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Abstract—We propose introducing modern parallel program-
ming paradigms to secure computation, enabling their secure
execution on large datasets. To address this challenge, we
present GraphSC, a framework that (i) provides a programming
paradigm that allows non-cryptography experts to write secure
code; (ii) brings parallelism to such secure implementations; and
(iii) meets the needs for obliviousness, thereby not leaking any
private information. Using GraphSC, developers can efficiently
implement an oblivious version of graph-based algorithms (in-
cluding sophisticated data mining and machine learning algo-
rithms) that execute in parallel with minimal communication
overhead. Importantly, our secure version of graph-based al-
gorithms incurs a small logarithmic overhead in comparison
with the non-secure parallel version. We build GraphSC and
demonstrate, using several algorithms as examples, that secure
computation can be brought into the realm of practicality for big
data analysis. Our secure matrix factorization implementation
can process 1 million ratings in 13 hours, which is a multiple
order-of-magnitude improvement over the only other existing
attempt, which requires 3 hours to process 16K ratings.

I. INTRODUCTION

Through their interactions with many web services, and
numerous apps, users leave behind a dizzying array of data
across the web ecosystem. The privacy threats due to the
creation and spread of personal data are by now well known.
The proliferation of data across the ecosystem is so complex
and daunting to users, that encrypting data at all times appears
as an attractive approach to privacy. However, this hinders
all benefits derived from mining user data, both by online
companies and the society at large (e.g., through opinion
statistics, ad campaigns, road traffic and disease monitoring,
etc). Secure computation allows two or more parties to evaluate
any desirable polynomial-time function over their private data,
while revealing only the answer and nothing else about each
party’s data. Although it was first proposed about three decades
ago [1], it is only in the last few years that the research
community has made enormous progress at improving the
efficiency of secure computation [2]–[6]. As such, secure
computation offers a better alternative, as it enables data
mining while simultaneously protecting user privacy.

The need to analyze data on a massive scale has led
to modern architectures that support parallelism, as well as
higher level programming abstractions to take advantage of
the underlying architecture. Examples include MapReduce [7],
Pregel [8], GraphLab [9], and Spark [10]. These provide
software developers interfaces handling inputs and parallel
data-flow in a relatively intuitive and expressive way. These
programming paradigms are also extremely powerful, encom-
passing a broad class of machine learning, data mining and
graph algorithms. Even though these paradigms enable devel-
opers to efficiently write and execute complex parallel tasks on
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very large datasets, they do not support secure computation.
Our goal is to bring secure computation to such frameworks in
a way that does not require programmers to have cryptographic
expertise.

The benefits of integrating secure computation into such
frameworks are numerous. The potential to carry out data
analysis tasks while simultaneously not leaking private data
could change the privacy landscape. Consider a few examples.
A very common use of MapReduce is to compute histograms
that summarize data. This has been done for all kinds of
data, such as counting word frequencies in documents, sum-
marizing online browsing behavior, online medicine purchases,
YouTube viewing behavior, and so on, to name just a few.
Another common use of the graph parallelization models (e.g.,
GraphLab) is to compute influence in a social graph through,
for example, the PageRank algorithm. Today, joint influence
over multiple social graphs belonging to different companies
(such as Facebook and LinkedIn), cannot be computed because
companies do not share such data. For this to be feasible,
the companies need to be able to perform an oblivious secure
computation on their joint graph in a highly efficient way that
supports their massive datasets and completes in a reasonable
time. A privacy requirement for such an application is to
ensure that the graph structure, and any associated data, is
not leaked; the performance requirements for scalability and
efficiency demand the application to be highly parallelizable.
A third example application is recommender systems based on
the matrix factorization (MF) algorithm. It was shown in [3]
that it is possible to carry out secure MF, enabling users to
receive recommendations without ever revealing records of
past behavior (e.g., movies watched or rated) in the clear to the
recommender system. But this previous work did not grace-
fully incorporate parallelism to scale to millions of records.

This paper addresses the following key question: can we
build an efficient secure computation framework that uses
familiar parallelization programming paradigms? By creating
such a framework, we can bring secure computation to the
practical realm for modern massive datasets. Furthermore, we
can make it accessible to a wide audience of developers that are
already familiar with modern parallel programming paradigms,
and are not necessarily cryptography experts.

One naïve approach to obtain high parallelization is the
following: (a) programmers write programs using a program-
ming language specifically designed for (sequential) secure
computation such as the SCVM source language [2] or the
ObliVM source language [11]; (b) apply an existing program-
to-circuits compiler1; and (c) exploit parallelism that occurs at
the circuit level – in particular, all the gates within the same
layer (circuit depth) can be evaluated in parallel. Henceforth,

1RAM-model compilers such as SCVM [2] and ObliVM [11] effectively
compile a program to a sequence of circuits as well. In particular, dynamic
memory accesses are compiled into ORAM circuits.



we use the term circuit-level parallelism to refer to this baseline
approach.

While intuitive, this baseline approach is far from ideal.
The circuit derived by a sequential program-to-circuits com-
piler can also be sequential in nature, and many opportunities
to extract parallelism may remain undiscovered. We know from
experience, in the insecure environment, that generally trying
to produce parallel algorithms requires careful attention. Two
approaches have been intensely pursued (for the case of non-
secure computation): (a) Design of parallel algorithms: an
entire cottage industry has focused on designing parallel ver-
sions of specific algorithms that seek to express computation
tasks with shallow depth and without significantly increasing
the total amount of work in comparison with the sequential
setting; and (b) Programming abstractions for parallel com-
putation: the alternative to finding point solutions for particular
algorithms, is to develop programming frameworks that help
programmers to easily extract and express parallelism. The
frameworks mentioned above fall into this category. These
two approaches can also be followed for solutions in secure
computation; examples of point solutions include [3], [4]. In
this work, we follow the second approach to enable parallel
oblivious versions for a range of data mining algorithms.

There are two fundamental challenges to solve our prob-
lem. The first is the need to provide a solution that is
data oblivious, in order to prevent any information leakage
and to prevent unnecessary circuit explosion. The second is
that of migrating secure computation models to the parallel
environment in an efficient way. Because our solution focuses
on graph-based parallel algorithms, we need to ensure that the
graph structure itself is not revealed.

In this paper, we focus on 2-party computation in the semi-
honest model. Our two parties could be two non-colluding
cloud providers (such as Google and Amazon) where both par-
ties have parallel computing architectures (multiple machines
with multiple cores). In this case, the data is outsourced to the
cloud providers, and within each cloud the secret data could
be distributed across multiple machines. In a second scenario,
a single cloud provider splits up the data to achieve resilience
against insider attacks or APT threats. To realize these, we
make the following novel contributions.

A. Our Contributions

We design and implement a parallel secure computation
framework called GraphSC. With GraphSC, developers can
write programs using programming abstractions similar to
Pregel and GraphLab [8], [9], [12]. GraphSC executes the
program with a parallel secure computation backend. Adopting
this programming abstraction allows GraphSC to naturally
support a broad class of data mining algorithms.

New parallel oblivious algorithms. To the best of our
knowledge, our work is the first to design non-trivial par-
allel oblivious algorithms that outperform generic Oblivious
Parallel RAM [13]. The feasibility of the latter was recently
demonstrated by Boyle et al. [13]; however, their constructions
are of a theoretical nature, with computational costs that
would be prohibitive in a practical implementation. Analo-
gously, in the sequential literature, a line of research focuses
on designing efficient oblivious algorithms that outperform

generic ORAM [14]–[17]. Many of these works focus on
specific functionalities of interest. However, such a one-at-a-
time approach is unlikely to gain traction in practice, since
real-life programmers likely do not possess the expertise
to design customized oblivious algorithms for each task at
hand; moreover, they should not be entrusted to carry out
cryptographic design tasks.

While we focus on designing efficient parallel oblivious
algorithms, we take a departure from such a one-at-a-time
design approach. Specifically, we design parallel oblivious
algorithms for GraphSC’s programming abstractions, which
in turn captures a broad class of interesting data mining and
machine learning tasks. We will demonstrate this capability
for four such algorithms. Moreover, our parallel oblivious
algorithms can also be immediately made accessible to non-
expert programmers. Our parallel oblivious algorithms achieve
logarithmic overhead in comparison with the high poly-
logarithmic overhead of generic OPRAM [13]. In particular,
for a graph containing |E| edges and |V| vertices, GraphSC
just has an overhead of O(log |V|) when compared with the
parallel insecure version.

System implementation. ObliVM-GC (http://www.oblivm.
com) is a programming language that allows a programmer
to write a program that can be compiled into a garbled circuit,
so that the programmer need not worry about the underlying
cryptographic framework. In this paper, we architect and
implement GraphSC, a parallel secure computation frame-
work that supports graph-parallel programming abstractions
resembling GraphLab [9]. Such graph-parallel abstractions are
expressive and easy-to-program, and have been a popular
approach for developing parallel data mining and machine
learning algorithms. GraphSC is suitable for both multi-core
and cluster-based computing architectures. The source code of
GraphSC is available at http://www.oblivm.com.

