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ABSTRACT
Control flow defenses against ROP either use strict, expen-
sive, but strong protection against redirected RET instruc-
tions with shadow stacks, or much faster but weaker pro-
tections without. In this work we study the inherent over-
heads of shadow stack schemes. We find that the overhead is
roughly 10% for a traditional shadow stack. We then design
a new scheme, the parallel shadow stack, and show that its
performance cost is significantly less: 3.5%. Our measure-
ments suggest it will not be easy to improve performance
on current x86 processors further, due to inherent costs as-
sociated with RET and memory load/store instructions. We
conclude with a discussion of the design decisions in our
shadow stack instrumentation, and possible lighter-weight
alternatives.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
shadow stack, stack canary, stack cookie

1. INTRODUCTION
One classic security exploit is to redirect the control flow

by overwriting a return address stored on the stack [36].
Although various mitigations (e.g., NX/DEP) have made
this attack and some simple refinements (e.g., return-to-
libc) infeasible, the current state of the art in exploitation
– return-oriented programming (ROP [44]) – continues to
depend on misusing RET instructions, this time by chaining
together short sequences of instructions (“gadgets”) that end
in a RET.1

1The generalizations of ROP – jump-oriented program-
ming [11], or ROP without returns [14] – are not commonly
used in practice and will not be considered further.
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These attacks could largely, in principle, be prevented us-
ing control-flow integrity (CFI) schemes [7], but CFI has
not been widely adopted, in part due to its non-trivial over-
head [53]. Recent works that have proposed CFI for bi-
naries [53, 55] have greatly reduced the overhead by adopt-
ing coarse-grained policies. One notable relaxation is they
adopt a more permissive policy for RET instructions, rather
than tracking the return addresses precisely using a shadow
stack (as had been proposed in Abadi et al.’s original for-
mulation [7]). Unfortunately, such weaker policies were soon
shown to be insecure [13,19,24]. Control-flow defenses against
ROP either use strict, expensive, but strong protection against
redirected RET instructions with shadow stacks or other
dual-stack schemes such as allocation stacks [21], or much
faster but weaker protections without. However, it is not
clear whether the overhead seen in CFI with shadow stacks
is inherent in the shadow-stack functionality, or an artifact
of particular implementations. In this paper, we measure
this performance cost.

There is substantial literature on stand-alone shadow stacks.
Some papers report low overheads, but each paper makes
subtly different design decisions and/or does not use stan-
dard benchmarks (see Section 9), which makes it difficult
to estimate the cost of adding a traditional shadow stack to
coarse-grained CFI.

We do not consider schemes that have dual stacks, but
which do not store the return address in a shadow stack
(see Related Work). To our knowledge, they have only been
implemented in recompilation-based schemes – thus negat-
ing the binary-rewritability benefits of coarse-grained CFI.

2. BACKGROUND

2.1 Traditional Shadow Stacks
The purpose of a shadow stack is to protect return ad-

dresses saved on the stack from tampering. Figure 1 (left)
illustrates a traditional shadow stack, in a scenario where
there are currently four nested function calls. In the main
stack, each stack frame is shown with parameters, the re-
turn address, the saved frame pointer (EBP), and the local
variables. In the traditional shadow stack, there is a shadow
stack pointer (SSP) – which contains the address of the top
of the shadow stack – and the shadow stack itself, which
contains copies of the four return addresses.

In shadow stack schemes, when a function is called, the
new return address is pushed onto the shadow stack.
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Parameters for R1
Return address, R0
First caller's EBP

Parameters for R2
Return address, R1
EBP value for R1
Local variables

Parameters for R3
Return address, R2
EBP value for R2
Local variables

Return address, R3
EBP value for R3
Local variables

0x8000000

Return address, R0

Return address, R1

Return address, R2

Return address, R3

0x9000000

Return address, R0
Return address, R1
Return address, R2
Return address, R3

Main stack Parallel shadow stackTraditional shadow stack
%gs:108

0xBEEF0048

Body of foo

Location #3

RET

Location #2

Location #1

Location #4

CALL foo

Figure 1: Left: traditional vs parallel shadow stacks. Rx refers to Routine #x. Right: possible locations for
instrumentation.

