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Abstract

Many socio-economic studies rely on panel data as they also provide detailed demographic

information about consumers. For example, advertisers use TV and web metering panels to

estimate ads effectiveness in selected target demographics. However, panels often record only a

fraction of all events due to non-registered devices, technical problems, or work usage. Goerg

et al. (4) present a beta-binomial negative-binomial hurdle (BBNBH) model to impute missing

events in count data with excess zeros.

In this work, we study empirical properties of the MLE for the BBNBH model, extend it to

categorical covariates, introduce a penalized maximum likelihood estimator (MLE) to get accu-

rate estimates by demographic group, and apply the methodology to a German media panel to

learn about demographic patterns in the YouTube viewership.

Keywords: imputation; missing data; zero inflation; BBNBH distribution.

1 Introduction

Panels are often used in socio-economic studies to track user activity and estimate characteristics

of specific target populations (see 14, for a methodology overview). TV and online media panels

(3; 8) are particularly useful for advertisers to estimate the effectiveness of showing an ad at a

certain time of the day or placing an ad on a website.

As an example consider Fig. 1a, which shows a random subsample of the panel data we use in our

case study in Section 6. The white/black colors encode whether the panel recorded a YouTube

homepage visit for a given day from a panelist or not. The most striking feature of the data are a

vast amount of zeros, i.e., many panelists seem to never visit www.youtube.de. Secondly, the split

by gender and age hints at heterogeneity across the population. Figure 1b shows the aggregated
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empirical distribution of number of visits – again split by age and gender. Here the difference

between demographic groups becomes more pronounced.

Advertisers are interested in reach and frequency : while the first measures the fraction of the

population that sees an ad, the second measures how often they are exposed to it (on average).

Reach and frequency can largely determine the cost of an advertising opportunity – on TV, in a

magazine, or on a website. It is thus important to obtain accurate and precise reach and frequency

estimates from panel data.

A näıve approach would simply use the sample fraction of positive number of events (website visits,

TV spots watched, etc.) to estimate reach; similarly, for a frequency estimate. The problem with

this approach is that panels often suffer from underreporting, i.e., they record only a fraction of

all events. Missingness can have various causes such as non-compliance, work usage, or the use of

unregistered devices (see 11; 12, for a detailed review on the accuracy of panels). This is especially

problematic for reach and frequency measurements as missed events always lead to underestimation

when using sample averages.

Several studies on response error in consumer surveys have approached the missingness problem.

Yang et al. (15) use econometric time series models to estimate response rate over time conditioned

on demographic information; Fader and Hardie (1) use a Poisson model with underreporting;

Schmittlein et al. (10) derive closed form expressions for predictive distributions of the beta-binomial

negative binomial (BBNB) model (6; 5).

Goerg et al. (4) extend the BBNB model with a hurdle component (BBNBH) to account for excess

zeros in the data-generating process of the unobserved counts. They derive marginal and predictive

distributions and use the methodology to estimate how many people go to the YouTube homepage

in Germany. While the BBNBH model can adapt to excess zeros in underlying, true events, it

does not take heterogeneity across the population into account. Yet, as advertisers are interested

in specific target demographics it is important to get accurate estimates by demographic.

We extend previous work on the BBNBH model (Section 2) in several important ways: a) we

add categorical covariates to the BBNBH model and propose a categorical missingness estimation

via a penalized maximum likelihood estimator (MLE) in order to capture heterogeneity across

categories (e.g., demographic groups or weekend vs. weekday effects) (Section 3); b) we study

empirical properties of the MLE via simulations (Section 4); c) we present several methodologies

to estimate reach from panel data and the model fits (Section 5); d) we apply the methodology

to a German online media panel to estimate demographics differences in the YouTube viewing

behavior and provide demographic-specific reach and frequency estimates (Section 6). A preview

of these results is shown in Fig. 1c with a random sample of the true (unobserved) non-zero visits

as predicted by the demospecific BBNBH model.

Appendix A describes details on estimation algorithms. All computations and figures were done in

R (9).
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(a) Zero vs. non-zero events of 100
randomly selected panelists in each
demographic group during 10 (ran-
domly picked) consecutive days.
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(b) Empirical frequency of the
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and age group.

(0,24] (24,39] (39,54] (54,Inf]
fem

ale
m

ale

day: 1, ..., 10

P
an

el
is

t: 
1,

 ..
., 

10
0

Count > 0 FALSE TRUE

(c) Zero vs. non-zero imputed
counts, where parameters are from
the overall BBNBH MLE fit (Table
1, Section 6).

Figure 1: Panel data for visiting the YouTube homepage for Germany (www.youtube.de). See Section 6
for details.

2 Review of the BBNBH Model: Hierarchical Imputation Of Un-

derreported Count Data

In this section we review the BBNBH model and its main properties.1 Figure 2 illustrates its

data-generating process on the example of YouTube homepage visits:

a) User i visits YouTube with probability 1− q0; if she does, the number of visits Ni per time unit

is distributed according to a shifted Poisson distribution (starting at n = 1) with rate λi.

b) To allow heterogeneity among the population, λi ∼ Gamma
(
r, q1

1−q1

)
, with rate r > 0 and

success probability q1 ∈ (0, 1).

c) Given a visit, the probability of recording this visit in the panel equals pi ∈ (0, 1).

d) The recording probability pi follows a Beta distribution, pi ∼ Beta(µ, φ), with an expected

non-missing rate µ and precision φ, which characterizes the variability of missingness across the

population.2

Combining a) and b) yields a negative binomial hurdle (NBH) distribution for the unobserved

events Ni ≥ 0 with probability mass function (pmf)