Evaluation. To evaluate the performance of our design, we im-
plement four classic data analysis algorithms: (1) a histogram
function assuming an underlying MapReduce paradigm; (2)
PageRank for large graphs; and two versions of matrix fac-
torization, namely, (3) MF using gradient descent, and (4)
MF using alternating least squares (ALS). We study numerous
metrics, such as how the time scales with input size, with an
increasing number of processors, as well as communication
costs and accuracy. We deploy our experiments in a realistic
setting, both on a controlled testbed and on Amazon Web
Services (AWS). We show that we can achieve practical speeds
for our 4 example algorithms, and that the performance scales
gracefully with input size and the number of processors. We
achieve these gains with minimal communication overhead,
and an insignificant impact on accuracy. For example, we
were able to run matrix factorization on a real-world dataset
consisting of 1 million ratings in less than 13 hours on a
small 7-machine lab cluster. As far as we know, this is the
first application of a complicated secure computation algorithm
on large real-world dataset; previous work [3] managed to
complete a similar task on only 17K ratings, with no ability
to scale beyond a single machine. This demonstrates that our
work can bring secure computation into the realm of practical
large-scale parallel applications.

The rest of the paper is structured as follows. Following



the related work, in Section II we present GraphSC, our
framework for parallel computation on large-scale graphs. In
Section III we detail how GraphSC can support parallel data
oblivious algorithms. Then, in Section IV, we discuss how such
parallel oblivious algorithms can be converted into parallel
secure algorithms. Section V discusses the implementation of
GraphSC and detailed evaluation of its performance on several
real-world applications. We conclude the paper in Section VI.

B. Model and Terminology

Our main deployment scenario is the following parallel
secure two-party computation setting. Consider a client that
wishes to outsource computation to two non-colluding, semi-
honest cloud providers. Since we adopt Yao’s Garbled Cir-
cuits [18], one cloud provider acts as the garbler, and the other
acts as the evaluator. Each cloud provider can have multiple
processors performing the garbling or evaluation.

We adopt the standard security notion of semi-honest
model secure computation. The two clouds do not see the
client’s private data during the course of computation. We
assume that the size information |V| + |E| is public, where
|V| is the total number of vertices and |E| is the total number
of edges. Not only can the client hide the data from the two
cloud providers, it can also hide the computation outcome –
simply by masking the computation outcome with a one-time
random secret known only to the client.

To keep terminology simple, our main algorithms in Sec-
tion III-D refers to parallel oblivious algorithms – assuming
a model where multiple processors have a shared random-
access memory. It turns out that once we derive parallel
oblivious algorithms, it is easy to translate them into parallel
secure computation protocols. Section IV and Figure 5 later
in the paper will elaborate on the details of our models and
terminology.

C. Related Work

Secure computation has been studied for decades, starting
from theory [18]–[22] to implementations [2], [3], [5], [6],
[23]–[29].

Parallel secure computation frameworks. Most existing
implementations are sequential. However, parallel secure com-
putation has naturally attracted attention due to the wide
adoption of multi-core processors and cloud-based compute
clusters. Note that in Yao’s Garbled Circuits [18], the garbler’s
garbling operations are trivially parallelizable: garbling is input
data independent, and essentially involves evaluating four
AES encryptions or hash functions per AND gate using free
XOR techniques [30]–[32]. However, evaluation of the garbled
circuit must be done layer by layer, and therefore, the depth
of the circuit(s) determine the degree to which evaluation can
be parallelized.

Most research on parallel secure computation just ex-
ploits the natural parallelism within each circuit or in be-
tween circuits (for performing cut-and-choose in the malicious
model). For example, Husted et al. [33] propose using a
GPU-based backend for parallelizing garbled circuit generation
and evaluation. Their work exploits the natural circuit-level
parallelism – however, in cases where the program is inherently

sequential (e.g., a narrow and deep circuit), their technique
may not be able to exploit massive degrees of parallelism. Our
design ensures GraphSC primitives are implemented as low-
depth circuits. Though our design currently works on a multi-
core processor architecture or a compute cluster, however,
conceivably, the same programming abstraction and parallel
oblivious algorithms can be directly ported to a GPU-based
backend; our work thus is complementary to Husted et al. [33].

Kreuter et al. [6] exploit parallelism to parallel cut-and-
choose in malicious-model secure computation. In particular,
cut-and-choose techniques require the garbled evaluation of
multiple circuits, such that one can assign each circuit to a
different processor. In comparison, we focus on parallelizing
the semi-honest model. If we were to move to the malicious
model, we would also benefit from the additional parallelism
natural in cut-and-choose, like Kreuter et al. [6]. Our approach
is closest to, and inspired by, the privacy-preserving matrix
factorization (MF) framework by Nikolaenko et al. [3] that
implements gradient-descent MF as a garbled circuit. As in
our design, the authors rely on oblivious sorting that, as they
note, is parallelizable. Though Nikolaenko et al. exploit this to
parallelize parts of their MF computation, their overall design
is not trivially parallelizable: it results in a Ω(|V | + |E|)-
depth circuit, containing serial passes over the data. In fact, the
algorithm in [3] is equivalent to the serial algorithm presented
in Algorithm 2, restricted to MF. Crucially, beyond extending
our implementation to any algorithm expressed by GraphSC,
not just gradient-descent MF, our design also parallelizes these
serial passes (cf. Figure 4), leading to a circuit of logarithmic
depth. Finally, as discussed in Section V, the garbled circuit
implementation in [3] can only be run on a single machine,
contrary to GraphSC.

Automated frameworks for sequential secure computation.
In the sequential setting, numerous automated frameworks for
secure computation have been explored, some of which [28],
[29] build on (a subset of) a standard language such as C;
others define customized languages [2], [23], [24], [26]. As
mentioned earlier, the circuits generated by these sequential
compilers may not necessarily have low depth. For general-
purpose secure computation backends, several protocols have
been investigated and implemented, including those based on
garbled circuits [1], [18], GMW [34], somewhat or fully homo-
morphic encryption [35], and others [36], [37]. In this paper,
we focus on a garbled circuits backend for the semi-honest
setting, but our framework and programming abstractions can
readily be extended to other backends as well.

Oblivious RAM and oblivious algorithms. Since Oblivi-
ous RAM (ORAM) was initially formulated by Goldreich
and Ostrovsky [38], numerous subsequent works [39]–[54]
improved their construction, including the new tree-based
constructions [51]–[54] that have been widely adoped due
to their simplicity and efficiency. Further, efficient oblivious
algorithms were studied for specific functionalities [14]–[17],
[55], [56] providing point solutions that outperform generic
ORAM. As recent works point out [2], Oblivious RAM and
oblivious algorithms are key to transforming programs into



compact circuits2 – and circuits represent the computation
model for almost all known secure computation protocols.
Broadly speaking, any data oblivious algorithm admits an
efficient circuit implementation whose size is proportional
to the algorithm’s runtime. Generic RAM programs can be
compiled into an oblivious counterpart with polylogarithmic
blowup [38], [41], [47], [51], [53].

In a similar manner, Oblivious Parallel RAM (OPRAM),
proposed by Boyle et al.. [13], essentially transforms PRAM
programs into low-depth circuits, also incurring a polylogarith-
mic blowup [13]. As mentioned earlier, their work is more of a
theoretical nature and expensive in practice. In comparison, our
work proposes efficient oblivious algorithms for a restricted
(but sufficiently broad) class of PRAM algorithms, as captured
by our GraphSC programming abstractions. As in [13], our
design tackles blowups both due to obliviousness and due to
parallelism: our secure, parallel implementation incurs only
logarithmic blowup, and is easy to implement in practice.

Parallel programming paradigms. The past decade has
given rise to parallelization techniques that are suitable to
cheap modern hardware architecture. MapReduce [7] is a
seminal work that presented a simple programming model for
processing massive datasets on large cluster of commodity
computers. This model resulted on a plethora of system-
level implementations [58] and improvements [10]. A second
advancement was made with Pregel [8], a simple programming
model for developing efficient parallel algorithms on large-
scale graphs. This also resulted in several implementations,
including GraphLab [9], [12] and Giraph [59]. The simplicity
of interfaces exposed by these paradigms (like the scatter,
gather, and apply operations of Pregel) led to their widespread
adoption, as well as to the proliferation of algorithms imple-
mented in these frameworks. We introduce similar program-
ming paradigms to secure computation, in the hope that it
can revolutionize the field like it did to non-secure parallel
programming models, thus making secure computation easily
accessible to non-experts, and easily deployable over large,
cheap clusters.

II. GRAPHSC

In this section, we formally describe GraphSC, our frame-
work for parallel computation. GraphSC is inspired by the
scatter-gather operations in GraphLab and Pregel. Several im-
portant parallel data mining and machine learning algorithms
can be cast in this framework (some of these are discussed
in Section V-A); a brief example (namely, the PageRank
algorithm) can also be found below. We conclude this section
by highlighting the challenges behind implementing GraphSC
in a secure fashion.

A. Programming Abstraction

Data-augmented graphs. The GraphSC framework operates
on data-augmented directed graphs. A data-augmented directed
graph G(V,E,D) consists of a directed graph G(V,E), as well
as user-defined data on each vertex and each edge denoted

2For secure computation, a program is translated into a sequence of circuits
whose inputs can be oblivious memory accesses. Note that this is different
from transforming a program into a single circuit – for the latter, the best
known asymptotical result incurs quadratic overhead [57].

