimized from
labeled training data with gradient descent. A prediction for X can
then be classified as positive if h(X) exceeds a threshold v, and
rejected as negative otherwise. The following features are used as
inputs to the classifier:

e Word-based features, including unigram counts, number of
word overlaps, and language model costs.

e Character-based features, including character counts, and edit
distance between the recognized and typed queries.

e Phoneme features, including counts and edit distance be-
tween the phoneme sequences corresponding to the recogni-
tion resulst and typed query

e Acoustic features, including forced phone alignment costs,
and waveform-to-transcript length ratio.

3.2. Keyboard Correction Classification Performance

We extracted 8000 consecutive spoken/typed query pairs from
anonymized voice search session logs in each one of 11 languages.
The keyboard entries were manually labeled as true/false transcripts
of the voice queries, and were used to train a classifier using 10-fold
cross validation.

Classification performance is measured in terms of precision and
recall, as illustrated for American English in Figure 2. The classifica-
tion threshold for each language, ~, was chosen to reach a precision
of at least 90% in order to favor high quality data over data yield.

90% precision,
75% recall

Pracision vs Recall /

Precision

Recall

Fig. 2. P/R curve (en-US Keyboard Corrections classifier)

Table 1 shows some sample correction pairs in American En-
glish. We found that most corrections were related to homophone
misrecognitions, or corresponded to words for which the pronuncia-
tion dictionary had no manual entry.

Table 1. Sample Keyboard Corrections (en-US)

Speech recognizer transcript
Plus would Newton Kansas
the cruise movie 3d

what is a schematic

the trucking part Arizona
Christmas Alex

User keyboard query
Pluswood Newton Kansas
the croods movie 3d

what is ischemic

the trotting park Arizona
crispus attucks

4. SELECTED ALTERNATE DATA

The Google voice search user interface allows the user to manually
select from a list of alternative recognition results (Figure 3). This
user feedback, which we call Selected Alternate data, provides high
quality corrections.

Table 2 shows some examples of selected speech alternates.
These transcripts, proposed from the N-best recognition output of
the recognizer, are already well matched to the audio signal. The
user selection is all that is needed to make it a strong supervised
signal: no extra classifier is needed in this case.

Markov model

Markov model

Markov model - Wikipedia, the free models
encyclopedia

Tapona modeling
word to get

alternates
modle

Stochastic calculus - Hidden Markov model

Markov chain - Wikipedia, the free
encyclopedia
en wikipedia.org/wiki/Markev_chain

is called the Markov pro Markov chains
have many applicati istical models of
eal-world processes

Hidden Markov model - Wikipedia, the
free encyclopedia
org/.../Hidden_Markov_mo.
v model (HMM) is a statistical

Fig. 3. Selection Alternates in Google voice search.

Table 2. Examples of Selected Alternates Data.
User-selected alternate
my cat try to bite my thigh
which band was Creed in
movie Tamara
find a picture of a beluga
Quinton high Topeka Kansas
pictures of Renee Fleming

Speech recognizer transcript
my cat try to bite my Fi
which band was created in
movie tomorrow

find a picture of a blue ku
Winston high Topeka Kansas
pictures of Renee swimming

5. ASR EXPERIMENTS

5.1. Pronunciation Learning

The experiments described in this section use the data mined in the
two sections above as inputs to a pronunciation learning system. We
followed the algorithm described in [2], which rewrites Eq. 6 for
the purpose of pronunciation learning: it assumes that the word se-
quence W; corresponding to the acoustic sequence X is given, but
that multiple candidate pronunciations are available. We wish to
find the pronunciation sequence S™ that maximizes the likelihood of
the acoustic data, given that the word sequence is the user-corrected
transcript:

S* = arg max P(X|S}). (8)
J

where P(S}|W;) can be dropped if we assume equal priors on the
pronunciation sequences.

The learned pronunciations were added to the recognition sys-
tem and evaluated. The pronunciation candidates are generated from
20 best G2P pronunciations. More details on how pronunciation can-
didates are generated, and how learned pronunciations are added to
the ASR lexicon can be found in found in [2].

5.2. Baseline Speech Recognizer

The baseline system used in these experiments is a production-level,
large-vocabulary, state-of-the-art speech recognizer with a Deep
Neural Network (DNN) acoustic model [16], a Finite State Trans-

ducer (FST) decoder [17], and a standard 5-gram language model
trained on a variety of text corpora.