NBH(n; q0, q1, r) =

q0, if n = 0,

(1− q0) · Γ(n+r−1)
Γ(r)Γ(n) · (1− q1)rqn−1

1 , if n ≥ 1,
(1)

1For detailed derivations see Goerg et al. (4).
2Mean µ and precision φ are related to the (α, β) parametrization of the Beta distribution by µ = α

α+β
and

φ = α+ β, respectively; vice versa, α = φµ and β = φ(1 − µ) (2).
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2.1 Marginal and predictive distributions 2 BBNBH MODEL REVIEW

where Γ(z) is the gamma function. Levels c) and d) describe a Beta-binomial (BB) subsampling

to obtain observed events Ki ≥ 0 with pmf:

BB(k | n;µ, φ) =

(
n

k

)
B(k + φµ, n− k + φ(1− µ))

B(φµ, φ(1− µ))
, (2)

where B(a, b) is the Beta function. Jointly, they constitute the BBNBH model hierarchical impu-

tation

Ni ∼ NBH(N ; q0, r, q1),

Ki | Ni ∼ BB(K | Ni;µ, φ),
(3)

with parameter vector θ = (µ, φ, q0, r, q1).

The hurdle parameter q0 plays an important role in the advertising context as 1 − q0 equals the

true, but unobserved, potential 1+ reach of a campaign (see Section 5 for details). That is, if an

advertiser shows an ad on the YouTube homepage they can expect that a fraction of 1− q0 of the

population sees the ad at least once in a given period.

Before deriving marginal and predictive distributions, consider the expected number of true and

observed events. It holds,

EN = E(N | N = 0) · P (N = 0) + E(N | N > 0) · P (N > 0)

= (1− q0) ·
(

1 + r
q1

(1− q1)

)
,

(4)

and by the law of total expectation,

EK = µ · EN = µ · (1− q0) ·
(

1 + r
q1

(1− q1)

)
. (5)

While the analytical derivations of marginal and predictive distributions are simpler for the (r, q1)

parametrization of the negative-binomial, in applications it is useful to consider the mean in (4) as

an intuitive and directly interpretable quantity of the model.

2.1 Marginal and predictive distributions

The marginal distribution of the observable events K equals

P (K = 0) = q0 + (1− q0)× Γ(φ)

Γ(φ(1− µ))

(1− q1)r

Γ(r)

×
∞∑
n=0

Γ(n+ 1 + φ(1− µ))

Γ(n+ 1)

Γ(n+ r)

Γ(n+ 1 + φ)
qn1 ,

(6)
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Panelist i visits
YouTube?

Number of visits
Ni − 1 ∼ Poisson (λi)

Viewing rate

λi ∼ Γ
(
r, 1−q1

q1

)

Recorded visits
Ki ∼ Binom(Ni, pi)

Non-missingness rate
pi ∼ Beta(µ, φ)

µ̂Logs = K̄W
NLogs

Panel
{K1, . . . ,KP }

yes (Ni > 0), with probability 1− q0

Ki ≥ 0

no (Ni = 0), with probability q0

Ki ≡ 0

Figure 2: Data-generating process of the BBNBH model for observed – but underreported – count data,
illustrated on the example of YouTube homepage visits recorded in a panel.

and for k > 0,

P (K = k) =(1− q0)(1− q1)r
Γ(φ)

Γ(µφ)Γ(φ(1− µ))

1

Γ(r)
× Γ(k + µφ)

Γ(k + 1)

×
∞∑
m=0

(m+ k)
Γ(m+ φ(1− µ))

Γ(m+ 1)

Γ(m+ k + r − 1)

Γ(m+ k + φ)
qm+k−1

1 .

(7)

While the panel only records ki events for each panelist, it is clearly important to find out

how many events ni truly occurred. That is, we are interested in the conditional distribution

P (N = ni | K = ki). Following Bayes’ rule (dropping subscripts) this can be expressed as

P (N = n | K = 0) =
1

P (K = 0)
·



q0, if n = 0,

Γ(n+φ(1−µ))
Γ(n+φ)

Γ(φ)
Γ(φ(1−µ))

×(1− q0)Γ(n+r−1)
Γ(n)

(1−q1)r

Γ(r) qn−1
1 , otherwise.

(8)

and (9)

P (N = n | K = k) =



0, for all n < k,

n · qn−1
1

Γ(n− k + (1− µ)φ)

Γ(n− k + 1)Γ(n+ φ)
Γ(n+ r − 1)

×

( ∞∑
m=0

(m+ k)
Γ(m+ φ(1− µ))

Γ(m+ 1)

Γ(m+ k + r − 1)

Γ(m+ k + φ)
qm+k−1

1

)−1

, otherwise .

(10)
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Figure 3: Conditional inference via imputation; parameters from Section 6, Table 1.

Figure 3 shows the conditional cumulative distribution functions (cdf) for several ki and a compar-

ison of several point predictions (expectation, median, mode, and näıve imputation).

3 Parameter Estimation

In practice, the parameter vector θ = (µ, φ, q0, r, q1) must be estimated from the panel. Let k =

{k1, . . . , kP } be the number of observed events for each panelist i = 1, . . . , P .

Panelists are usually also associated with demographic and economic indicators such as gender,

age, and income. Based on these attributes a panelist i has a demographic weight w̃i that equals

the number of people they represent in the population. A representative panel should be designed

such that the total panel weight, W̃ =
∑P

i=1 w̃i, equals the total population count (obtained from,

e.g., census data). Finally, let wi = w̃i
W̃
· P be the re-scaled weight of panelist i such that the sum

of all weights equals the sample size P .