Apply(G(V,E,D), fA)
for each v in V

v.data := fA(v.data)

Scatter(G(V,E,D), fS , b)
for each e(u, v) in E

if b = “in”
e.data := fS(e.data, v.data)

else
e.data := fS(e.data, u.data)

Gather(G(V,E,D),⊕, b)
for each v in V

if b = “in”
v.data := v.data || �

∀e(u,v)∈E

e.data

else
v.data := v.data || �

∀e(v,u)∈E

e.data

Fig. 1: GraphSC semantics.

D ∈ ({0, 1}∗)|V|+|E|. We use the notation v.data ∈ {0, 1}∗
and e.data ∈ {0, 1}∗ to denote the data associated with a
vertex v ∈ V and an edge e ∈ E respectively.

Programming abstractions. GraphSC follows the
Pregel/GraphLab programming paradigm, allowing
computations that are “graph-parallel” in nature, i.e.,
each vertex performs computations on its own data as well
as data collected from its neighbors. In broad terms, this is
achieved through the following three primitives, which can be
thought of as interfaces exposed by the GraphSC abstraction:

1. Scatter: A vertex propagates data to its neighboring edges
and updates the edge’s data. More specifically, Scatter takes a
user-defined function fS : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, and a
bit b ∈ {“in”, “out”}, and updates each directed edge e(u, v)
as follows:

e.data :=

�
fS(e.data, v.data) if b = “in”,
fS(e.data, u.data) if b = “out”.

Note that the bit b indicates whether the update operation is
to occur over incoming or outgoing edges of each vertex.

2. Gather: Through this operation, a vertex aggregates the
data from nearby edges and updates its own data. More
specifically, Gather takes as input a binary aggregation operator
⊕ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and a bit b ∈ { “in”, “out” }
and updates the data on each vertex v ∈ V as follows:

v.data :=





v.data || �
∀e(u,v)∈E

e.data if b = “in”,

v.data || �
∀e(v,u)∈E

e.data if b = “out”,

where || indicates concatenation, and
�

is the iterated binary
operation defined by ⊕. Hence, at the conclusion of the
operation, the vertex stores both its previous value, as well
as the output of the aggregation through ⊕.

3. Apply: Vertices perform some local computation on their
data. More specifically, Apply takes a user-defined function
fA : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, and updates every vertex’s



data as follows:

v.data := fA(v.data).

A program abiding by the GraphSC abstraction can thus
make arbitrary calls to such Scatter, Gather and Apply oper-
ations. Beyond determining this sequence, each invocation of
Scatter, Gather, and Apply must also supply the corresponding
user-defined functions fS , fA, and aggregation operator ⊕.
Note that the graph structure G does not change during the
execution of any of the three GraphSC primitives.

Throughout our analysis, we assume the time complexity
of fS , fA, and the binary operator ⊕ (applied to only 2
arguments) is constant, i.e., it does not depend on the size
of G. This is true when, e.g., both vertex and edge data take
values in a finite subset of {0, 1}∗, which is the case for all
applications we consider3.

Requirements for the aggregation operator ⊕. During the
Gather operation, a vertex aggregates data from multiple adja-
cent edges through a binary aggregation operator ⊕. GraphSC
requires that this aggregation operator is commutative and
associative, i.e.,

• Commutative: For any a, b ∈ D, a⊕ b = b⊕ a.
• Associative: For any a, b, c ∈ D, (a⊕ b)⊕ c = a⊕ (b⊕ c).

Roughly speaking, commutativity and associativity guarantee
that the result of the aggregation is insensitive to the ordering
of the edges.

B. Expressiveness

At a high level, GraphSC borrows its structure from
Pregel/GraphLab [8], [9], [12], which is also defined by the
three conceptual primitives called Gather, Apply and Scatter.
There are however a few differences that are not included in
GraphSC, as they break obliviousness. For instance, Pregel
allows arbitrary message exchanges between vertices, which is
not supported by GraphSC. Pregel also supports modification
of the graph structure during computation, whereas GraphSC
does not allow such modifications. Finally, GraphLab sup-
ports an asynchronous parallel computation of the primitives,
whereas GraphSC, and its data oblivious implementation we
describe in Section III, are both synchronous.

Despite these differences that are necessary to maintain
obliviousness, the expressiveness of GraphSC is the same as
that of Pregel/GraphLab. GraphSC encompasses classic graph
algorithms like Bellman-Ford, bipartite matching, connected
component identification, graph coloring, etc., as well as
several important data mining and machine learning operations
including PageRank [60], matrix factorization using gradient
descent and alternating least squares [61], training neural
networks through back propagation [62] or parallel empirical
risk minimization through the alternating direction method of
multipliers (ADMM) [63]. We review some of these examples
in more detail in Section V-A.

3Note that, due to the concatenation operation ||, the memory size of the data
at a vertex can in theory increase after repeated consecutive Gather operations.
However, in the Pregel/GraphLab paradigm, a Gather is always followed by
an Apply, that merges the aggregated edge data with the vertex data through
an appropriate user-defined merge operation fA. Thus, after each iteration
completes the vertex memory footprint remains constant.

Algorithm 1 PageRank example

1: function computePageRank(G(V,E,D))
2: fS(e.data, u.data) : e.data := u.data.PR

u.data.L
3: ⊕(e1.data, e2.data) : e1.data+ e2.data
4: fA(v.data) : v.data.PR := 0.15

|V| + 0.85× v.data.agg
5: for i := 1 to K do
6: Scatter(G, fS , “out”)
7: Gather(G,⊕, “in”)
8: Apply(G, fA)

9: // Every vertex v stores its PageRank PR

C. Example: PageRank

Let us try to understand these primitives using the PageR-
ank algorithm [60] as an example. Recall that PageRank
computes a ranking score PR for each vertex u of a graph
G through a repeated iteration of the following assignment:

PR(u) =
0.15

|V| + 0.85×
�

e(v,u)∈E

PR(v)

L(v)
, ∀u ∈ V,

where L(v) is the number of outgoing edges. Initially, all
vertices are assigned a PageRank of 1

|V| .

PageRank can be expressed in GraphSC as shown in
Algorithm 1. The data of every vertex v comprises two real
values, one for the PageRank (PR) of the vertex and the other
for the number of its outgoing edges (L(v)). The data of every
edge e(u, v) comprises a single real value corresponding to the
weighted contribution of PageRank of the outgoing vertex u.

For simplicity, we assume that each vertex v has pre-
computed and stored L(v) at the beginning of the algorithm’s
execution. The algorithm then consists of several iterations,
each evoking a Scatter, Gather and Apply operation. The
Scatter operation updates the edge data e(u, v) by the weighted
PageRank of the outgoing vertex u, i.e., b = “out” and

fS(e.data, u.data) : e.data :=
u.data.PR

u.data.L
.

In the Gather operation, every vertex v adds up the
weighted PageRank over incoming edges e(u, v) and concate-
nates the result with the existing vertex data, by storing it in
the variable v.data.agg. That is, b = “in”, and ⊕ is given by

⊕(e1.data, e2.data) : e1.data+ e2.data.

The Apply operation computes the new PageRank of vertex
v using v.data.agg.

fA(v.data) : v.data.PR :=
0.15

|V| + 0.85× v.data.agg.

An example iteration is shown in Figure 2.

D. Parallelization and Challenges in Secure Implementation

Under our standing assumption that fS , fA, and ⊕ have
O(1) time complexity, all three primitives are linear in the
input, i.e., can be computed in O(|V| + |E|) time. Moreover,
like Pregel/GraphLab operations, Scatter, Gather and Apply
can be easily parallelized, by assigning each vertex in graph
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Fig. 2: One iteration of PageRank computation. 1. Every page starts with PR = 0.25. 2. During Scatter, outgoing edges are
updated with the weighted PageRank of vertices. 3. Vertices then aggregate the data on incoming edges in a Gather operation
and store it along with their own data. 4. Finally, vertices update their PageRank in an Apply operation.

G to a different processor. Each vertex also maintains a list
of all incoming edges and outgoing edges, along with their
associated data. Scatter operations involve transmissions: e.g.,
in a Scatter “out” operation, a vertex sends its data to all its
outgoing neighbors, who update their corresponding incoming
edges. Gather operations on the other hand are local: e.g., in a
Gather “in”, a vertex simply aggregates the data in its incoming
edges and appends it to its own data. Both Scatter and Gather
operations can thus be executed in parallel across different
processors storing the vertices. Finally, in such a configura-
tion, Apply operations are also trivially parallelizable across
vertices. Note that, in the presence of P < |V| processors, to
avoid a single overloaded processor becoming a bottleneck,
the partitioning of the graph should balance computation and
communication across processors.

In this paper, we wish to address the following challenge:
we wish to design a secure computation framework imple-
menting GraphSC operations in a privacy-preserving fashion,
while maintaining its parallelizability. In particular, our design
should be such that, at the implementation of a program using
the GraphSC primitives, only the final output of the program
is revealed; the input, i.e., the directed data-augmented graph
G(V,E,D) should not be leaked during the execution of the
program. We note that there are several applications in which
hiding the data as well as the graph structure of G is important.
For example, in PageRank, the entire input is described by
the graph structure G. As noted in [3], in the case of matrix
factorization, the graph structure leaks which items a user has
rated, which can again be very revealing. To highlight the
difficulties that arise in implementing GraphSC in a secure
fashion, we note that clear-text parallelization, as described
above, leaks a lot of information. In particular:

1. The amount of data stored by vertices, based on the above
partitioning of the graph, reveals information about its neigh-
borhood.

