

Adding Third-Party Authentication to
Open edX: A Case Study

Abstract
In this document, we describe the third-party
authentication system we added to Open edX. With this
system, Open edX administrators can allow their users
to sign in with a large array of external authentication
providers. We outline the features and advantages of
the system, describe how it can be extended and
customized, and highlight reusable design principles
that can be applied to other authentication
implementations in online education.

Author Keywords
API design; authentication; authorization; education;
identity; privacy; security; testing.

ACM Classification Keywords
D.2.13 [Reusable Software]: Reusable libraries; K.6.5
[Security and Protection]: Authentication.

Introduction
User authentication is the process whereby a user of a
computer system proves their identity to that computer
system so they can then be granted the ability to make
certain protected actions within that system. It is a
difficult problem because maximizing the security an
authentication system delivers in practical terms
requires balancing two factors: first, the strength of the

John Cox

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

johncox@google.com

Pavel Simakov

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

psimakov@google.com

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
L@S 2015, Mar 14-18, 2015, Vancouver, BC, Canada
ACM 978-1-4503-3411-2/15/03.
http://dx.doi.org/10.1145/2724660.2728675

Figure 1. edx.org sign-in page with third-party authentication.

L@S 2015 • Work-in-Progress March 14–18, 2015, Vancouver, BC, Canada

277

security provided by the system itself, often through
strict adherence to ever-evolving cryptological
standards; and second, user convenience.

These factors are often in tension: user convenience is
maximized by not having an authentication step at all,
and security is maximized often by creating systems
that are very difficult for users to satisfy. If a system is
too hard for users to use, they will opt either not to use
the system at all, or they will take steps that increase
their convenience but decrease the effective security of
the system, such as constructing weak passwords, re-
using passwords between systems, and so on.

Finding the balance between these factors, in addition
to implementing authentication correctly in the first
place, is very difficult. Many authors of computer
systems lack the expertise or the time necessary to do
this, so they may deliver authentication
implementations in their products that are not secure.

Authentication in the online education space is further
complicated by the need to integrate with legacy
authentication systems at educational institutions.
Moving off these systems is impractical, so new online
education tools must be able to interoperate with them.

Below we outline an approach we took to creating a
secure, configurable, extensible authentication solution
for use in the online education space. We cover the
features of our implementation, and explain the design
principles that can be applied to implementations
beyond our own.

Background
Open edX [1] is an open-source, freely-available
platform for authoring and delivering educational
content at scale. Until 2014, it provided only first-party
authentication. “First-party authentication” means the
system that requires user authentication is the same as
the system that provides user authentication. First-
party authentication systems are both common and
simple:

Figure 2. In a first-party authentication system, when a user

takes an action that requires authentication, they are first

taken to the authentication system component. In this

component they are challenged to provide their identity, and

they provide a response to that challenge. If they fail the

challenge, the system composes a response notifying them of

failure. If they succeed, the system composes a success

response, which is often the resource they requested with their

initial action.

L@S 2015 • Work-in-Progress March 14–18, 2015, Vancouver, BC, Canada

278

Users of a first-party authentication system will have a
user account with that system. That account will store
an identifier for that user, their credentials (such as a
nonreversible hash of their password), and other user
data.

This is distinct from third-party authentication, where
the system that requires user authentication (hereafter
the “authentication consumer”) are different from the
system that users authenticate with (hereafter the
“authentication provider”). The steps the user goes
through under third-party authentication are the same
as in Figure 2 above, except they undergo
challenge/response with the authentication provider.
Consequently, the authentication consumer does not
need to store or validate user credentials.

This has two advantages. First, it is more convenient
for the user because they do not have an additional set
of credentials to manage. Second, the authentication
implementation of the provider system is often more
secure than authentication systems written by the
authors of the consumer system, since authentication is
the provider system authors' core competency.

Implementation details
At the core of our implementation [2] is python-social-
auth [3], an open-source library that supports third-
party authentication, written in the Python
programming language. We picked python-social-auth
because it supports three open authentication protocols
(OpenID, OAuth 1, and OAuth 2 [4]) and over 60
authentication providers [5], is also written in Python,
and provides good abstractions for the two biggest
extension points we identified when gathering
requirements.