5.3. Evaluation Metrics

We performed word error rate (WER) evaluations on test sets con-
taining anonymized speech queries randomly selected from traffic
logs and human-transcribed. Because the underlying speech recog-
nizer is a production-level system, the most frequent words in any
given language already have good pronunciations. The words for
which we seek to learn pronunciations lie in the tail of the query dis-
tribution, and most are thus unlikely to appear in the test sets. We
nonetheless found it useful to compute the WER on such test sets
to ensure we didn’t learn any “rogue” pronunciation, i.e. a phone
sequence for an infrequent word that matches the pronunciation of
a different and more frequent word that would now be misrecog-
nized. In addition to standard test set WER evaluations, we also
measured the impact of pronunciation variants by performing side-
by-side (SxS) tests.' For these experiments, we build two ASR en-
gines: one without the learned pronunciations, and one with them.
The acoustic model, language model, and vocabulary are the same
in both engines. Only the lexicon changes. The two engines are
used to recognize speech queries extracted from anonymized voice
search logs. Queries for which the recognition transcripts differ be-
tween the two engines are evaluated by human raters, and marked as
belonging to one of four categories:

1. nonsense: the transcript is nonsense.

2. unusable: the transcript does not correspond to the audio.
3. usable: the transcript contains only small errors.
4

. exact: the transcript matches the spoken audio exactly.

We compute a weighted score for each engine’s output as fol-
lows:

Z?:1 W(Z) * C(Z)
> C()

where C(7) is the number of samples from the i-th category, and
W (%) is the category weight (0, 0.25, 0.75, and 1, corresponding to
the categories above).

An experiment is considered positive if its SxS score is higher
than that of the corresponding baseline. Generally this means it has
fewer nonsense/unusable queries and more usable and exact queries.
A graphical representation of counts in the various categories, for
the baseline and for the experiment, provides a more intuitive (if less
rigorous) read on the experiment success than the SxS score, so we
provide this as well.

Side-by-side experiments have the advantage of focusing on
cases where pronunciation changes do affect the recognition results.
They typically show more “movement” than WER measurements
on fixed test sets.

SxS_Score = 9)

5.4. Impact of Pronunciations Learned from Keyboard Correc-
tion Data

Table 3 reports recognition error rates in three US English test sets
extracted from web search, mobile actions, and Maps traffic, respec-
tively. We see a small reduction in word error rate on each test set.

Thttps://code.google.com/p/sxse/

Table 4 reports SxS score improvements from adding new pro-
nunciations to the baseline ASR engine. Here we show results in
British English, French, and German, to illustrate how the data clas-
sifier generalizes to other languages. Paired t-tests were used to com-
pute a p-value of statistical significance in comparing the SxS scores.

Table 3. WER comparisons for Keyboard Corrections data on Amer-
ican English test sets.

[Dataset | # Utterances | Baseline WER | Experiment WER

Search 22K 10.9 10.8
Actions 12K 21.9 21.8
Maps 18K 11.4 11.3

Fig. 4 shows the distribution of each SxS category for British En-
glish; similar distributions were observed in other languages. Base-
line system categories are shown in blue, and those for the experi-
ment (with added pronunciations) are shown in red. The distribu-
tions clearly show a large movement from Nonsense to Exact.

M Baseline
Nonsense B Experiment
Unusable
Usable
Exact
100 200 300 400 500

Number of Queries

Fig. 4. SxS category distributions for Keyboard Corrections (en-GB)

5.5. Impact of Pronunciations Learned from Alternate Selection
Data

The amount of data flowing through the Alternate Selection pipeline
is smaller than that from Keyboard Corrections. As a result, the
system learns fewer pronunciations, and our experiments showed no
impact on standard test set word error rates. However, SxS evalu-
ations showed significant improvements. Results for American En-
glish are shown in Fig. 5. Here the baseline score was 0.418 (blue),
and the experiment 0.457 (red). The p-value for these scores is less
than 0.001.