The likelihood of θ

`(θ; x) =
∑

{k|xk>0}

xk · logP (K = k; θ) . (11)

depends on the sufficient statistic, x = {xk | k = 0, 1, . . . ,max (k)}, where xk =
∑
{i|ki=k}wi is the

total weight of panelists with k visits. That is, x is a weighted frequency table of panel counts.
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3.1 Heavy tail robustness: right-truncated log-likelihood 3 PARAMETER ESTIMATION

The maximum likelihood estimator (MLE)

θ̂ = arg max
θ∈Θ

`(θ; x) (12)

can be obtained by numerical optimization. For a covariance matrix (and standard error) estimate

of θ̂ we use the inverse of the numerically obtained Hessian at the optimum.

3.1 Heavy tail robustness: right-truncated log-likelihood

We have found empirically that panel observations do not only have excess zeros, but also heavy

tails. That is, some panelists have an extremely high number of recorded visits. Figure 4 shows the

overall ecdf of the panel with some extremely large counts. To make the estimation more robust

to these extremes, we right-truncate the summation in the log-likelihood at some k = kq, and then

add the cumulative probability for the event {K > kq}.

Formally, we approximate the exact log-likelihood in (11) with

`(θ; x)trunc =
∑

{k|xk>0,k≤kq}

xk · logP (K = k; θ) +

∑
k>kq

xk

 · logP (K > kq; θ) . (13)

Since K grows with the length of the time period (events per day, week, month, etc.), it is not

possible to propose a generally good truncation value. We thus choose kq based on the empirical

quantile q as it adapts automatically to the time scale. We found that using q ≈ 0.99 works well

in practice.

3.2 Fix expected non-missing rate µ

The optimization in (12) takes place over a 5-dimensional parameter space, (µ, φ, q0, r, q1) ∈ Θ =

(0, 1) × R+ × (0, 1) × R+ × (0, 1). As we have access to internal YouTube log files we can reduce

it to 4 dimensions as we can fix the expected non-missing rate µ a-priori by comparing panel data

with log files.

Let k̄W̃ =
∑P

i=1 w̃iki be the observed visits projected to the entire population. Analogously, let

N̄W̃ =
∑P

i=1 w̃iNi be the panel count of the number of true homepage visits of the entire population.

While each single Ni is unobservable, we know what N̄W̃ should be by counting all visits to YouTube

from our internal log files. This estimate, ̂̄NW̃ , can be used to get a fixed plug-in estimate of the

expected non-missing rate, µ̂Logs = k̄W̃ /
̂̄NW̃ . The remaining four parameters, θ(−µ) = (φ, q0, r, q1),

can be obtained by MLE:

θ̂(−µ) = arg max
θ(−µ)

`((µ̂Logs, θ(−µ)); x). (14)

The overall estimate is θ̂ = (µ̂Logs, θ̂(−µ)).
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Figure 4: Empirical cdf (weighted) of panel counts. The horizontal blue line shows the truncation at the
q = 99.5 % quantile. The sub-plot shows the same ecdf, but with the x-axis restricted to counts below this
quantile, k = 0, . . . , 54.

In simulations and applications we found that fixing µ gives much more stable estimates, especially

with respect to q0 and r. See also Section 4.

3.3 Demographic-dependent estimation

Advertisers use panels to measure viewing behavior of specific target audiences, e.g., young females.

Figure 1b shows that panel observations vary strongly across demographic groups. The basic

BBNBH model and resulting reach and frequency estimates in Goerg et al. (4), however, rely on

the same θ̂ for all panelists and hence do not provide good demographic-specific inference.

We thus extend the BBNBH model with categorical covariates thus having category-dependent

parameters, θ(1:G) =
(
θ(1), . . . , θ(G)

)
– one for each of G exhaustive sub-groups of panel observa-

tions, D(1), . . . , D(G) (e.g., D(1) = “female”, D(2) = “male” or D(1:7) = {Mon, . . . ,Sun}). Such a

model has 5 × G parameters. For the remainder of this work we will use demographic groups as

the categorical covariate. Note though, that the methodology carries over to other categories such

as weekday effects or economic status.
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3.3 Demographic-dependent estimation 3 PARAMETER ESTIMATION

Conditioning on demographic sub-groups, the log-likelihood becomes

`(G)(θ(1:G); x(1), . . . ,x(G)) =
G∑
g=1

`(θ(g); x(g)), (15)

where x(g) = {x(g)
k | k = 0, 1, 2, . . .} and x

(g)
k is the total weight of panelists in D(g) with k views.

Since splitting by demographic yields non-overlapping subgroups of panelists with independent

parameters, (15) can be maximized for each subgroup separately; thus θ̂(1:G) =
(
θ̂(1), . . . , θ̂(G)

)
.

3.3.1 Fix expected non-missing rate per demographic

As for the overall model, fixing non-missing rates greatly improves estimation stability. For multiple

groups there are at least three ways to fix µ(1:G) =
(
µ(1), . . . , µ(G)

)
:

Plugin demo-specific missingness: Missing rates can be estimated for each subgroup separately

(comparing panel vs. log files to obtain µ̂
(g)
Logs), and then one proceeds as with the overall MLE.

While this approach is appealing for its simplicity, it suffers from estimation bias since online

demographic information is often incomplete and not entirely correct: younger users tend to

report an older age online and desktop devices are often shared between family members in

a household. Thus comparing (correct) panel demographic information to logs data yields

biased non-missing rate estimates.3

All equal missingness: One option to avoid this particular estimation bias, is to set µ(g) ≡ µ̂Logs
for all g = 1, . . . , G.

While this conveniently reduces the parameter space to 4 × G dimensions, missing rates

do not depend on demographics anymore. However, it is quite unrealistic since causes for

missingness, such as home vs. work usage or using multiple devices, are strongly correlated

with demographics.

Variable, but overall fixed, missingness: Our suggested approach allows missing rates µ(1:G)

to vary by demographic group, but we restrict them to average out to the overall µ̂Logs.