SUB $4, %gs:108   # Decrement SSP
MOV %gs:108, %eax # Copy SSP into EAX
MOV (%esp), %ecx  # Copy ret. address into
MOV %ecx, (%eax)  #     shadow stack via ECX

Figure 2: Prologue for traditional shadow stack.

MOV %gs:108, %ecx # Copy SSP into ECX
ADD $4, %gs:108   # Increment SSP
MOV (%ecx), %edx  # Copy ret. address from
MOV %edx, (%esp)  #     shadow stack via EDX
RET

Figure 3: Epilogue for traditional shadow stack
(overwriting).

When the function returns, it uses the return address
stored on the shadow stack to ensure the integrity of the
address where execution returns. This can be done by ei-
ther checking that the return address on the main stack
matches the copy on the shadow stack, or by overwriting
the return address on the main stack with the copy on the
shadow stack (equivalently, by indirectly jumping to the ad-
dress stored on the shadow stack).

The return address can be saved before the CALL instruc-
tion (“Location #1” in Figure 1, right) or at the prologue
of the called function (“Location #2”). The return address
can be checked/overwritten before the RET instruction (“Lo-
cation #3”); alternatively, if we ensure that every RET in-
struction can only return to a call-preceded location that is
not an unintended instruction (this is the coarse-grained re-
turn policy of BinCFI [55]), we can check the return address
at the return site (“Location #4”).

Typically, schemes that propose changes to the hardware
(e.g., Ozdoganoglu et al. [38]) find it convenient to instru-
ment the CALLs, while binary-rewriting schemes often instru-
ment function prologues and epilogues by replacing them
with“trampolines”(indirect jumps) to the replacement code.

The prologue could be as per Figure 2, and the epilogue
could be as per Figure 3 or 4 for the checking and overwriting
policies, respectively.

2.2 Stack Canaries
Stack canaries are special values stored in stack frames

between the return address and local variables. A contigu-

MOV %gs:108, %ecx
ADD $4, %gs:108
MOV (%ecx), %edx
CMP %edx, (%esp) # Instead of overwriting,
JNZ abort        #     we compare
RET
abort:
    HLT

Figure 4: Epilogue for traditional shadow stack
(checking).

ous stack buffer overflow would overwrite the stack canary,
which is checked for intactness before the RETs of vulnerable
functions [50].

Shadow stacks are sometimes argued to be a type of stack
canary: instead of checking whether an added canary value
has been corrupted, the return addresses (and sometimes
the saved frame pointers) are used as canaries [8, 39]. For
completeness, we investigated the overhead of stack canaries.

3. CHALLENGES

3.1 Time of Check to Time of Use
Vulnerability

Epilogues that use the RET instruction in multi-threaded
programs are vulnerable to time-of-check-to-time-of-use (TOCT-
TOU) attacks: the return address may be correct at the time
of the shadow stack epilogue validation, but be modified by
the attacker before the RET executes. This attack can be pre-
vented by storing the return address inside a register (e.g.,
ecx), performing the validation on ecx, and converting the
RET into jmp *%ecx [7].

A similar vulnerability exists for any shadow stack scheme
that instruments the prologue, since between the CALL (when
the correct return address is placed on the stack by the CPU)
and the shadow stack prologue, the attacker can modify the
return address. This can be avoided by instrumenting the
CALL site, to compute and store the return address in the
shadow stack [7, 40]. Some other architectures are immune,
as they pass the return address using a “link register” [4].