Table 4. SxS scores for Keyboard Corrections in three languages.

| Language | Baseline score [Experiment score | p-value |

English 0.376 0.432 <.001
French 0.382 0.468 <.001
German 0.416 0.489 <.001

M Baseline
Nonsense M Experiment
Unusable
Usable
Exact
100 200 300 400 500

Number of Queries

Fig. 5. SxS category distributions for Alternate Selections (en-US)

5.6. Examples

The pronunciations learned from Keyboard Corrections and Selected
Alternates data fix bad pronunciations for words already in the lex-
icon word list, or replace G2P pronunciations for words not in the
list. Table 5 shows some sample pronunciations of the initial best
G2P pronunciation and the final learned pronunciation, expressed in
X-SAMPA? phone notation, learned through these methods. They
mostly consist of tail words extracted from business names or web-
sites.

Table S. Pronunciations learned from Keyboard Corrections and Se-
lected Alternates

[word | best G2P pronunciation | learned pronunciation |
sephora | SEfOr @ s@fOr@
tasca tAsk @ t{sk @
estas Est@z Est{s
verdi v@'di vErdi
newman | num @ n njum@n

6. CONCLUSIONS

In this work, we presented an approach to mine untranscribed voice
search logs to extract training data from which to learn word pronun-
ciations. The fact that a misrecognition has been corrected by a user
provides supervision to the learning process. Correction data has
the advantage of focusing specifically on the areas of weaknesses of
the system: we do not need to identify bad pronunciations ahead of
time to know which words to learn. Also, corrections are provided
by the users who spoke the queries, and presumably know how the
words (often proper names) should be pronounced, or at least how
they want to pronounce them.

We discussed two types of correction data: Keyboard Correction
and Selected Alternate data, and showed that both provide new pro-
nunciations whose quality was demonstrated through side-by-side
speech recognition experiments.

2http://en.wikipedia.org/wiki/X-SAMPA

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

7. REFERENCES

Alex Graves and NavDeep Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks,” in Proceedings of
ICML, 2014.

Attapol Rutherford, Fuchun Peng, and Francois Beaufays,
“Pronunciation learning for named-entities through crowd-
sourcing,” in Proceedings of Interspeech, 2014.

Alan W Black, Kevin Lenzo, and Vincent Pagel, “Issues in
building general letter to sound rules,” in International Speech
Communication Association, 1998.

Maximilian Bisani and Hermann Ney, “Joint-sequence models
for grapheme-to-phoneme conversion,” Speech Communica-
tions, vol. 50, no. 5, pp. 434-451, 2008.

Stanley F. Chen, “Conditional and joint models for grapheme-
to-phoneme conversion,” in Proceedings of InterSpeech, 2003.

John Kominek and Alan W Black, “Learning pronunciation
dictionaries: language complexity and word selection strate-
gies,” in Proceedings of HLT-NAACL, 2006.

Kanishka Rao, Fuchun Peng, Hasim Sak, and Frangoise Bea-
ufays, ‘“Grapheme-to-phoneme conversion using long short-
term memory recurrent neural networks,” in Proceedings of
ICASSP, 2015.

Gina-Anne Levow, “Characterizing and recognizing spoken
corrections in human-computer dialogue,” in Proceedings of
ACL, 1998, pp. 736-742.

Marco Orlandi, Christopher Culy, and Horacio Franco, “Using
dialog corrections to improve speech recognition,” in Error
Handling in Spoken Language Dialogue Systems, 2003.

Hagen Soltau and Alex Waibel, “On the influence of hyperar-
ticulated speech on recognition performance,” in Proceedings
of ICSLP, 1998.

Rivka Levitan and David Elson, “Detecting retries of voice
search queries,” in Proceedings of ACL, 2014, pp. 230-235.

Jason D. Williams, “Exploiting the asr n-best by tracking mul-
tiple dialog state hypotheses,” in Proceedings of Interspeech,
2008, pp. 191 — 194.

Yongmei Shi and Lina Zhou, “Examining knowledge sources
for human error correction,” in Proceedings of Interspeech,
2006.

Arup Sarma and David D. Palmer, “Context-based speech
recognition error detection and correction,” in Proceedings of
HLT-NAACL, 2004.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The
Elements of Statistical Learning (2nd ed.), New York:
Springer, 2009.

Vincent Vanhoucke, Matthieu Devin, and Georg Heigold,
“Multiframe deep neural networks for acoustic modeling,” in
Proceedings of ICASSP, 2013.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Ri-
ley, “Weighted finite-state transducers in speech recognition,”
Computer Speech and Language, vol. 16, no. 1, pp. 69-88,
2002.