To obtain the constraint on µ(1:G) we reason as follows. Let k
(g)

W̃
=
∑

i∈D(g) w̃iki be the total number

of observed visits by demographic group D(g). Analogously, let N
(g)

W̃
be the total number of true

(unobserved) events per group. Note again that k
(g)

W̃
can be computed from the panel, while N

(g)

W̃

is unobserved.

3Hence we do not pursue this approach in our case study at all. Correcting demographic estimation bias of
YouTube logs files is beyond the scope of this work (see Wang and Koehler, for details).
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3.3 Demographic-dependent estimation 3 PARAMETER ESTIMATION

By construction the observed events per group add up to the overall number of events:

G∑
g=1

k
(g)

W̃
= kW̃ . (16)

Clearly, (16) must also hold for the true events,

G∑
g=1

N
(g)

W̃
= N̄W̃ . (17)

To obtain a restriction on µ(1:G) note that if we could obtain the total number of true visits for each

group without the demographic-estimation bias, then we could estimate demographic non-missing

rates for each group using µ̂(g) = k(g)

N(g) . Thus, (17) can be rewritten as

G∑
g=1

k(g)

µ̂(g)
=

kW̃
µ̂Logs

⇔ 1∑G
g=1 v

(g) 1
µ̂(g)

= µ̂Logs, (18)

where v(g) =
k
(g)

W̃
kW̃

are data-driven weights. Constraint (18) states that the weighted harmonic

average of groupwise non-missing rate estimates must equal the overall non-missing rate. For a

fixed µ̂Logs > 0, (18) avoids degenerate µ(g) → 0 optima. It is important to point out that the non-

missing rates are not weighted by demographic weights, but by the (weighted) number of counts

in each group.

3.3.2 Iterative exact-constraint estimator

As (18) binds parameters from different groups together, the MLE cannot be solved separately

for each group. jointly subject to (18). However, while non-missing rates µ(1:G) are tied by (18),

remaining parameters do not influence each other across groups. It is therefore not necessary to

perform joint maximization in the entire 5×G−1 dimensional space, but optimization can be done

iteratively to accelerate convergence:

0. Use overall θ̂ as starting value for each group: θ̂
(g)
0 = θ̂. Set i = 1.

1. For each g ∈ {1, . . . , G}: fix µ̂
(g)
i−1 and solve (14) to obtain θ̂(−µ),i.

2. Fix θ̂
(g)
(−µ),i of each group and maximize log-likelihood in (15) over µ(1:G) subject to (18) to obtain

µ̂
(1:G)
i . Set i = i+ 1.

3. Iterate steps 1 and 2 until convergence, ‖θ̂(1:G)
i−1 − θ̂

(1:G)
i ‖ < ε, for some tolerance level ε > 0.

Since step 1 is an unconstrained optimization, the MLE from (14) can be used. Step 2 requires

solving a constrained optimization problem. To get an exact solution we map the G dimensional

10
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µ(1:G) subject to constraint (18) to the unbounded RG−1, optimize on the unconstrained space, and

then map it back to the original space. This bijective mapping guarantees that µ̂
(1:G)
i satisfies (18)

exactly in each iteration. For details see Appendix A.2.

In practice, the iterative updating between µ(1:G) and remaining parameters can lead to a “zig-

zagging” of the estimates. To make these transitions more smooth in each iteration we use a

weighted average between old (i− 1) and new (i) estimates of the form (similarly for θ̂
(1:G)
i,−µ )

µ̂
(1:G)
i ← λ · µ̂(1:G)

i + (1− λ) · µ̂(1:G)
i−1 , (19)

where λ ∈ (0, 1] controls the smoothness. For λ = 1 no smoothing occurs; for λ→ 0 the transitions

become more smooth.

3.4 Smoothing penalty on variation of missingness

To avoid too large variation across (µ1, . . . , µG) we add a penalty term to the log-likelihood

κ · ‖ dist
(

(µ̂Logs, . . . , µ̂Logs) , µ
(1:G)

)
− δ‖1 (20)

where dist(·, ·) is a distance measure, ‖x‖1 = |x| is the absolute value of x, δ ≥ 0 is the ex-

pected target distance, and the penalty parameter κ ≥ 0 regulates the deviation from δ. If

µ(1) = . . . = µ(G) = µ̂Logs then (20) equals δ. From a Bayesian point of view, δ > 0 encodes

the belief that missing rates are not expected to be constant (δ = 0), but should vary across groups

by a variation of δ (as measured by dist(·, ·)). Thus while we set a target variation a-priori, we let

the data (likelihood) decide which groups are below and which ones are above the overall missing-

ness.

For the distance measure we use a weighted Lp norm, dist(x, y) = ‖x−y‖p,v =
(∑G

g=1 v
(g)|xg − yg|p

)1/p
,

p = 2, where the (re-scaled) demographic weights per group, v(g) = w(g)

W G, satisfy v(g) ≥ 0,∑G
g=1 vg = G.

4 Simulations

This section presents empirical finite-sample size properties of the MLE with particular focus on

the performance improvements when fixing µ̂ a-priori.

We simulate panels of size P ∈ {100, 500, 1000, 2000, 5000, 10000} (wi = 1 for all i). We use typical

parameters found in our case study, θ = (µ = 0.25, φ = 3, q0 = 0.8, r = 0.5, q1 = 0.95): this

means that 20% of the population visit at least once; those who visit typically see 10.5 impressions

(E(N | N > 0) = 1 + r q1
1−q1 ); but – on average – only 25% of their visits are recorded in the panel.