Nonetheless, many shadow stack schemes (see Table 1)
do instrument the prologue and epilogue (with a check per-
formed before the RET); this may be because of its conve-
nience for binary rewriting with trampolines, incremental
deployability on a per-function basis, or the perceived per-
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Scenario    -fstack-protector-all    Parallel shadow stack
(fixed offset)

Parallel shadow stack
(randomized offset)

Protected traditional 
shadow stack

Check Overwrite Check Overwrite Check Overwrite Check Overwrite

RA Data RA Data RA Data RA Data RA Data RA Data RA Data RA Data

Contiguous writes,
no info disclosure

Y Y N N Y Y Y N Y Y Y N Y Y Y N

Contiguous writes,
with info disclosure

N N N N Y N Y N Y N Y N Y N Y N

Arbitrary writes,
no info disclosure

N N N N N N N N Y N Y N Y N Y N

Arbitrary writes,
with info disclosure

N N N N N N N N N N N N Y N Y N

Figure 5: Security properties of each mechanism.
RA = return address, Data = any data in the stack above the canary/return address of the current frame.
Y = protected, N = vulnerable to overwrite.

MOV %gs:108, %ecx # Copy SSP into ECX
MOV (%esp), %edx  # Copy ret. addr. into EDX
non_match:
    CMP $0, (%ecx)# Is shadow stack empty?
    JZ abort
    ADD $4, %ecx  # Increment our copy of SSP
    CMP %edx, -4(%ecx) # Check ret. addr.
    JNZ non_match # Loop until match
MOV %ecx, %gs:108 # Synchronize SSP
RET
abort:
    HLT

Figure 6: Epilogue for traditional shadow stack with
checking and popping until a match.

formance impact of replacing RETs, since it is highly recom-
mended to match CALLs with RETs [3,6]. Zhang et al. [53] ar-
gue that the TOCTTOU vulnerability with their use of RET
is difficult to exploit (due to the precise timing required),
and outweighed by the benefits of return address prediction.
BinCFI [55] goes to great lengths to maintain the CALL-RET

matching despite TOCTTOU exploits, even adding extra
stub function calls rather than using indirect jumps.

3.2 Mismatches Between CALLs and RETs
Perhaps the best known violation of CALL-RET matching

is setjmp/longjmp, whereby a function may unwind multi-
ple stack frames. For traditional shadow stacks, a typical
solution (e.g., binary RAD [42]) is to pop the shadow stack
until a match is found, or the shadow stack is empty (de-
noted here with a sentinel value of zero). Figure 6 is our
hand-compiled version of the C code from PSI [54].

This is already considerably more complicated than the
vanilla traditional shadow stack epilogue, yet might not even
be completely secure in obscure circumstances: if the same
function is called multiple times before longjmp. This can be
solved by storing both the return address and stack pointer
[16,38,46].

POP 999996(%esp) # Copy ret addr to shadow stack
SUB $4, %esp # Fix up stack pointer (undo POP)

Figure 7: Prologue for parallel shadow stack.

ADD $4, %esp # Fix up stack pointer
PUSH 999996(%esp) # Copy from shadow stack

Figure 8: Epilogue for parallel shadow stack.

4. DESIGN
We devised parallel shadow stacks as a minimal, low-cost

implementation of the principle of shadow stacks, albeit with
some security trade-offs.

4.1 Parallel Shadow Stacks
As we will show later in Section 7, the traditional shadow

stack has a non-trivial performance overhead. Our results
indicate that the overhead comes mainly from the per-execution
cost of the instrumentation we add, multiplied by the fre-
quency of RET instructions in the program that we are pro-
tecting. Thus, an instrumentation with a lower execution
cost would nearly directly translate into lower overhead.

We introduce a new variant on traditional shadow stacks,
which we call a parallel shadow stack. The main idea is
to place it at a fixed offset from the main stack, avoiding
the overhead of maintaining the shadow stack pointer and
copying it to/from memory. For example, in Figure 1 (right),
the shadow stack is 0x1000000 bytes above the main stack,
and the return addresses in the main stack are parallel to
the return addresses in the shadow stack. Single guard pages
(e.g., a page marked non-present in the page table) at the top
and bottom of the shadow stack protect it from contiguous
buffer overflows.

Our instrumentation for overwriting the return address
can be as simple as adding two instructions to each unin-
strumented prologue (Figure 7) and two instructions to each
uninstrumented epilogue (Figure 8).

With peephole optimizations (see Appendix A), the net
instruction count can be as few as one and zero instructions
added to each prologue and epilogue, respectively. Note,
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however, that instruction count is not the sole, or even nec-
essarily the major determinant of CPU overhead.

