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Abstract
End-to-end latency of serving jobs in distributed and shared
environments, such as a Cloud, is an important metric for
jobs’ owners and infrastructure providers. Yet it is notori-
ously challenging to model precisely, since it is affected by
a large collection of unrelated moving pieces, from the soft-
ware design to the job schedulers strategies. In this work we
present a novel approach to modeling latency, by tracking
how it varies with CPU usage. We train a classifier to au-
tomatically assign the latency behavior of methods in three
classes: constant latency regardless of CPU, uncorrelated la-
tency and CPU, and predictable latency as a function of
CPU. We use our model on a random sample of serving
jobs running on the Google infrastructure. We illustrate un-
expected and insightful patterns of latency variations with
CPU. The visualization of latency-CPU variations and the
corresponding class may be used by both jobs’ owners and
infrastructure providers, for a variety of applications, such
as smarter latency alerting, latency-aware configuration of
jobs, and automated detection of changes in behavior, either
over time, during pre-release testing, or across data centers.

Categories and Subject Descriptors D.4.7 [Operating sys-
tems]: Organization and Design—Distributed sytems

Keywords Machine learning, weighted scatterplot mod-
eling, resource management, performance, intelligent alert
management.

1. Introduction
Latency of serving jobs is an important factor to keep un-
der control, and often to minimize. For user-facing prod-
ucts, even small variations of end-to-end latency can make
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a difference in user experience; and for jobs offering con-
tractual services to other jobs, increases of latency leading
to violations of Service Level Agreement (SLA) are often
directly charged as monetary fines. Yet, since latency is not
a resource being shared and managed directly (unlike mem-
ory, CPU, disk space, etc.), it often is not included in state-
of-the-art multi-resource modeling [1, 12]. Alternatively, la-
tency is modeled independently within scheduling frame-
works [7, 11, 17], since the scheduling order of jobs in dis-
tributed and shared environments may have a direct influ-
ence on latency. Yet latency may also be affected by factors
beyond the control of a job scheduler - it may simply be
proportional to the size of the job’s input being processed.
Successful examples of latency-focused modeling have been
reported for specific classes of jobs (database services [16],
straggler jobs [18]) or specific configurations (addressing the
handling of unused resources [4]). In this work we consider
all types of serving jobs, running in distributed and shared
environment, responding to any type of remote procedure
calls (RPC) with measurable end-to-end latency.

The Cloud paradigm brings additional constraints to tra-
ditional distributed and shared computing [3, 17]. Depend-
ing on the depth of the Cloud service, customers may only
see the underlying infrastructure as a black box running vir-
tual machines, with limited information about their inner
performance; and the schedulers may only see the running
jobs as black boxes too, with little control over their config-
uration [9]. This necessary inner separation makes it more
difficult to track and improve end-to-end latency.

In this work we model the variations of end-to-end la-
tency correlated to CPU consumption for any type of serving
job running in production. These two standard metrics may
generally be readily available to Cloud customers, as part of
billing or SLA monitoring. The combination of these two
metrics provides a novel insight into the behavior of meth-
ods, and has a wide variety of applications. For our model
training and all our experiments, we use data from serving
jobs running on the Google Borg infrastructure [15, 19]. We
identify 3 classes of behaviors: constant latency at all CPU
levels; unpredictable latency at all CPU levels; predictable
latency as a function of the CPU. Smarter alerting rules may
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Figure 1: Hierarchical organization of methods, and the corresponding
scatterplots where their data will be aggregated (names are for illustration
purposes only).

be set up for methods depending on which class they fall, and
depending on the CPU consumption at the time of a high la-
tency. For jobs whose latency increases with CPU consump-
tion, higher number of replicas can reduce latency at a small
cost. Also, for infrastructure providers, these combined met-
rics provide information on what latency to expect at differ-
ent loads and usages, which can be included in an automated
configuration framework. Finally, we find that job behaviors
do change, either over time, over new releases, or over data
center, and therefore we suggest that this classifier may be
part of a daily monitoring console, both for infrastructure
providers and for jobs’ owners.