2. The number of times a vertex is accessed during a scatter
phase reveals the number of outgoing neighbors.

3. Finally, the neighbors with which each vertex communicates
during a Scatter reveal the entire graph G.

These observations illustrate that, beyond the usual issues
one faces in converting an algorithm to a secure, data-oblivious
implementation, parallelization introduces a considerable new
set of challenges. In particular, parallelization in a secure,
data oblivious fashion needs to follow a radically different
paradigm than the one employed in the clear: the computation
and communication at each processor should reveal nothing
about G.

III. GRAPHSC PRIMITIVES AS EFFICIENT PARALLEL
OBLIVIOUS ALGORITHMS

In this section, we discuss how the three primitives exposed
by the GraphSC abstraction can be expressed as parallel
data oblivious algorithms. A parallel oblivious algorithm can
be converted to a parallel secure algorithm using standard
techniques; we describe such a conversion in more detail in
Section IV, focusing here on data-obliviousness and paralleliz-
ability.

A. Parallel Oblivious Algorithms: Definitions

In parallel oblivious algorithms, we consider N proces-
sors that make oblivious accesses to a shared memory array.
Suppose that a parallel algorithm executes in T parallel steps.
Then, in every time step t ∈ [T ], each processor i ∈ [N ] makes
access to some memory location addrt,i. Let

Tr(G) := (addrt,i)t∈[T ],i∈[N ]

denote an ordered tuple that encodes all the memory accesses
made by all processors in all time steps. We refer to Tr(G) as
the memory trace observable by an adversary on input G.

We say that a parallel GraphSC algorithm is oblivious,
if for any input data-augmented graphs G = (V,E,D) and
G� = (V�,E�,D�) with |V|+ |E| = |V�|+ |E�| and |d| = |d�| for
d ∈ D and d� ∈ D�, we have

Tr(G) = Tr(G�).

In this paper, our parallel oblivious algorithms are all
deterministic. Therefore, in the above we require the traces
to be identical (as opposed to identically distributed). Note
that, by the above definition, a parallel oblivious algorithm
hides both the graph structure and the data on the graph’s
vertices and edges. Only the “size” of the graph |V| + |E| is
revealed. Moreover, such an algorithm can also be represented
as a circuit of depth Θ(T ), comprising T layers, each such
layer representing the state of the shared memory at time t.

B. Parallel Oblivious Algorithms: Metrics

Total work. One metric of interest is the total work for a
parallel oblivious algorithm (i.e., total circuit size, or total
number of operations on the shared memory). In comparison
with the optimal sequential, insecure algorithm for computing
the same function, the total work of a parallel oblivious
algorithm may increase due to two reasons. First, due to
the cost of parallelism: the most efficient (insecure) parallel
algorithm may incur a blowup in terms of total work. Second,



Algorithm 2 Oblivious GraphSC on a Single Processor

G: list of tuples �u, v, isVertex, data�, M = |V|+ |E|
1: function Scatter(G, fS , b = “out”)

/* b = “in” is similar and omitted */
2: sort G by (u,−isVertex)
3: for i := 1 to M do /* Propagate */
4: if G[i].isVertex then
5: val := G[i].data
6: else
7: G[i].data := fS(G[i].data, val)

1: function Gather(G, ⊕, b = “in”)
/* b = “out” is similar and omitted */

2: sort G by (v, isVertex)
3: var agg := 1⊕ // identity w.r.t. ⊕
4: for i := 1 to M do /* Aggregate */
5: if G[i].isVertex then
6: G[i].data := G[i].data||agg
7: agg := 1⊕
8: else
9: agg := agg ⊕ G[i].data

1: function Apply(G, fA)
2: for i := 1 to M do
3: G[i].data := fA(G[i].data)

due to the cost of obliviousness: requiring that the algorithm
is oblivious may also incur additional blowup in total work.

Parallel runtime. Parallel runtime is the total time required to
execute the parallel oblivious algorithm, assuming a sufficient
number of processors. When the parallel oblivious algorithm is
interpreted as a circuit, the parallel runtime is equivalent to the
circuit’s depth. We often compare the parallel runtime of the
parallel oblivious algorithm with the optimal parallel, insecure
baseline of the algorithm computing the same function.

The number of processors needed to achieve parallel run-
time corresponds to the maximum width of the circuit. If at
least P processors are needed to actually achieve the parallel
runtime, in the presence of P/c processors, where c > 1, the
the runtime would be at most �c× T �. Therefore, we can use
the parallel runtime metric without sacrificing generality.

C. Single-Processor Oblivious Algorithm

Before presenting our fully-parallel solution, we describe
how to implement each of the three primitives defined in
Figure 1 in a data-oblivious way on a single processor (i.e.,
when P = 1). One key challenge is how to hide the graph
structure G during computation.

Alternative graph representation: Our oblivious algorithms
require an alternative representation of graphs, that does
not disambiguate between edges and vertices. Both ver-
tices and edges are represented as tuples of the form:
�u, v, isVertex, data�. In particular, each vertex u is represented
by the tuple: �u, u, 1, data�; and each edge (u, v) is represented
by the tuple: �u, v, 0, data�. We represent a graph as a list of
tuples, i.e., G := (ti)i∈[|V|+|E|] where each ti is of the form
�u, v, isVertex, data�.

Terminology. For convenience, henceforth, we refer to each

edge tuple as a black cell, and each vertex tuple as a white
cell in the list representing graph G.

Algorithm description. We now describe the single-processor
oblivious implementation of GraphSC primitives. The formal
description of the implementation is provided in Algorithm 2.
We also provide an example of the Scatter and Gather opera-
tions in Figure 3b, for a very simple graph structure shown in
Figure 3a.

Apply. The Apply operation is straightforward to make
oblivious under our new graph representation. Essentially, we
make a linear scan over the list G. During this scan, we apply
the function fA to each vertex tuple in the list, and a dummy
operation to each edge tuple.

Scatter. Without loss of generality, we use b = “out” as
an example. The algorithm for b = “in” is similar. The Scatter
operation then proceeds in two steps, illustrated in the first
three lines of Figure 3b.

Step 1: Oblivious sort: First, perform an oblivious sort on
G, so that tuples with the same source vertex are grouped
together. Moreover, each vertex should appear before all the
edges originating from that vertex.

Step 2: Propagate: Next, in a single linear scan, update the
value of each black (i.e., edge) cell with the nearest preceding
white cell (i.e., vertex), by applying the fS function.

Gather. Again, without loss of generality, we will use b =
“in” as an example. The algorithm for b = “out” is similar.
Gather proceeds in a fashion similar to Scatter in two steps,
illustrated in the last three lines of Figure 3b.

Step 1: Oblivious sort: First, perform an oblivious sort on G,
so that tuples with the same destination vertex appear adjacent
to each other. Further, each vertex should appear after the list
of edges ending at that vertex.

Step 2: Aggregate: Next, in a single linear scan, update the
value of each white cell (i.e., vertex) with the ⊕-sum of the
longest preceding sequence of black cells. In other words,
values on all edges ending at some vertex v are now aggregated
into the vertex v.

Efficiency. Let M := |V| + |E| denote the total number of
tuples. Assume that the data on each vertex and edge is of O(1)
in length, and hence each fS , fA, and ⊕ operator is of O(1)
cost. Clearly, an Apply operation can be performed in O(M)
time. Oblivious sort can be performed in O(M logM) time
using [64], [65] while propagate and aggregate take O(M)
time. Therefore, a Scatter and a Gather operation each runs in
time O(M logM).

D. Parallel Oblivious Algorithms for GraphSC

We now describe how to parallelize the sequential obliv-
ious primitives Scatter, Gather, and Apply described in Sec-
tion III-C. We will describe our parallel algorithms assuming
that there are a sufficient number of processors, namely
|V| + |E| processors. Later in Section III-E, we describe
some practical optimizations when the number of processors
is smaller than |V|+ |E|.
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(b) Transformations of list representing graph G.

Fig. 3: Oblivious Scatter and Gather on a single processor. We apply a Scatter followed by a Gather. Scatter: Graph tuples are
sorted so that edges are grouped together after the outgoing vertex. e.g. D1,2, D1,3, D1,4 are grouped after D1. Then, in a single
pass, all edges are updated. e.g. D1,3 is updated as fS(D1, D1,3). Gather: Graph tuples are sorted so that edges are grouped
together before the incoming vertex. e.g. D�

1,3, D
�
2,3, D

�
4,3 are grouped before D3. Then, in a single pass, all vertices compute

the aggregate. e.g. D�
3 = D3||D�

1,3 ⊕D�
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4,3.

First, observe that the Apply operation can be parallelized
trivially. We now demonstrate how to make the Scatter and
Gather operations oblivious. Recall that both Scatter and
Gather start with an oblivious sort, followed by either an ag-
gregate or a propagate operation as described in Section III-C.
The oblivious sort is a log(|V| + |E|)-depth circuit [66], and
therefore is trivial to parallelize (by parallelizing directly at
the circuit level).

It thus suffices to show how to execute the aggregate and
propagate operations in parallel. To highlight the difficulty
behind the parallelization of these operations, recall that in a
data-oblivious execution, a processor needs to, e.g., aggregate
values by accessing the list representing the graph at fixed
locations, which do not depend on the data. However, as seen
in Figure 3b, the positions of black (i.e., edge) cells whose
values are to be aggregated and stored in white (i.e., vertex)
cells clearly depend on the input (namely, the graph G).