This instrumentation does not clobber any registers and
can be easily modified to preserve the flags (through replac-
ing SUB/ADD with LEA), thus making it transparent to the
rest of the program, without incurring the expense of sav-
ing/restoring any registers or EFLAGS.

All parallel shadow stacks, by definition, automatically
handle any unusual changes to %esp: for example, when
longjmp unwinds the stack, it also implicitly unwinds the
shadow stack appropriately.

There are two main disadvantages compared to a tradi-
tional shadow stack. Firstly, return addresses are rarely
packed together, which means that each return address may
even use up an entire cache line; the overhead of this de-
pends on the calling patterns of the program. Addition-
ally, due to the shadow stack pointer synchronization, an
attacker who is able to pivot the stack (modify the stack
pointer to point elsewhere) can choose any return address in
the call stack; indeed, if we do not “zero out” (or corrupt)
old shadow stack frame entries, then the attacker could even
choose expired return addresses. A more insidious attack is
to change %esp such that the parallel shadow stack region –
say, 0xa0000000(%esp) – is under the attacker’s control; we
can prevent this, at the cost of limiting the address space,
by ensuring that 0xa0000000(%esp) is mapped to the pro-
cess address space only for valid values of %esp. Parallel
shadow stacks do generally use more memory than a tradi-
tional shadow stack, but as the stack is small in comparison
to the heap, and its pages can be committed only when
needed, we do not consider this a major limitation.

Note that we do not claim that the overhead of a parallel
shadow stack is low enough for widespread deployment.

4.2 Security Benefits
Our weakest threat model is when the attacker has a con-

tiguous stack buffer overflow (e.g., memcpy), but does not
have any information disclosure (i.e., while they may know
the stack layout, they do not know the stack contents – such
as the stack canary value or return value – nor the fixed
shadow stack offset). Another threat model is where the
attacker can perform arbitrary writes into the stack (e.g.,
repeated uses of src[i] = s, where i and s are under their
control), but does not have any information disclosure. We
also consider the previous two cases, with information dis-
closure (though not sufficient disclosure to defeat random-
ization).

Figure 5 summarizes, for each of these threat models, we
consider whether each mechanism can protect the return
address and/or any data stored above the canary (or return
address).

All these mechanisms restrict the use of gadgets that end
with an instrumented RET, and all the parallel shadow stacks
provide some limited protection against large-scale stack
pivots (since they will write to the shadow stack region).

5. AIMS

5.1 Research Questions
Our overarching research question is: what are the per-

formance costs of using a shadow stack, as seems to be nec-
essary for security when using CFI schemes? It is obvious

that there is > 0 overhead since it requires additional oper-
ations; our aim is to quantify it.

To address this question, we evaluated the overhead of: a
traditional shadow stack; a no-frills parallel shadow stack;
checking vs. overwriting the return address; zeroing out ex-
pired shadow stack entries (for a parallel shadow stack); -
fstack-protector-all (which adds stack canaries to every
function, instead of a shadow stack for every call); and re-
placing RETs with indirect jumps (to avoid TOCTTOU).

The overhead can be made arbitrarily low by construct-
ing test programs that perform a significant amount of com-
putation for every function call; conversely, the overhead
would be artifically high if we instrumented empty func-
tions [15,42]. To provide a meaningful estimate of the over-
head, it is important to use a standardized benchmark suite.

5.2 Assumptions
We assume that we have a tool similar to BinCFI [55] that

1) does not have access to the source code; 2) but can iden-
tify the prologue and RETs of every function (at the assembly
level); and can insert code without the need for additional
trampolines (cf., Prasad and Chiueh [42]).

Compiler based shadow stack schemes generally fulfill con-
dition 2 but not 1, and vice-versa for binary-rewriting based
shadow stack schemes. In contrast, by leveraging the ad-
dress translation that is already required for BinCFI, adding
a shadow stack to CFI does not require more trampolines.

Our assumptions are similar to Stack Shield [49], though
that is intended to be deployed as an assembly preprocessor
in the ordinary build process.