2. Classifier for latency-CPU behavior
2.1 Aggregating data from comparable methods
Serving jobs running on Google data centers have been de-
scribed in [15, 19]. In short, a job is duplicated over several
data centers, for redundancy, reliability (in case a data cen-
ter goes offline), and for geographical proximity to callers
and to backends. In each data center, a job is a collection
of multiple tasks or replicas; they are the units of work
that handle the incoming RPC calls and consume resources.
The number of replicas may be set by the user, or may be
highly dynamic [9] and controlled by the scheduler. Each
task responds to RPCs through one or many methods (e.g.
the two methods HandleGetRequest and HandlePostRequest
may well be served by the same task). The latency is mea-
sured for each method independently. In a given data center,
all tasks of a job run the same binary, and use the same meth-
ods for RPCs. However, on two different data centers, a job
may be running different binaries, in particular during the
roll-out of a new release, and may even be exposing differ-
ent methods and responding to different types of RPCs.

Figure 2: Computation of a weighted scatterplot representing the correla-
tion between two timeseries. Left: the coordinates of a point in the scatter-
plot represent the CPU and latency from the same 5-min interval. Right: the
weight of a point represents the duration when the two values were observed
together.

In this architecture, there are several levels of duplication,
but not all duplicates are actual clones that can be aggre-
gated as single units with identical behavior. In this work we
consider the following as the unit of behavior: one method
from one job in one data center, combining the data from
all the corresponding tasks. We argue that doing the aggre-
gation at a different level would be detrimental to latency-
CPU analysis. Aggregating the latency of different methods
served by the same job, which may well be within differ-
ent orders of magnitude from each other, would lose the
functional interpretation of latency, since latency is method-
specific. Also, aggregating jobs across data centers would
hide the specificities of each data center (whose location may
have a strong impact on latency), and would potentially fail
during the roll-out of new releases of existing jobs with new
methods. On the other hand, all tasks of a job in a data center
are guaranteed by design to have identical behavior (running
the same binary, sharing the same configuration, and serving
the same requests), and are treated as interchangeable by the
job scheduler and the load balancer. Aggregating them gives
more data on which to fit our models. We illustrate this in
Fig. 1: the left part of the table shows the hierarchical or-
ganization of methods; the right side shows which methods
are actual clones with the same behavior, and whose data are
aggregated into single scatterplots.

To ensure the generality of our approach, we selected
500 serving jobs, with a total of 1,882 methods, from 8
randomly-selected data centers, among the jobs that met the
following minimum replication requirements: each job was
running in at least 2 other data centers, and each job had at
least 3 tasks in each data center.

2.2 Computing weighted scatterplots from timeseries
The CPU consumed by each task is averaged every five min-
utes. For the latency of a given method, we measure the 90th

percentile of all values during the same five-minute interval.
These two timeseries, CPU and latency, are computed con-
tinuously, and stored over periods of 3 days. The process is
repeated every 1.5 days, which ensures there is always some
overlap between two consecutive scatterplots of a given
method. The 3-day interval is chosen to be large enough
to contain enough data for modeling purposes, and short
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enough to detect temporal changes of behavior of methods
over time.

The two timeseries for a target over 3 days are then com-
bined into a single weighted scatterplot (see Fig. 2). Each
point in the plot is a triplet (x=CPU, y=latency, w=duration),
where w (for weight) is the total duration over which this
CPU/latency pair is observed during the 3 day period of mea-
surements. This data is displayed here as weighted scatter
plots, where x is the CPU value (in cores), y the latency (in
ms), and the size of a point is proportional to the weight.
The longer the CPU/latency values are observed together,
the higher the weight in the data, and the bigger the point in
the plot. Overall, we use a total of 3,379 weighted scatter-
plots.

2.3 Classes of latency-CPU behaviors
The end-to-end latency of serving jobs is challenging to
model precisely, especially when considering a general pop-
ulation of serving jobs (some being user-facing and latency-
sensitive, others being background processes with little con-
cern for latency). Additionally, as explained in the Introduc-
tion, in a Cloud context, the breakdown of a latency chain is
not publicly available to jobs’ owners.