Parallelizing the aggregate operation. Recall that an aggre-
gate operation updates the value of each white cell with values
of the longest sequence of black cells preceding it. For ease of
exposition, we first present a few definitions before presenting
our parallel aggregate algorithm.

Definition 1. Longest Black Prefix: For j ∈ {1, 2, . . . , |V|+
|E|}, the longest black prefix before j, denoted LBP[1, j), is
defined to be the longest consecutive sequence of black cells
before j, not including j.

Similarly, let 1 ≤ i < j ≤ |V| + |E|, we use the notation
LBP[i, j) to denote the longest consecutive sequence of black
cells before j, constrained to the subarray G[i . . . j) (index i
being inclusive, and index j being exclusive).

Definition 2. Longest Prefix Sum: Let 1 ≤ i < j ≤ |V|+ |E|,

we use the notation LPS[i, j) to denote the “sum” (with respect
to the ⊕ operator), of LBP[i, j).

Abusing notation, we treat LPS[i, j) is an alias for
LPS[1, j) if i < 1. The parallel aggregate algorithm is
described in Figure 4. The algorithm proceeds in a total of
log(|V| + |E|) time steps. In each intermediate time step τ , a
processor j ∈ {1, 2, . . . , |V| + |E|} computes LPS[j − 2τ , j).
As a result, at the conclusion of these log(|V| + |E|) steps,
each processor j has computed LPS[1, j).

This way, by time τ , all processors compute the LPS values
for all segments of length 2τ . Now, observe that LPS[j−2τ , j)
can be computed by combining LPS[j − 2τ , j − 2τ−1) and
LPS[j − 2τ−1, j) in a slightly subtle (but natural) manner
as described in Figure 4. Intuitively, at each τ , a segment is
aggregated with the immediately preceding segment of equal
size only if a white cell has not be encountered so far.

At the end of log(|V| + |E|) steps, each processor j
whose cell is white, appends its data to the aggregation result
LPS[1, j) – this part is omitted from Figure 4 for simplicity.

Parallelizing the propagate operation. Recall that, in a
propagate operation, each black cell updates its data with
the data of the nearest preceding white cell. The propagate
operation can be parallelized in a manner similar to aggregate.
In fact, we can even express a propagate operation as a
special aggregate operation as follows: Initially, every black
cell stores (i) the value of the preceding white cell if a white
cell precedes; and (ii) −∞ otherwise. Next, we perform an
aggregate operation where the ⊕ operator is defined to be
the max operator. At the end of log |V|+ |E| time steps, each
processor has computed LPS[1, j), i.e., the value of the nearest
white cell preceding j. Now if cell G[j] is black, we can
overwrite its data entry with LPS[1, j).



Operation Total work Parallel time
Seq. insecure Par. insecure Par. oblivious Blowup Par. insecure Par. oblivious Blowup

Scatter O(|E|) O(|E|) O(|E| log |V|) O(log |V|) O(1) O(log |V|) O(log |V|)
Gather O(|E|) O(|E| log dmax) O(|E| log |V|) O(logdmax

|V|) O(log dmax) O(log |V|) O(logdmax
|V|)

Apply O(|V|) O(|V|) O(|E|) O(|E|/|V|) O(1) O(1) O(1)

TABLE I: Complexity of our parallel oblivious algorithms assuming |E| = Ω(|V|). |V | denotes the number of vertices, and
|E| denotes the number of edges. dmax denotes the maximum degree of a vertex in the graph. Blowup is defined as the ratio of the
parallel oblivious algorithm with respect to the best known parallel insecure algorithm. We assume that the data length on each
vertex/edge is upper-bounded by a known bound D, and for simplicity we omit a multiplicative factor of D from our asymptotical
bounds. In comparison with Theorem 1, in this table, some |V| terms are absorbed by the |E| term since |E| = Ω(|V|).

Parallel Aggregate:
/* For convenience, assume that for i ≤ 0, G[i] is white; and similarly for i ≤ 0, LPS[i, j) is an alias for LPS[1, j) */.

Initialize: Every processor j computes:

LPS[j − 1, j) :=

�
G[j − 1].data if G[j − 1] is black
1⊕ o.w.

; existswhite[j − 1, j) :=

�
False if G[j − 1] is black
True o.w.

Main algorithm: For each time step τ := 1 to log(|V|+ |E|)− 1: each processor j computes

• LPS[j − 2τ , j) :=

�
LPS[j − 2τ , j − 2τ−1)⊕ LPS[j − 2τ−1, j) if existswhite[j − 2τ−1, j) = False

LPS[j − 2τ−1, j) o.w.
• existswhite[j − 2τ , j) := existswhite[j − 2τ , j − 2τ−1) or existswhite[j − 2τ−1)

Fig. 4: Performing the aggregate operation (Step 2 of Gather) in parallel, assuming sufficient number of processors with a
shared memory to store the variables.

Cost analysis. Recall our standing assumption that the maxi-
mum data length on each tuple is O(1). It is not hard to see
that the parallel runtime of both the aggregate and propagate
operations is O(log(|V|+ |E|)). The total amount of work for
both aggregate and propagate is O((|V|+ |E|) · log(|V|+ |E|)).

Based on this, we can see that Scatter and Gather each takes
O(log(|V|+|E|)) parallel time and O((|V|+|E|)·log(|V|+|E|))
total amount of work. Obviously, Apply takes O(1) parallel
time and O(|V|+ |E|) total work.

Table I illustrates the performance of our parallel oblivious
algorithms for the common case when |E| = Ω(|V|), and
the blowup in comparison with a parallel insecure version.
Notice that in the insecure world, there exists a trivial O(1)
parallel-time algorithm to evaluate Scatter and Apply oper-
ations. However, in the insecure world, Gather would take
O(log(|E| + |V|)) parallel time to evaluate the ⊕-sum over
|E|+ |V| variables. Notice also that the |V| term in the asymp-
totic bound is absorbed by the |E| term when |E| = Ω(|V|).
The above performance characterization is summarized by the
following theorem:

Theorem 1 (Parallel oblivious algorithm for GraphSC):
Let M := |V| + |E| denote the graph size. There exists a
parallel oblivious algorithm for programs in the GraphSC
model, where each Scatter or Gather operation requires
O(logM) parallel time and O(M logM) total work; and
each Apply operation requires O(1) parallel time and O(M)
total amount of work.

E. Practical Optimizations for Fixed Number of Processors

The parallel algorithm described in Figure 4 requires M =
|V|+|E| processors. In practice, however, for large datasets, the

number of processors P may be smaller than M . Without loss
of generality, suppose that M is a multiple of P . In this case, a
naïve approach is for each processor to simulate M

P processors,
resulting in M logM

P parallel time, and M logM total amount
of work. We propose the following practical optimization that
can reduce the total parallel time to O(MP +logP ), and reduce
the total amount of work to O(P logP +M).

We assign to each processor a consecutive range of cells.
Suppose that processor j gets range [sj , tj ] where sj = (j −
1)·MP +1 and tj = j ·MP . In our algorithm, each processor will
compute LPS[1, sj), and afterwards, in O(M/P ) time-steps,
it can (sequentially) compute LPS[1, i) for every sj ≤ i ≤ tj .
Every processor then computes LPS[1, sj) as follows

• First, every processor sequentially computes LPS[sj , tj + 1)
and existswhite[sj , tj + 1).

• Now, assume that every processor started with a single value
LPS[sj , tj + 1) and a single value existswhite[sj , tj + 1).
Perform the parallel aggregate algorithm on this array of length
P .

Sparsity of communication. In a distributed memory setting
where memory is split across the processors, the conceptual
shared memory is in reality implemented by inter-process
communication. An additional advantage of our algorithm
is that each processor needs to communicate with at most
O(logP ) other processors – this applies to both the oblivious
sort step, and the aggregate or propagate steps. In fact, it
is not hard to see that the communication graph forms a
hypercube [67]. The sparsity of the communication graph is
highly desirable.

Let M := |V|+ |E| and recall that the maximum amount of
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Fig. 5: From parallel oblivious algorithms to parallel secure computation.

data on each vertex or edge is O(1). The following corollary
summarizes the above observations:

Corollary 1 (Bounded processors, distributed memory.):
When P < M , there exists a parallel oblivious algorithm for
programs in the GraphSC model, where (a) each processor
stores O(M/P ) amount of data; (b) each Scatter or Gather
operation requires O(M/P + logP ) parallel time and
O(P logP + M) total work; (c) each Apply operation
requires O(1) parallel time and O(|E| + |V|) total amount
of work; and (d) each processor sends messages to only
O(logP ) other processors.

Security analysis. The oblivious nature of our algorithms
is not hard to see: in every time step, the shared memory
locations accessed by each processor is fixed and independent
of the sensitive input. This can be seen from Figure 4, and the
description of practical optimizations in this section.

IV. FROM PARALLEL OBLIVIOUS ALGORITHMS TO
PARALLEL SECURE COMPUTATION

So far, we have discussed how GraphSC primitives can be
implemented as efficient parallel oblivious algorithms, we now
turn our attention to how the latter translate to parallel secure
computation. In this section, we outline the reduction between
the two, focusing on a garbled-circuit backend [1] for secure
computation.