We have found via simulations and several applications that the log-likelihood surface is very

11
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Figure 5: Estimation bias as a function of sample size and for two types of estimators: estimating µ by
MLE (red) versus fixing µ̂ a priori (blue). As r̂ can be highly variable for P = 100 we truncate the y-axis
for r at the 80% quantile (bias ≥ 2.1) for better readability.

unstable in the (q0, µ) sub-space. A pure gradient method often fails to estimate all 5 parameters

jointly as it drifts off to local optima (often q̂0 → 0 and µ̂ → 0).4 We thus suggest to use a

differential evolution algorithm to maximize (11) over all 5 parameters. In the simulations we use

the DEoptim package in R (9). While the random search component in DEoptim is more robust to

local optima, it takes longer to converge. It is therefore equally important to provide good starting

value θ0. See Appendix A.1.1 for details.

Results from n = 100 replications in Figure 5 show that the MLE is accurate even for small P , but

has large variance – especially for the two most important parameters: non-missing rate (µ) and

1+ reach (1− q0). This large uncertainty can be reduced by using prior information on µ̂ (setting

µ̂ = µ) – a consequence of reducing the parameter space from 5 to 4 dimensions. In particular, q̂0

is much more reliable.

As a function of sample size the MLE behaves as expected in most cases: variability decreases as P

increases. Interestingly though, φ̂ is considerably worse for small P when µ is fixed a-priori; only

for P ≥ 2, 000 estimates of φ have lower variability. Remaining parameters, on the other hand,

have the expected lower variablity when fixing µ = µ̂; especially for P ≥ 1, 000.

4The model would thus tell us that everybody visits YouTube (1 − q0 = 1), but the panel misses everything
(µ = 0).
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Figure 6: Standard error comparison for sample size P = 10, 000: empirical standard deviations of θ̂ (green)
versus average of standard errors determined by inverse of the numerical Hessian (orange).

Thus while our proposed methodology can estimate non-missing rate and 1+ reach accurately from

the panel alone (unbiased), it has poor precision. Only with a good prior estimate of µ and large

enough sample size can good precision be achieved.5

Figure 6 compares the numerical standard error estimates (average over 100 replications of se(θ̂i)

for each run) to the sample standard deviation of the n = 100 estimates (σ̂
(
θ̂i

)
).6 It shows that

standard errors obtained by diagonal of the inverse Hessian (orange) underestimate the sampling

variation (green) – and thus lead to too narrow confidence intervals. When fixing µ̂ = µ a-priori

the difference becomes much smaller.

Overall, simulations show that our proposed model is identifiable and researchers can use maximum

likelihood to obtain unbiased parameter estimates. However, standard errors from the Hessian are

much smaller than expected under repeated sampling. We thus suggest boot-strapping to get

confidence intervals with proper coverage probability when estimating µ from the data as well.

5Future work can extend this to a prior distribution on µ rather than a point estimate µ̂Logs.
6We only show estimates for sample size P = 10, 000. However, as expected, the difference between theoretical

and empirical standard errors get larger as P decreases.
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5 REACH ESTIMATION

5 Reach Estimation

One main objective of monitoring the panel is to estimate the `+ reach of a historical campaign on

the YouTube homepage. That is, advertisers want to know the fraction of the target population

that has seen their ad at least ` times. Formally, `+ reach can be computed as

RD (`) =
1

WD

∑
i∈D

wi · P (panelist i visited at least ` times) , (21)

where D ⊆ {1, . . . , P} can be a subset of panelists representing the target population, e.g., males

between 18 and 34 years old, and WD =
∑

i∈D wi is the total demographic weight of D. Note

that the demographic categories from the estimation do not necessarily have to match the target

demographic D of an advertiser. We will thus below sum over all categories from the estimation.

If panels would not suffer from underreporting (µ = 1), then one could estimate (21) using a sample

average

R̂D (`)empirical =
1

WD

∑
i∈D

wi · 1 (ki ≥ `) . (22)

A disadvantage of (22) is that the indicator function leads to noisy estimates (especially for large

`) and 1 (ki ≥ `) = 0 for ` > max(k). To obtain smooth and non-zero estimates for large ` we

suggest to use the fitted marginal distribution of K in (21)

R̂D (`)observable =
1

WD

G∑
g=1

 ∑
i∈D(g)

wi · P
(
K ≥ `; θ̂(g)

) . (23)

Similarly to data vs. model fit checks, differences between (22) and (23) indicate a poor model fit.

In practice, though, µ < 1 and (22) & (23) underestimate historical `+ reach. For an unbiased

estimate we thus recommend to use the conditional probability that panelist i has visited at least

` times given the panel recorded ki visits

R̂D (`)imputed =
1

WD

G∑
g=1

 ∑
i∈D(g)

wi · P
(
N ≥ ` | K = ki; θ̂

(g)
) . (24)

In Section 6 we demonstrate that (24) can be significantly larger than (22).

For the sake of completeness we also present the unconditional, true `+ reach estimate

R̂D (`)unobservable =
1

WD

G∑
g=1

 ∑
i∈D(g)

wi · P
(
N ≥ `; θ̂(g)

) . (25)

The difference between (24) and (25) is that R̂D (`)imputed estimates the historical unobserved reach,

whereas R̂D (`)unobservable estimates it for (another) potential realization of the panel (assuming

14
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Estimate Std. Err. t value Pr(> |t|)
µ 0.272
q0 0.636 0.023 27.990 0.000
q1 0.976 0.004 277.949 0.000
r 0.298 0.030 9.925 0.000
φ 1.941 0.644 3.015 0.003

Table 1: MLE given a-priori fixed µ = µ̂Logs with the truncated log-likelihood in (13) with kq = 54.

stationarity over time).