In this context, with no prior information on jobs and no
inner knowledge of infrastructure, we identified three classes
of latency behaviors for serving jobs (illustrated in Fig. 3).
The first class is for plots with constant latency at all CPU
values. Methods in this class show little to no variations of
latency (as a fraction of the absolute latency value), over
the complete range of CPU. The corresponding jobs offer
straightforward rules for latency monitoring and alerting,
and are typically robust to resource allocation.
The second class behavior is uncorrelated latency and CPU
values. While both latency and CPU vary significantly, their
variations are uncorrelated. The latency may depend on ex-
ternal factors (such as the complexity of the input values, or
the latency of backend calls).
The third class is predictable latency as a function of CPU.
Scatterplots of methods in this category exhibit a wide va-
riety of patterns, as illustrated in Fig. 4. Patterns include:
latency increasing with CPU (mostly non-linearly), latency
decreasing with CPU, and V-shaped variations of latency
with CPU (high latency at small CPU values, low latency at
medium CPU range, and high latency at high CPU values).
We think the predictable class has the most promising appli-
cations. While it is certainly interesting to further model the
variations of latency with CPU for methods in that class, we
found that keeping them in the same class was more reliable,
as a classifier task, than adding more classes for each specific
pattern. Since the first two classes represent the majority of
classes, dividing the third class further would cause a strong
imbalance in the number of representatives for each class,
which notably leads to lower classification performance. A
straightforward extension of this work would be to model
the variations of latency only in this third class.
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Figure 3: Three classes of latency behavior. Top let: constant. Bottom left:
uncorrelated. Right: predictable. As described in section 2, the the size of a
point represents the duration when its coordinates were observed together.

2.4 Data preprocessing and feature extraction
Because outliers both can change the scale of the plots
(which will make labeling the plots by humans harder) and
significantly change some of the statistics (like mean), we
first remove outliers from the data. We use the widely popu-
lar Tukey method for outliers detection [13], which filters out
data points that fall outside of interval (Q1−1.5×IQR,Q3+
1.5× IQR), where IQR is the interquartile range [14], Q1
and Q3 are the first and third quartiles respectively. This
filtering is done for each axis (CPU and latency), indepen-
dently of each other. Note that here and everywhere when
we mention some statistic, like IQR, we mean a weighted
statistic, since each point on the scatter plot has a weight
assigned to it.

Once outliers are filtered out, we compute a total of 34
features for each data plot. We briefly describe these fea-
tures below and provide the rationale for adding them to the
model.

First, we break the CPU axis into n intervals and for each
interval i ∈ [2,n] we add as features the relative change of
weighted mean and relative change of weighted standard
deviation of latency. More formally, if the latency in some
bucket i has a weighted mean of µi and a standard devi-
ation of σi, then for a bucket i + 1 we add two features:
(µi+1−µi)/µi and (σi+1−σi)/σi. For buckets with a previ-
ous bucket’s mean or standard deviation of 0, these features
are undefined, due to division by 0. We replace such val-
ues with some constant value, which is outside of the range
of the values observed for this feature, at the post process-
ing step before model is trained. For the first bucket, since
we can’t calculate relative change, we simply include the
weighted mean and weighted standard deviation of the la-
tency for the points in this bucket.

Additionally, for each bucket we add a feature represent-
ing the relative total weight concentrated in this bucket (i.e.
the proportion of observations that this bucket contains). It
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is calculated as follows for a bucket i:
∑

point j∈Bucketi

weight j

N
∑

k=1
weightk

where N is the number of points in the plot. Empirically we
chose n=5 as the number of buckets.

The rationale behind these 3× n features is that in con-
stant plots, we would expect to see a very small relative
change in both mean and standard deviation of latency,
whereas in uncorrelated plots, the changes might be po-
tentially large. In the predictable class, we do expect to see
the changes between the buckets, but for each bucket the
changes should be on a smaller scale than for uncorrelated
(points are more tightly coupled in the predictable case). The
weight in the bucket helps the model to understand whether
the relative change in values is only due to a small number of
observations. This is useful in particular for cases where the
data in concentrated in few points in the bucket, and thus the
mean and the standard deviation calculated are not reliable
estimates.