System Setting. Recall that our focus in this paper is on
secure 2-party computation. As an example, Figure 5b depicts
two non-colluding cloud service providers (e.g., Facebook
and Amazon) – henceforth referred to as the two parties.
The sensitive data (e.g., user preference data, sensitive social
graphs) can be secret-shared between these two parties. Each
party has P processors in total – thus there are in total P
pairs of processors. The two parties wish to run a parallel
secure computation protocol computing a function (e.g., matrix
factorization), over the secret-shared data.

While in general, other secure 2-party computation proto-
cols can also be employed, this paper focuses on a garbled
circuit backend [1]. Our focus is on the semi-honest model,

although this can be extended with existing techniques [6],
[68]. Using this secure model, the oblivious algorithm is
represented as a binary circuit. One party then acts as the
garbler and the other acts as the evaluator, as illustrated in
Figure 5b. To exploit parallelization, each of the two parties
parallelize the computational task (garbling and evaluating the
circuit, respectively) across its processors. There is a one-to-
one mapping between garbler and evaluator processors: each
garbler processor sends the tables it garbles to the correspond-
ing corresponding evaluator processor, that evaluates them.
We refer to such communication as garbler-to-evaluator (GE)
communication.

Note that there is a natural correspondence between a
parallel oblivious algorithm and a parallel secure computation
protocol: First, each processor in the former becomes a
(garbler, evaluator) pair in the latter. Second, memory in the
former becomes secret-shared memory amongst the two par-
ties. Finally, in each time step, each processor’s computation
in the former becomes a secure evaluation protocol between a
(garbler, evaluator) pair in the latter.

Architectural choices for realizing parallelism. There are
various choices for instantiating the parallel computing archi-
tecture of each party in Figure 5b.

• Multi-core processor architecture. At each party, each proces-
sor can be implemented by a core in a multi-core processor
architecture. These processors share a common memory array.
• Compute cluster. At each party, each processor can be a ma-
chine in a compute cluster. In this case, accesses to the “shared
memory” are actually implemented with garbler-to-garbler
communication or evaluator-to-evaluator communication. In
other words, the memory is conceptually shared but physically
distributed.
• Hybrid. The architecture can be a hybrid of the above,
with a compute cluster where each machine is a multi-core
architecture.

While our design applies to all three architectures, we used
a hybrid architecture in our implementation, exploiting both
multi-core and multi-machine parallelism. Note that, in the
case of a hybrid or cluster architecture with P machines,



Corollary 1 implies that each garbler (evaluator) communicates
with only O(logP ) other garblers (evaluators) throughout the
entire execution. In particular, both garblers and evaluators
connect through a hypercube topology. This is another desir-
able property of GraphSC.

Metrics. Using the above natural correspondence between a
parallel oblivious algorithm and a parallel secure computation
protocol, there is also a natural correspondence between the
primary performance metrics in these two settings: First, the
total work of the former directly characterizes (a) the total
work and (b) the total garbler-to-evaluator (GE) communica-
tion in the latter. Second, the parallel runtime of the former
directly characterizes the parallel runtime of the latter. We note
that, in theory, the garbler is infinitely parallelizable, as each
gate can be garbled independently. However, the parallelization
of the evaluator (and, thus, of the entire system) is confined
by the sequential order defined by the circuit. Thus, parallel
runtime is determined by the circuit depth.

In the cluster and hybrid cases, where memory is concep-
tually shared but physically distributed, two additional metrics
may be of interest, namely, the garbler-to-garbler (GG) com-
munication and evaluator-to-evaluator (EE) communication.
These directly relate to the parallel runtime, since in each
parallel time step, each processor makes only one memory
access; hence, each processor communicates with at most one
other processor at each time-step.

V. EVALUATION

In this section we present a detailed evaluation of our
systems for a few well-known applications that are commonly
used for evaluating highly-parallelizable frameworks.

A. Application Scenarios

In all scenarios, we assume that the data is secret-shared
across two non-colluding cloud providers, as motivated in
Section IV. In all cases, we refer to the total number of vertices
and edges in the corresponding GraphSC graph as input size.

Histogram. A canonical use case of MapReduce is a word-
count (or histogram) of words across multiple documents.
Assuming a (large) corpus of documents, each comprising a
set of words, the algorithm counts word occurrences across all
documents. The MapReduce algorithm maps each word as a
key with the value of 1, and the reducer sums up the values of
all keys, resulting in the count of appearances of each word.
In the secure version, we want to compute the word frequency
histogram while hiding the text in each document. In GraphSC,
this is a simple instance of edge counting over a bipartite graph
G, where edges connect keys to words. We represent keys and
words as 16-bit integers, while accumulators (i.e., key vertex
data) are stored using 20-bit integers.

Simplified PageRank. A canonical use case of graph par-
allelization models is the PageRank algorithm. We consider
a scenario in which multiple social network companies, e.g.,
Facebook, Twitter and LinkedIn, would like to compute the
“real” social influence of users on a social graph that is the
aggregate of each company’s graph (assume users are uniquely
identified across networks by their email address). In the secure
version, each company is not willing to reveal user data and

their social graph with the other network. Vertices are identified
using 16-bit integers, and 1bit for isVertex (see Section III-C).
The PageRank value of each vertex is stored using a 40-bit
fixed-point representation, with 20-bit for the fractional part.

Matrix Factorization (MF). Matrix Factorization [61] splits
a large sparse low-rank matrix into two dense low-dimension
matrices that, when multiplied, closely approximate the origi-
nal matrix. Following the Netflix prize competition [69], matrix
factorization is widely used in recommender systems. In the
secure version, we want to factorize the matrix and learn
the user or item feature vectors (learning both can reveal the
original input), while hiding both the ratings and items each
user has rated. MF can be expressed in GraphSC using a bi-
partite graph with vertices representing users and items, and
edges connecting each user to the items they rated, carrying the
ratings as data. In addition, data at each vertex also contains
a feature vector, corresponding to its respective row in the
user/item factor matrix. We study two methods for matrix
factorization – gradient descent and alternative least-squares
(ALS) (see, e.g., [61]). In gradient descent, the gradient is
computed for each rating separately, and then accumulated
for each user and each item feature vectors, thus it is highly
parallelizable. In ALS we alternate the computation between
user feature vectors (assuming fixed item feature vectors) and
item feature vectors (assuming fixed user feature vectors). For
each step, each vector solves (in parallel) a linear regression
using the data from its neighbors. Similar to PageRank, we
use 16-bit for vertex id and 1-bit for isVertex. The user and
item feature vectors are with dimension 10, with each element
stored as a 40-bit fixed-point real.

The secure implementation of matrix factorization using
gradient descent has been studied by Nikolaenko et al. [3]
who, as discussed in Section I-C, constructed circuits of
linear depth. The authors used a multi-core machine to exploit
parallelization during sorting, and relied on shared memory
across threads. This limits the ability to scale beyond a single
machine, both in terms of the number of parallel processors (32
processors) as well as, crucially, input size (they considered no
more than 17K ratings, over a 128 GB RAM server).

B. Implementation

We implemented GraphSC atop ObliVM-GC, the Java-
based garbled circuit implementation that comprises the back
end of the GraphSC secure computation framework [11], [70].
ObliVM-GC provides easy-to-use Java classes for compos-
ing circuit libraries. We extend ObliVM-GC with a simple
MPI-like interface where processes can additionally call non-
blocking send and blocking receive operations. Processes
in ObliVM-GC are identified by their unique identifiers.

Finally, we implement oblivious sorting using the bitonic
sort protocol [64] which sorts in O(N log2 N) time. Asymptot-
ically faster protocols such as the O(N logN) AKS sort [66]
and the recent ZigZag sort [71] are much slower in practice
for practical ranges of data sizes.

C. Setup

We conduct experiments on both a testbed that uses a LAN,
and on a realistic Amazon AWS deployment. We first describe
our main experiments conducted using a compute cluster
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Fig. 6: Evaluation setup, all machines are connected in a star
topology with 1Gbps links.

TABLE II: Servers’ hardware used for our evaluation.

Machine #Proc Memory CPU Freq Processor

1 24 128 GB 1.9 GHz AMD Opteron 6282 SE
2 24 128 GB 1.9 GHz AMD Opteron 6282 SE
3 24 64 GB 1.9 GHz AMD Opteron 6282 SE
4 24 64 GB 1.9 GHz AMD Opteron 6282 SE
5 24 64 GB 1.9 GHz AMD Opteron 6282 SE
6 32 128 GB 2.1 GHz AMD Opteron 6272
7 32 256 GB 2.6 GHz AMD Opteron 6282 SE

connected by a Local Area Network. Later, in Section V-I,
we will describe results from the AWS deployment.

Testbed Setup on Local Area Network: Our experimental
testbed consists of 7 servers with the configurations detailed
in Table II. These servers are inter-connected using a star
topology with 1Gbps Ethernet links as shown in Figure 6.
All experiments (except the large-scale experiment reported
in Section V-F that uses all of them) are performed using a
pair of servers from the seven machines. These servers were
dedicated to the experiments during our measurements, not
running processes by other users.

To verify that our results are robust, we repeated the experi-
ments several times, and made sure that the standard deviation
is small. For example, we ran PageRank 10 times using 16
processors for an input length of 32K. The resulting mean
execution time was 390 seconds, with a standard deviation of
14.8 seconds; we therefore report evaluations from single runs.