First, by using an abstraction called the authentication
pipeline, which comes from python-social-auth, future
implementers can hook into the authentication flow at
any point and insert custom code. This is done by
exposing the behavior of the authentication code as a
re-entrant stack of function calls via a Python API, each
representing a conceptual step in the authentication
process. This set of steps can be extended and re-
ordered, and the pipeline as a whole can be paused and
resumed on an ad-hoc basis by custom authentication
code in the containing system.

Second, python-social-auth provides abstractions for
additional authentication protocols or providers, also
via Python APIs. These are vital because many
organizations in the educational space have vast pre-
existing computing infrastructure, including custom
single-sign on (SSO) systems for user authentication.
These systems may speak a host of different protocols,
of which Central Authentication Service (CAS) [6] and
Shibboleth [7] are the most common. Switching away
from their legacy authentication systems is both
impractical and undesirable for these organizations.

We wrapped python-social-auth in a thin layer that
manages configuration details for a given deployment.
This is where, for example, any deployment of Open
edX selects the set of providers it will use from the full
set of available providers. We then refactored the Open
edX codebase to optionally use python-social-auth for
authentication actions alongside the existing first-party
authentication implementation. We adapted the Open
edX user interface to account for a small number of
new user actions, like managing associations between
an existing Open edX account and any number existing
provider accounts. Once these associations are

L@S 2015 • Work-in-Progress March 14–18, 2015, Vancouver, BC, Canada

279

established, users can sign in to their Open edX
account with any of the associated provider accounts.
Users may revoke an association at any time.

Finally, we provided an extensive set of tests [8]. A
major feature of our tests is a comprehensive suite that
is executed once per known authentication provider.
This makes it easier to test new providers against the
system as a whole with a minimal investment of new
code: provider developers extend one class with a few
dozen lines of provider-specific detail, and the full suite
is executed against that provider. This limits the
knowledge of the underlying Open edX system that a
provider author needs to have in order to write a new
provider, and at the same minimizes the risk that they
will miss important edge cases during development.

Conclusions
The approach outlined above proved successful. This
third-party authentication system has been live on
edx.org, the largest deployment of Open edX, since
September of 2014. Members of the Open edX
community have used the abstractions detailed above
to author and deploy customized versions of Open edX
with additional authentication providers and customized
user authentication flows.

While the system has been extended beyond its initial
implementation to account for new requirements, real-
world use found no gaps in the overall design. We
therefore consider this design approach successful and
recommend it to other developers in the online
education space who require integrations with third-
party authentication providers.

Acknowledgements
We are very grateful to our partners at edX who worked
with us on the development of this feature. As well,
we'd like to extend our thanks to the university and
industry staff we interviewed while gathering
requirements. Finally, we would like to thank Matías
Aguirre and the other authors of python-social-auth.
The library is excellent, and most of the ideas in this
paper are very strongly influenced by the design
choices and abstractions it established.

References
[1] Open edX. http://code.edx.org.

[2] Open edX third_party_auth module.
https://github.com/edx/edx-
platform/tree/master/common/djangoapps/third_party
_auth.

[3] Python Social Auth.
https://github.com/omab/python-social-auth.

[4] Python Social Auth documentation.
http://psa.matiasaguirre.net/docs/backends/implement
ation.html.

[5] Python Social Auth documentation.
http://psa.matiasaguirre.net/docs/backends/index.html
#social-backends.

[6] CAS Protocol 3.0 Specification.
https://github.com/Jasig/cas/blob/master/cas-server-
documentation/protocol/CAS-Protocol-Specification.md.

[7] Shibboleth. https://shibboleth.net/.

[8] Open edX third_party_auth module tests.
https://github.com/edx/edx-
platform/tree/master/common/djangoapps/third_party
_auth/tests.

L@S 2015 • Work-in-Progress March 14–18, 2015, Vancouver, BC, Canada

280