The next set of features is also weight-related. Intuitively,
having few relatively heavy data points containing the ma-
jority of the weight and some light outliers is a good sig-
nal for a constant class; whereas having all points, including
outliers, with approximately the same weight would indicate
an uncorrelated plot. Therefore, as a signal, we include the
relative weight of largest, smallest and median points, in re-
lation to the total weight of all points in the plot. We also in-
clude the number of observations as additional signal, since
a larger number of observations allows us to distinguish be-
tween uncorrelated versus constant or predictable plots: few
points are unlikely to form a pattern and are most likely ei-
ther uncorrelated or constant (that distinction being a func-
tion of their relative weights and coordinates).

We also include features that describe the CPU and la-
tency behavior globally: weighted index of dispersion [8],
weighted IQR [14], weighted variance, and logarithms of
maximum, minimum and median latency. The purpose of
the first three features is to quantify the dispersion of the data
points: the more spread out the points on a scatter plot are,
the more likely this scatter plot is to be classified as uncor-
related; on the contrary, ”concentrated” points would most
likely represent either constant plots or some sort of pattern.
The last three features help estimate the change in latency on
the scatter plot. Since all plots from the training dataset have
very different latency ranges, from plots with all points at a
few ms to plots with points with latency of several hundred
thousands ms, we use a log of the last three features. The
CPU related features include weighted IQR of CPU values
and weighted variance.

To estimate the strength of a predictable relationship be-
tween latency and CPU, we fit a linear regression model and
include its slope, intercept, standard errors of coefficients

Table 1: Confusion matrix for the random forest classifier detailed in
Section 2.

Predicted
Constant Uncorrel. Predictable

A
ct

ua
l Constant 139 11 1

Uncorrelated 13 91 11
Predictable 5 9 43

and sigma (estimate of standard deviation of noise in the
model). The slope of the regression line is a measure of cor-
relation between CPU and latency (adjusted by the standard
deviations), which helps distinguish uncorrelated and con-
stant classes from predictable classes. Standard errors and
sigma are included to understand how accurate the fit is. Fi-
nally, we also fit a 3-piece spline, which we experimentally
decided was good enough to describe the patterns visible in
our dataset, and include its adjusted r-squared metric, which
is a goodness of fit measure.

2.5 Classifier and evaluation
During our experiments we tried a number of different clas-
sifiers, but since the decision boundary is highly non linear,
only ν-SVM with RBF kernel [5, 6] and random forests [2]
were finally shortlisted. Rule-based classifiers had the ad-
vantage to be straightforward to implement and interpret, but
we found that they were systematically out-performed by
SVM and random forest. Upon tuning parameters for both
of the models, SVM exhibited 75.6% cross validation ac-
curacy (with variance of up to 3% depending on the split),
whereas random forests achieved 15.48% out of the bag er-
ror rate. Given the study of out-of-bag estimates for bagging
predictors [10], which provides empirical evidence that such
estimates are close to optimal generalization accuracy val-
ues, we consider it equivalent of 84.2% generalization ac-
curacy and therefore we choose random forests model as the
winning model. Since the majority class (constant) in a train-
ing dataset represented approximately 47% of all training in-
stances, with predictable class approximately 18%, and 10-
15% level of disagreement among human experts, we con-
sider the achieved cross validation accuracy to be acceptable
for preliminary analysis. The confusion matrix for random
forests is shown in Table 1.

Using the random forest model, we classified 3,379 avail-
able scatter plots. Our analysis of the results showed that
the most common misclassification was between the classes
constant and predictable (on which human experts also tend
to disagree, when the range of latency is small).

Interestingly enough, the model actually classified cor-
rectly, as predictable, plots with patterns of latency-CPU
variations that were not present in the training data. Some
examples are provided in Fig. 4. This illustrates that our clas-
sifier is not actively looking for particular patterns (such as
linear increase of latency), but to predictability in general.

The trained model was used for preliminary analysis, and
can be improved by both collecting more labeled data and
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Figure 4: Interesting patterns discovered by the model, which were not
present in the training set

agreeing on more formal rules of handling contentious plots,
affected by intra- and inter-user variability (different experts,
or one expert at different times, may label a borderline case
as different classes). With these rules, it will be easy to add
additional features into the model to improve the accuracy
on bordeline plots.