6 Case Study: Imputing YouTube Homepage Impressions

We now illustrate the imputation methodology on data from an online panel in Germany, which

monitors YouTube usage for the period from 2013-10-01 to 2013-10-31 (31 days). After data-

cleaning, we remain with 6, 545 panelists representing the adult online population of Germany. For

this analysis, we focus on estimating `+ reach of the YouTube homepage (www.youtube.de) from

desktop devices only.7

Figure 4 shows the empirical cumulative distribution function (ecdf) of the panel, where counts

ki have been weighted by the demographic weight wi of panelist i. Even over a period of 31

days, the proportion of zero visits is quite high (P̂ (K = 0) = 0.81). On the other extreme, the

panel also shows several outliers (max(ki) = 454), which make our proposed robust right-truncated

log-likelihood approach from Section 3.1 worthwhile.

6.1 Parameter estimation

Our internal YouTube log files for Germany show that the panel has a non-missing rate of µ̂Logs =

0.27. Contrary to simulations, the MLE for all 5 parameters on this dataset suffers from the in-

stability in the (µ, q0) subspace (µ̂→ 0 and q̂0 → 0; further results not shown).8 We thus proceed

with a fixed non-missing rate and estimate remaining parameters using the truncated log-likelihood

approach.

A comparison of the ecdf to the estimated theoretical cdf of K (bottom-left panel of Figure 7) shows

that the estimated model (Table 1) provides an excellent fit to data. For model interpretation, first

consider the NBH part: the estimated hurdle probability lies at q̂0 = 0.64, the negative-binomial

parameters are r̂ = 0.3 and q̂1 = 0.98. The fitted distribution of true, unobserved counts Ni (top-

7Even though mobile devices play a significant role in today’s web usage, we want to stress that our case study
does not include visits from mobile devices.

8We are currently working on an extension of impression imputation to a cookie & impression imputation model,
which avoids this instability. We refer to future work.

15

www.youtube.de


6.2 Imputation 6 IMPUTING YOUTUBE VISITS

0 4 8 12 17 22

cd
f

0.
65

0.
80

0.
95

P(N <= n; r = 0.3, q1 = 0.98, q0 = 0.64)

true counts (N)

 q
0

=
64

%

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

pd
f

Beta(p; µ = 0.27, φ = 1.9)

non−missingness rate

α = 0.53, β = 1.4

0 5 10 15 20 250.
80

0.
90

cd
f

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

P(K <= k; θ)

observed counts (K)

●

empirical
model

Log−likelihood: −6300.89

0 2 4 6 8 10

K = 0
K = 2

pm
f

0.
0

0.
4

0.
8

P(N = n | K = k; θ)

true counts (N)

E(N|K=0) = 1.19
E(N|K=2) = 12.15

78.9%
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left); Beta prior on sub-sampling probability (top right); empirical distribution and model fit (bottom left);
conditional predictive distributions for imputation along with conditional expectations (bottom right).

left panel of Fig. 7) shows that the excess zeros in the panel are not solely due to high missingness,

but also a consequence of a high probability of not visiting the YouTube homepage at all (63.6%).

Secondly, the sub-sampling is characterized by the Beta prior (top right). As µ = 0.27 was fixed,

the MLE could adjust its shape via the precision parameter (φ̂ = 1.94): it puts a high mass at

a very low non-missing rate; that is, more often than not, almost none of the panel visits were

recorded. As a consequence the empirical 1+ reach, P̂ (K ≥ 1) = 19.4%, largely underestimates the

true 1+ reach estimate P
(
N ≥ 1 | θ̂

)
= 1− q̂0 = 36.4%.

6.2 Imputation

The question we are trying to answer is, of course, how many impressions did user i really see given

she saw ki impressions. This is particularly important for ki = 0: here it seems that user i has
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not visited the YouTube homepage at all, when in fact, he visited ` times with positive probability

P (Ni = ` | ki = 0) > 0.

Since Ni ≥ Ki, imputation effects for panelist i fall in two categories:

ki < `: Since P (Ni > ` | Ki = ki) > 0 for ` > ki, imputation increases reach and frequency.

ki ≥ `: For ki ≥ ` imputation does not affect `+ reach, but only adds frequency.

The bottom-right panel of Figure 7 shows the estimated conditional distribution P
(
N = n | K = k; θ̂

)
for k = 0 and k = 2:

k = 0: If the panel records zero visits, there is a (100% − 78.9%) = 21.1% chance the panelist

actually has visited YouTube at least once.

k = 2: For positive observed counts there is a wide range of possibilities for the true counts –

reflected in the flat conditional distribution (median equals 6).

Recall the panel data in Fig. 1a where each entry indicates whether ki > 0 or not. With the con-

ditional expectation we can draw a random sample from the conditional distribution P (N |K = ki)

and thus obtain a typical sample of how often panelists actually have visited the YouTube home-

page. One random draw is shown in Figure 1c.

6.3 Reach estimation

Based on θ̂ we can give a probabilistic estimate of `+ reach of the YouTube homepage from desktop

devices in Germany (see Fig. 8). The weighted average of the imputed conditional probabilities

given the observed events ki in the panel (see also Section 5) yields an imputed 1+ reach estimate

of 36.4%. Comparing the curves in Fig. 8 shows that this is a large uplift from the empirical reach

estimate of 19.4%.

6.4 Estimation and imputation by demographic group

The overall model gives good overall estimates, but advertisers are usually interested in specific

demographic groups. Figure 1b showed that the empirical distribution of counts in the panel data

varies greatly by demographic group, e.g., as expected younger people have a much higher observed

count than older generations. However, just from the observations alone it is not immediately clear

if this occurs because young people truly watch more YouTube, if they just have a lower missingness

rate, or a combination of the two. In this section we apply our demographic-specific estimation

techniques to answer this question.
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Figure 8: Comparison of `+ reach of the overall model for four types of reach estimation.