D. Evaluation Metrics

We study the gains and overheads that result from our
parallelization techniques and implementation. Specifically, we
study the following key metrics:

Total Work. We measure the total work using the overall
number of AND gates for each application. As mentioned
earlier in Section III-E, the total work grows logarithmically
with respect to the number of processors P in theory – and
in practice, since we employ bitonic sort, the actual growth is
log-squared.

Actual runtimes. We report our actual runtimes and com-
pare the overhead with a cleartext baseline running over
GraphLab [9], [12], [72]. We stress that while our circuit
size metrics are platform independent, actual runtime is a
platform dependent metric. For example, we expect a factor

of 20 speedup if the backend garbled circuit implementation
adopts a JustGarble-like approach (using hardware AES-NI) –
assuming roughly 2700 Mbps bandwidth provisioned between
each garbler and evaluator pair.

Speedup. The obvious first metric to study is the speedup
in the time to run each application as a result of adding
more processors. In our applications, computation is the main
bottleneck. Therefore, in the ideal case, we should observe a
factor of x speedup with x factor more processors.

Communication. Parallelization introduces communication
overhead between garblers and between evaluators. We study
this overhead and compare it to the communication between
garblers and evaluators.

Accuracy. Although not directly related to parallelization, for
completeness we study the loss in accuracy obtained as a
result of implementing the secure version of the applications,
both when using fixed-point representation and floating-point
representation of the reals.

E. Main Results

Speedup. Figure 7 shows the total computation time across the
different applications. For all applications except histogram we
show the time of a single iteration (consecutive iterations are
independent). Since in our experimental setup computation is
the bottleneck, the figures show an almost ideal linear speedup
as the number of processors grow. Figure 8 shows that our
method is highly scalable with the input size, with an almost
linear increase (a factor of O(P/ log2 P )). Figure 8a provides
the time to compute a histogram using an oblivious RAM im-
plementation. We use the state-of-the-art Circuit ORAM [53]
for this purpose. As the figure shows, the baseline is 2 orders
of magnitude slower compared to the parallel version using
two garblers and two evaluators.

Figure 8c provides the timing presented in Nikolaenko et
al. [4] using 32 processors. As the figure shows, using a similar
hardware architecture, we manage to achieve a speedup of
roughly ×16 compared to their results. Most of the perfor-
mance gains comes from the usage of GraphSC architecture
– whereas Nikolaenko et al. used a multi-threaded version of
FastGC [5] as the secure computation backend.

Total Work. Figure 9 shows that the total amount of work
grows very slowly with respect to the number of processors,
indicating that we indeed achieved a very low overhead in the
total work (and overall circuit size).

Communication. Figure 10a and Figure 10b show the amount
of total communication and per processor communication, re-
spectively, for running gradient descent. Each plot shows both
the communication between garblers and evaluators, and the
overhead introduced by the communication between garblers
(communication between evaluators is identical). Figure 10a
shows that the total communication between garblers and eval-
uators remains constant as we increase the number of proces-
sors, showing that parallelization does not introduce overhead
to the garblers-to-evaluator communication. Furthermore, the
garbler-to-garbler (GG) communication is significantly lower
than the garblers-to-evaluator communication, showing that
the communication overhead due to parallelization is low. As
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Fig. 7: Computation time for increasing number of processors, showing an almost linear decrease with the number of processors.
The lines correspond to different input lengths. For PageRank, gradient descent and ALS, the computation time refers to the
time required for one iteration.
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Fig. 8: Computation time for increasing input size, showing an almost-linear increase with the input size, with a small log2

factor incurred by the bitonic sort. The lines correspond to different input lengths. For PageRank, gradient descent and ALS, the
computation time refers to the time required for one iteration. In Figure 8a, the baseline is a sequential ORAM-based baseline
using Circuit ORAM [53]. The ORAM-based implementation is not amenable to parallelization as explained in Section V-G.
Figure 8c compares our performance with the performance of Nikolaenko et al. [3] who implemented the circuit using FastGC [5]
and parallelized at the circuit level using 32 processors.
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Fig. 9: Total work in terms of # AND gates, normalized such that the 4 processor case is 1×. The different curves correspond to
different input lengths. Plots are in a log-log scale, showing the expected small increase to the number of processors P . Recall
that our theoretical analysis suggests that the total amount of work is O(P logP +M), where M := |V|+ |E| is the graph size.
In practice, since we use bitonic sort, the actual total work is O(P log2 P +M).

expected, adding more processors increases the total commu-
nication between garblers, following log2 P (where P is the
number of processors), due to the bitonic sort. Figure 10b
shows the communications per-processor (dividing the results
of Figure 10a by P ). This helps understand overheads in our
setting, where, for example, a cloud provider that provides
secure computation services (garbling or evaluating) is inter-
ested in the communication costs of its facility rather than the
total costs. As the number of processors increase, the “out-
going” communication (e.g., a provider running garblers see
the communication with evaluators as “out-going” communi-

cation) decreases. The GG communication (or EE communi-
cation) remains roughly the same (following log2 P/P ), and
significantly lower than the “out-going” communication.

Practical Optimizations. The optimization discussed in Sec-
tion III-E decreases the amount of computation for the prop-
agate and aggregate operations. We analyze the decrease in
computation as a result of this optimization.

Figure 11 shows the number of (computed analytically)
aggregate operation performed on an input length of 2048,
using two scenarios: (a) one processor simulating multiple
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garbler (GG) for gradient descent (input length 2048).
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Fig. 11: Total number of aggregate operation (additions) on an
input length of 2048, with and without optimization.

processors, (b) the optimization discussed in Section III-E
is used. As can be seen in figure, the number of additions
with optimization is much lower than the scenario where one
processor simulates multiple processors. The optimized version
performs worse than the single-processor version only when
the number of processor comes close to the input size, a setting
which is extremely unlikely for any real-world problem.

Comparison with a Cleartext Baseline. To better under-
stand the overhead that is incurred from cryptography, we
compared GraphSC’s execution time with GraphLab [9], [12],
[72], a state-of-the-art framework for running graph-parallel
algorithms on clear text. We compute the slowdown relative
to an insecure baseline, assuming that the same number of
processors is employed for GraphLab and GraphSC. Using
both frameworks, we ran Matrix Factorization using gradient
descent with input length of 32K. For the cleartext experi-
ments, we ran 1000 iterations of gradient descent 3 times, and
computed the average time for a single iteration.

Figure 12 shows that GraphSC is about 200K - 500K
times slower than GraphLab when run on 2 to 16 processors.
Since GraphLab is highly optimized and extremely fast, such
a large discrepancy is expected. Nevertheless, we note that
increasing parallelism decreases this slowdown, as overheads
and communication costs impact both systems.

Accuracy. Figures 13a and 13b show the relative error of
running the secure version of PageRank compared to the
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Fig. 13: Relative accuracy of the secure PageRank algorithm
(input length 2048 entries) compared to the execution in
the clear using fixed-point and floating-point garbled-circuits
implementations.
TABLE III: Summary of machines used in large-scale experi-
ment, performing matrix factorization over the MovieLens 1M
ratings dataset.

Machine Processors Type JVM Memory Size Num Ratings
1 16 Garbler 64 GB 256K
2 16 Evaluator 60.8 GB 256K
3 6 Garbler 24 GB 96K
3 6 Evaluator 24 GB 96K
4 15 Garbler 58.5 GB 240K
5 15 Evaluator 58.5 GB 240K
6 27 Garbler 113.4 GB 432K
7 27 Evaluator 121.5 GB 432K

Total 128 524.7 GB 1M

version in the clear for fixed-point and floating-point numbers,
respectively. Overall, the error is relatively small, especially
when using at least 24 bits for the fraction part in fixed-point
or for the precision in floating-point. For example, running 10
iterations of PageRank with 24 bits for the fractional part in
fixed-point representation results in an error of 10−5 compared
to running in the clear. The error increases with more iterations
since the precision error accumulates.

F. Running at Scale

In order to have a full-scale experiment of our system,
we ran matrix factorization using gradient descent on the
real-world MovieLens dataset that contains 1 million ratings
provided by 6040 users to 3883 movies [73]. We factorized
the matrix to users and movie feature vectors, each vector with
a dimension of 10. We used 40-bit fixed-point representation
for reals, with 20 bits reserved for the fractional part. We ran
the experiment on an heterogeneous set of machines that we
have in the lab. Table III summarizes the machines and the
allocation of data across them.

A single iteration of gradient descent took roughly 13
hours to run on 7 machines with 128 processors, at ~833
MB data size (i.e., 1M entries). As prior machine learning
literature reports [74], [75], about 20 iterations are necessary
for convergence for the same MovieLens dataset – which
would take about 11 days with 128 processors. In practice,
this means that the recommendation system can be retrained
every 11 days. As mentioned earlier, about 20× speedup is
immediately attainable by switching to a JustGarble-like back
end implementation with hardware AES-NI, and assuming
2700 Mbps bandwidth between each garbler-evaluator pair.
One can also speed up the execution by provisioning more
processors.



TABLE IV: Comparison with a naive circuit-level paralleliza-
tion approach, assuming infinite number of processors (using
Histogram).