Overall, the trained random forest model classified 54.48%
plots as uncorrelated, 30.61% as constant and 14.91% as
predictable. The second best trained model (SVM) when ap-
plied to the same data, produced similar proportions (44.5%
plots classified as uncorrelated, 38.5% as constant and 17%
as predictable).

3. Applications
A typical use of latency values is to set alarms responding to
threshold crossing. The scatterplots presented in this work
show that there might be smarter rules of latency depending
on the concurrent CPU values. As shown in Fig. 4c, a high
latency may be acceptable at a high CPU usage (e.g. for a
task processing a large input), but may be unacceptable at
a lower range (which may result from a backend spike in
latency). Another application of these scatterplots is to assist
the determination of acceptable CPU ranges for tasks. If a
maximum latency is provided as a Service Level Objective
(SLO), jobs in classes constant and uncorrelated would be
unaffected by any level of CPU allocation, whereas jobs in
classes predictable may need to cap the CPU usage if the
scatterplots goes beyond the SLO.

For infrastructure providers, having access to the latency
variations with CPU may be used to automatically adjust
the resources allocated to jobs when the data shows a risk
of exceeding an SLO or SLA. Even when no such service
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Figure 5: Different latency behaviors of the same method over time
running on the same data center. Left: uncorrelated. Right: predictable.

level exists for the latency of a job, the scatterplots provide
a way to determine regions of lower latency and regions of
exploding latency. This may be used internally as part of the
scheduler algorithms.

3.1 Variations of behavior over time
To test how consistent methods’ behaviors are with time, we
compare the outcome of the classifier for the same methods
separated by at least 3 days. Out of 1,881 such methods, we
find that 300, or 15.9%, were classified as different classes.
Examples are presented in Fig. 5. From a job owner’s per-
spective, this means that approximately 1 in 6 jobs may ex-
hibit a different a different latency behavior, with the same
binary running in the same data center. Such changes may be
due to a change of behavior in a dependency or a backend,
or due to a different configuration for the job.

3.2 Variations of behavior in testing setups
Another application of our classifier is to determine whether
a new binary release will affect the latency behavior. We
compare the outcomes of 25 new binary releases which have
the same methods as their existing counterpart and run in the
same data centers. That is a necessary constraint for this test,
which limits the number of candidates (a common pattern
is to run a new release on a different data center). We find
that 14 new releases (56%) exhibit different behaviors (an
example is provided in Fig. 6). While this may be due to
different software design, it may impact the configuration of
the job in production (from its resource quotas to its alerting
rules).

3.3 Variations of behavior over data centers
A third application is to compare the behavior of a given
method running on different data centers. This may be more
of interest for the infrastructure management than for a job’s
owner, especially in a Cloud context where users may not
always control the data center where their virtual machines
are running. We compare the outcome of 2,542 methods run-
ning on at least two different data centers over the same time
period. We find that 179 (7.04%) are assigned to different
classes in at least two data centers (see Fig. 7). Different
hardware configuration in data centers may explain some
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Figure 6: Different latency behaviors over different releases for the same
method running on the same data center. Left: constant. Right: predictable.
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Figure 7: Different latency behaviors for the same method running on
two distinct data centers. Left: uncorrelated. Right: predictable.

variations, as well as different geographic locations from
backends and from callers.

4. Conclusion
In this work we presented a novel approach to modeling la-
tency of serving jobs in distributed and shared environments,
by tracking the correlation variations of latency and CPU.
We used a random-forest classifier to assign methods’ be-
haviors in three pre-defined classes: constant latency, uncor-
related latency, and predictable latency as a function of CPU.
Our classifier was applied to a random collection of scatter-
plots of serving jobs running in production at Google. We
illustrated how the behavior of a given method may change
over time, with new releases, and depending on the under-
lying infrastructure. It is our hope that this work will moti-
vate further analysis of latency as a function of more infras-
tructure resources, which tend to be considered separately
in the literature. We envision that the scatterplots and the
job behavior will provide a richer insight for jobs’ owners as
well as infrastructure providers, allowing them to set smarter
alerts and more appropriate configuration.
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