To evaluate the effects of missingness estimation by demographic group we compare the overall

estimate θ̂ to the model where each µ̂(g) = µ̂Logs and the constrained MLE (using Eq. (18)).9

Recall, that µ̂(1:G) must average out to µ̂Logs = 0.27.

For the “Fix avg of mus” estimation we set δ from the smoothness penalty in (20) equal to the

distance of a missingness vector with ±0.15 around µ̂Logs (such a hypothetical missingness vector

yields δtarget = 0.01); the penalty parameter κ = 654, which equals 10% of the total sample size∑P
i=1wi = P . The iterative algorithm from Section 3.3.2 quickly converges to a heterogeneuous

missingness solution, µ̂(1:G) (Fig. 9a). To obtain a smooth iterative solution path we use λ = 0.75.

Figure 9b shows the demographic-dependent variation of the remaining parameters. For example,

q̂
(1:G)
0 tells us that the popularity of YouTube among gender and age groups.10 The last row

(EN from (4)) shows how many visits each demographic group truly has (on average), and clearly

demonstrates that an overall model does not accurately capture how the viewing behavior depends

on demographic status.

A model comparison based on log-likelihood and information criteria is given in Table 2. Group-

9In the figures these three models are labeled as “Fix all”, “Fix each mu”, and “Fix avg of mus”, respectively.
10It seems counterintuitive that younger demographics have a higher q0. However, recall that we analyze visits

from desktop devices only. Since younger demographics heavily use mobile, a lower q0 for older demographics is
reasonable.
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Figure 9: Constrained MLE for missingness by demographic groups.

wise estimation using a fixed µ(g) = µ̂Logs for each group does better than the overall model for

all criteria. Letting non-missing rates vary by group increases the log-likelihood only by a small

amount – which does not outweigh the additional parameters in the model according to AIC or

BIC. However, as we have described above, we think that the “Fix each mu” model is too unrealistic

in this web usage and YouTube visit example. We thus favor the “Fix avg of mus” solution as it

has the largest negative log-likelihood including the penalty.

We evaluate the model fit by comparing the four `+ reach estimates (from Section 5): i) empirical

(based on P̂ (Ki ≥ `)), ii) observable (P
(
Ki ≥ `; θ̂

)
), iii) imputed (P

(
Ni ≥ ` | Ki = ki; θ̂

)
), and

iv) unobservable (P
(
Ni ≥ `; θ̂

)
). While the first is a pure data-driven estimate (no model), the

remaining estimates are all based on the model fit (by demographic).

Figure 10 shows that the overall model fails to provide a good fit for individual demographic groups,

whereas fixing each µ̂(g) = µ̂Logs as well as the constrained MLE give excellent fits. For imputation,

however, the differences between “Fix each mu” vs. “Fixing avg of mus” becomes apparent in Fig.

11: demographic groups with lower non-missingness lead to higher imputed reach. For example,
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Figure 10: Estimates of `+-reach by demographic groups, parameter set, and reach type.

Table 2: Model fit comparison.

Fix all Fix each mu Fix avg of mus

Number of parameters 5 33 39
Neg. Log-likelihood 6, 329 6, 189 6, 188

Penalty 4.300 4.300 0.0001
Neg. log-likelihood (+ penalty) 6, 334 6, 194 6, 188

Sample size 6, 545 6, 545 6, 545
AIC 12, 669 12, 445 12, 455
BIC 12, 702 12, 669 12, 719

µ̂(f(54,Inf ]) = 0.22 compared to the overall µ̂Logs = 0.27. Thus by using the “Fix avg of mus”

parameters the 1+ reach estimate increases from 8.4% empirical to 18.7% imputed reach rather

than just 16.9% if we had used the “Fix each mu” estimates (an additional 1.7% of imputed reach).

These percentages can be converted to absolute population estimates using the total demographic

weight of the panel. The adult online and TV population was estimated at W̃ =
∑P

i=1 w̃i =

50.7 million. Using the imputed 1+ reach estimates for each group (using “Fix avg of mus“) we

estimate that from 2013-10-01 to 2013-10-31 a total of 20.1 million (e.g., 921.2 thousand from
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Figure 11: Imputation results by demo and for different models.

f(54,Inf]) people visited the YouTube homepage from desktop devices.

At last, we can answer the question put forward in the title of this work and estimate how many

“millennials” visited the www.youtube.de at least once from the desktop devices. We do note that

there is no consensus on the exact age range of “millennials”, so we use a broad range of all adults

in the (0,24] and (24,39] age groups. In this demographic, we estimate that a total of 11 million

people visited the YouTube homepage portal for Germany (during October 2013).

6.4.1 Summary of demographic imputation results

Our estimates show that YouTube viewership is highly heterogeneous across demographic groups

and using a “one model fits all” approach suffers from estimation bias.

The accuracy of the proposed penalized approach to estimate missingness by demographic is hard

to evaluate, since the ground truth is not available. However, based on the general shape of the

estimates as function of age and gender we think this approach does yield realistic estimates: first,

estimates as a function of age follow a smooth pattern, and secondly, the difference between gender

is merely a shift of the other curve rather than a completely different shape. Note that both the

smooth shape as a function of age and the gender-shift were not forced upon by constraints in the

optimization or the model, but were found automatically from the data.

7 Discussion

Motivated by the applied problem of estimating reach by demographic groups, we extend the

BBNBH model to categorical covariates and propose a constrained likelihood approach to obtain

unbiased imputation estimates for different demographic buckets. This method can also be used

for other categorical variables (e.g., estimating weekday effects or for different economic status).