Input length Circuit Depth of GraphSC Circuit Depth of SCVM [2]

211 267 7 M
212 322 18 M
213 385 43 M
214 453 104 M
215 527 247 M
216 608 576 M
217 695 1328 M
218 788 3039 M
219 888 6900 M
220 994 15558 M

In comparison, as far as we know, the closest large-scale
experiment in running secure matrix factorization was recently
performed by Nikolaenko et al. [3]. The authors used 16K
ratings and 32 processors to factorize a matrix (on a machine
similar to machine 7 in Table III), taking almost 3 hours to
complete. The authors could not scale further because their
framework runs on a single machine.

G. Comparison with Naïve Parallelization

An alternative approach to achieve parallelization is to
use a naive circuit-level parallelization without requiring the
developer to write code in a parallel programming paradigm.
We want to assess the speedup that we can obtain using
GraphSC over using such naïve parallelization. The results
in this section are computed analytically and assume infinite
number of processors.

In order to compare, we consider the simple histogram
application and compute the depth of the circuit that is
generated using GraphSC, and the one using the state-of-
the-art SCVM [2] compiler. The depth is an indicator for
the ability to parallelize – each “layer” in the circuit can
be parallelized, but consecutive layers must be executed in
sequence. Thus, the shallower the circuit is the more it is
amendable to parallelization. The latter uses RAM-model
secure computation and compiles a program into a sequence
of ORAM accesses. We assume that for ORAM accesses,
the compiler uses the state-of-the-art Circuit ORAM [53].
Due to the sequential nature of ORAM constructions, these
ORAM accesses cannot be easily parallelized using circuit-
level parallelism (currently only OPRAM can achieve full
circuit-level parallelism, however, these results are mostly
theoretical and prohibitive in practice). Table IV shows the
circuit depth obtained using the two techniques. As the table
suggests, GraphSC yields significantly shallower and “wider”
circuits, implying that it can be parallelized much more than
the naïve circuit-level parallelization techniques that are long
and “narrow”.

H. Performance Profiling

Finally, we perform micro-benchmarks to better understand
the time the applications spend in the different parts of the
computation and network transmissions. Figure 14 shows the
breakdown of the overall execution between various operations
for PageRank and gradient descent. Figure 15 shows a similar
breakdown for different input sizes. As the plots show, the
garbler is computation-intensive whereas the evaluator spends
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Fig. 14: A breakdown of the execution times of the garbler
and evaluator running one iteration of PageRank and gradient
descent for an input size of 2048 entries Here I/O overhead
means the time a processor spends blocking on I/O. The
remaining time is reported as CPU time.
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Fig. 15: A breakdown of the execution times of the garbler
and evaluator running one iteration of PageRank and gradient
descent for an increasing input size using 8 processors for
garblers and 8 for evaluators.

a considerable amount of time waiting for the garbled tables
(receive is a blocking operation). In our implementation,
the garbler computes 4 hashes to garble each gate, and the
evaluator computes only 1 hash for evaluation. This explains
why the evaluation time is smaller than the garbling time. Since
the computation tasks under consideration are superlinear in
the size of the inputs, we see that the time spent on oblivious
transfer (both communication and computation) is insignificant
in comparison to the time for garbling/evaluating. Our current
implementation is built atop Java, and we do not make use
of hardware AES-NI instructions. We expect that the garbling
and evaluation CPU will reduce noticeably if hardware AES-
NI were employed [76]. We leave it for future work to port
GraphSC to a C-based implementation capable of employing
hardware AES-NI features.
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Fig. 16: Performance of PageRank. Figure 16a shows perfor-
mance for 4 and 8 processors at varying bandwidths. The dot-
ted vertical line indicates the inflexion point for 8 processors,
below which the bandwidth becomes a bottleneck, resulting
in reduced performance. Figure 16b shows the performance
of PageRank running on geographically distant data centers
(Oregon and North Virginia).

I. Amazon AWS Experiments

We conduct two experiments on Amazon AWS machines.
First, we study the performance of the system under different
bandwidths on the same AWS data center (Figure 16a). Sec-
ond, to test the performance on a more realistic deployment,
where the garbler and evaluator are not co-located, we also
conduct experiments by deploying GraphSC on a pair of AWS
virtual machines located in different geographical regions
(Figure 16b).

The time reported for these experiments should not be
compared to the earlier experiments as different machines were
used.

Setup. For the experiments with varying bandwidths, both
garblers and evaluators were located in the same data center
(Oregon - US West). For the experiment across data centers,
the garblers were located in Oregon (US West) and the
evaluators were located in N. Virginia (US East). We ran our
experiments on shared instances running on Intel Xeon CPU
E5-2666 v3 processors clocked at 2.9 GHz. Each of our virtual
machines consisted of 16 cores and 30 GB of RAM.

Results for Varying Bandwidths. Since communication be-
tween garblers and evaluators is a key component in system
performance, we further study the bandwidth requirements of
the system on a real-world deployment.

We measure the time for a single PageRank iteration with
input length of 16K entries. We vary the bandwidth using
tc [77], a tool for bandwidth manipulation, and then measure
the exact bandwidth between machines using iperf [78].

Figure 16a shows the execution time for two setups, one
with 4 processors (2 garblers and 2 evaluators) and the second
with 8 processors. Using 4 processors the required bandwidth
is always lower than the capacity of the link, thus the execution
time remains the same throughout the experiment. However,
when using 8 processors the total bandwidth required is higher,
and when the available bandwidth is below 570 Mbps the
link becomes saturated. The saturation point indicates that
each garbler-evaluator pair requires a bandwidth of 570/4 ≈
142 Mbps. GraphSC has an effective throughput of ~ 0.58M
gates/sec between a pair of processors on our Amazon AWS
instances. Each gate has a size of 240 bits. Hence, the theoret-
ical bandwidth required is 0.58×240×106/220 ≈ 133 Mbps.

TABLE V: Summary of key evaluation results (1 iteration).

Experiment Input size Time (32 processors)
Histogram 1K - 0.5M 4 sec - 34 min
PageRank 4K - 128K 20 sec - 15.5 min

Gradient Descent 1K - 32K 47 sec - 34 min
ALS 64 - 4K 2 min - 2.35 hours

Gradient Descent 1M ratings 13 hours
large scale) (128 processors)

Considering GraphSC is implemented in Java, garbage collec-
tion happens intermittently due to which the communication
link is not used effectively. Hence, the implementation requires
slightly more bandwidth than the theoretical calculation.

Given such bandwidth requirements, the available band-
width in our AWS setup, i.e., 2 Gbps between the machines,
will saturate beyond roughly 14 garbler-evaluator pairs (28
processors). At this point, the linear speedup trend w.r.t. the
number of processors (as shown in Figure 7) will stop, unless
larger bandwidth becomes available. In a real deployment sce-
nario, the total bandwidth can be increased by having multiple
machines for garbling and evaluating, hence supporting more
processors without affecting the speedup.

Results for Cross-Data-Center Experiments. For this ex-
periment, the garblers are hosted in the AWS Oregon data
center and the evaluators are hosted in the AWS North Vir-
ginia data center. We measure the execution time of a single
iteration of PageRank for different input lengths. As in the
previous experiment, we used machines with 2Gbps network
links, however, measuring the TCP throughput with iperf
resulted in ~50 Mbps per TCP connection. By increasing the
receiver TCP buffer size we managed to increase the effective
throughput for each TCP connection to ~400 Mbps.

Figure 16b shows that this realistic deployment manages to
sustain a linear speedup when increasing the number of proces-
sors. Moreover, even 16 processors do not saturate the 2 Gbps
link, meaning that the geographical distance does not impact
the speedup resulting from adding additional processors. We
note that if more than 14 garbler-evaluator pairs are needed (to
further reduce execution time), AWS provides higher capacity
links (e.g., 10 Gbps), thereby allowing even higher degrees of
parallelism.

During the computation, the garbler garbles gates and sends
it to the evaluator. As there are no round trips involved (i.e.
garbler does not wait to receive data from the evaluator), the
time required for computation across data centers is the same
as in the LAN setting.

J. Summary of Main Results

To summarize, Table V highlights some of the results, and
we present the main findings:

• As mandated from “big-data” algorithms, GraphSC provides
high scalability with the input size, exhibiting an almost linear
increase with the input size (up to poly-log factor).

• Parallelization provides an almost ideal linear improvement in
execution time with small communication overhead (especially
on computation-intensive tasks), both in a LAN based setting
and across data centers.



• We ran a first-of-its-kind large-scale secure matrix factoriza-
tion experiment, factorizing a matrix comprised of the Movie-
Lens 1M ratings dataset within 13 hours on a heterogeneous
set of 7 machines with a total of 128 processors.
• GraphSC supports fixed-point and floating-point reals repre-

sentation, yielding an overall low rounding errors (provided
sufficient fraction bits) compared to execution in the clear.

VI. CONCLUSION

This paper introduces GraphSC, a parallel data-oblivious
and secure framework for efficient implementation and exe-
cution of algorithms on large datasets. It is our sincere hope
that by seamlessly integrating modern parallel programming
paradigms that are familiar to a wide range of developers into
an secure data-oblivious framework will significantly increase
the adoption of secure computation. We believe that this can
truly change the privacy landscape, where companies that
operate on potentially sensitive datasets, will be able to develop
arbitrarily complicated algorithms that run in parallel on large
datasets as they normally do, only without leaking information.
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