21

www.youtube.de


REFERENCES REFERENCES

Simulations show that the BBNBH model can successfully estimate missingness and 1+ reach even

when underlying truth is not available – as in most real work applications. However our simulations

indicate that the method suffers from poor precision unless a good prior estimate of µ is available

and P ≥ 2, 000. Further, standard errors estimated from the Hessian are smaller than expected

and we suggest boot-strapping to get confidence intervals with proper coverage. We demonstrated

the usefulness of our methodology to estimate how many people visit the YouTube homepage

(www.youtube.de). For this example allowing model parameters to vary by demographic groups

improved the performance.

In future work, we aim to extend the methodology to use continuous variables as predictors for

θ(g); in particular for µ(g). Another direction for future work can focus on different penalization

functions as well as a fully Bayesian approach to parametric inference. And lastly, this model

treats all impressions (observed or missing) as independent while typically these impressions are

tied together by cookies. Current work is focused on generalizing this modeling framework to model

both cookie and impressions within cookie missingness.
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A ALGORITHMS AND ESTIMATION DETAILS

A Algorithms and Estimation Details

We use method of moments estimators to provide good, data-driven starting values for numerical

optimization routines.

A.1 Iterative method of moments estimates

A.1.1 Initial estimates

Unless the non-missing rate is known, we initially set µ = 0.5. For the shape of the beta prior we

use φ = 4 (for µ = 0.5, φ = 2 yields a uniform distribution om (0, 1); φ = 4 is slightly peaked). As

for q0, µ can be estimated from the observations and other parameters in an iterative fashion.

Estimating the hurdle parameter q0 with the empirical frequency of zeros is biased (over-estimate),

since the binomial subsampling from N can also yield k = 0. Below we propose an iterative

procedure to reduce this bias.

For the parameters of the negative-binomial hurdle part we start with setting r = 1 and adjust

q1 to match (approximate) sample moments. Recall (4) and (5) which state that ν := EN =

(1− q0)
(

1 + r q1
1−q1

)
and EK = µ · ν. An initial estimate of q1 can be obtained by plugging solving

k̄ = µ · ν(q0, r, q1) for q1.

Based on these initial estimates we run an iterative methods of moments update to obtain better

estimates for q0 and µ.

A.1.2 Updating non-missing rate µ

The non-missing rate µ can be estimated from

µ =
E(K | N > 0)

E(N | N > 0)
=

E(K | N > 0)

1 + r q1
1−q1

. (26)

The denominator can be estimated directly using initial r̂ and q̂1 from above. The numerator,

on the other hand, must be estimated using adjustments to the K = 0 case. First note that an

estimate of E(K) can be obtained by µ̂K =
∑kmax

ki=0 fki · ki, where fki = 1
P

∑P
i=1 1 (k = ki) is the

empirical frequency of ki. Clearly, µ̂K � E(K | N > 0) due to the zeros from a large q0. Thus to

obtain a closer estimate of E(K | N > 0), we subtract the probability of getting k = 0 given N = 0

from q0: f̃k0 = fk0 − q0, f̃ki = fki for i > 0. After re-normalizing, f̃ki ← f̃ki/
∑

ki
f̃ki , the estimate

for E(K | N > 0) is k̄N>0 =
∑kmax

ki=0 f̃ki · ki. Plugging back in (26) gives a better estimate of µ, µ̂
(t)
0 ,

where t is the index of iteration.
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A.1.3 Updating zero-visit probability q0

The probability of observing a zero count equals

P (K = 0) = q0 + (1− q0) · P (K = 0 | N > 0; θ) . (27)

As P (K = 0 | N > 0; θ) is independent of q0, (27) can be re-arranged to

q0 =
P (K = 0 | N > 0; θ)− P (K = 0)

P (K = 0 | N > 0; θ)− 1
. (28)

An update q̂
(t)
0 can be obtained by plugging in the frequency of zeros in the observed data for

P (K = 0) and the model estimate P
(
K = 0 | N > 0; θ̂(t−1)

)
.

As q̂
(t)
0 , q̂

(t)
1 , and µ̂(t) all depend on each other they can be improved by iterations. By default, we

use two iterations. The resulting θ̂
(2)
0 is then used as the data-driven starting value for numerical

optimization.

A.2 Bijective mapping of non-missing rates to unbounded space

We map the vector µ(1:G) to the unbounded space by viewing it as a (re-scaled) vector from the

probability simplex11 ∆G = {p ∈ RG | pi ≥ 0,
∑G

i=1 pi = 1}, and using stick-breaking type

transformations to obtain a bijective mapping between ∆G and RG−1.

Formally,
G∑
g=1

w(g)

W

1

µ(g)
=

1

µ̂Logs
⇔

G∑
g=1

p(g) = 1, (29)

where each p(g) = w(g)

W
µ̂Logs
µ(g)

∈ [0, 1]. The vector p lies on the G dimensional probability simplex.

It can be mapped to RG−1 via

p 7→ s = {sj =
pj

1−
∑G

i=j+1 pi
, j = 1, . . . , G− 1}. (30)

Every sj ∈ [0, 1] is a cumulative fraction with respect to rest of the vector (conditional probabili-

ties), and each sj can be mapped to R using the logit transform, logit(s) = log(s/(1− s)).

The inverse transformation maps any y ∈ RG−1 to a p on the simplex, using the inverse logit,

and the multiplying out the conditional probabilities. Finally, the group non-missing rates can be

obtained by multiplying by µ̂Logs and dividing each entry by weight w(g). While this procedure

guarantees a bijective mapping between y and p, not every y ∈ RG−1 yields a valid µ(1:G) (every

11See also Monti et al. (7).
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µ(g) ∈ (0, 1)). If this occurs during the numeric optimization, we simply set the log-likelihood to

−∞ and let the optimizer find a better y.
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