6. METHOD
We ran SPEC CPU2006, excluding any Fortran programs,

on Ubuntu 12.04, running on a Dell Precision T5500 (In-
tel Xeon X5680, with 12GB of RAM). All code was com-
piled with gcc 4.6.3, using the standard configuration files
(Example-linux64-amd64-gcc43+.cfg) and Example-linux64-

ia32-gcc43+.cfg), with the exception that we disabled stack
canaries entirely (i.e., -fno-stack-protector) since they
are mostly redundant when a shadow stack is available. We
tested both 32-bit and 64-bit, as they are the dominant
modes; 32-bit performance may differ from 64-bit, due to
the larger integers (which may affect cache/memory pres-
sure) and increased number of general purpose registers for
the latter. We chose the -O2 optimization level, the de-
fault setting for SPEC CPU, plus the more aggressive -O3.
With -O3, inlining reduces the number of function calls (and
thereby the amount of instrumentation required), though
the function bodies are also faster (which makes the pro-
logue/epilogue instrumentation relatively more expensive).
Since both are reasonable optimization options, we wished
to empirically compare their overhead.

We also tested apache httpd 2.4.10, using apachebench

on the same machine. We chose this as a more realistic sce-
nario, whose performance may not be entirely CPU bound.

As per Tice et al. [48], we disabled Turbo Boost (dynamic
CPU frequency scaling) and ASLR to reduce variance in
the run-times. Additionally, we observed that the SPEC
benchmarks tended to run more slowly if the system had
been in use for a prolonged period, possibly due to disk-
caching effects. To avoid these carryover effects, we rebooted
the system before each batch of benchmarks.
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We used the following instrumentation (see Appendix B):
a traditional shadow stack that checks the return address
(for compatibility with longjmp, it pops the shadow stack
until a match with the return address); a parallel shadow
stack that checks the return address; a parallel shadow stack
that overwrites the return address, zeroing out expired shadow
stack entries; a parallel shadow stack that overwrites the re-
turn address, without zeroing; -fstack-protector-all, i.e.,
stack canaries applied to every function.

We tested multiple versions of each instrumentation, and
selected the code that performed best in a pilot study.

We tried both RETs and indirect jumps for each of the
instrumention schemes except -fstack-protector-all. We
did not implement a traditional shadow stack (overwriting),
due to its inability to protect programs using longjmp.

Our parallel shadow stacks used a fixed offset, for ease of
implementation. However, the overhead should be similar
when using a random offset, except for the time required to
rewrite the offsets at load-time, which should be negligible:
the number of offsets that need to be rewritten is equal to
the number of function prologues and RETs. This is less than
for relocations, which must relocate both data and functions.
In general, our implementation is intended to provide a rea-
sonable estimate of the overhead, not production use.

6.1 Implementation Details
We make no claim that our implementation will be robust

enough to deploy widely. Nonetheless, since much of the
overhead is due to inherent memory loads/stores (see Section
7), we believe we have implemented each of these schemes in
sufficient detail to let us measure their performance overhead
on SPEC CPU.

For C programs, we call setupShadowStack at the begin-
ning of main. The setupShadowStack function allocates a
memory region at a fixed offset from the stack (for the paral-
lel shadow stack) or at a random location (for the traditional
shadow stack). For the latter case, we copy this location into
%gs:108.

For C++ programs, we identified which initialization func-
tion would run first, by using gdb: the function would crash
in the prologue, as the instrumentation would attempt to
write to an unallocated shadow stack region. We then prepended
our own shadow stack class and instance in the same file,
thus again ensuring that the shadow stack is set up prior to
other function calls.

This means that we cannot instrument the prologue of
functions that run before the shadow stack is set up (e.g.,
main and setupShadowStack for C programs). It is possible
to modify the compiler to create high priority constructor
init functions ( [48]), but this would not affect the overhead
since the uninstrumented functions are only called once.

The SPEC CPU build process compiles and assembles in-
dividual source files into separate object files. We wrote a
wrapper script to compile each source file, then instrument
the prologues (conveniently denoted by gcc as .cfi_startproc)
and RETs in the assembly, before assembling into the ex-
pected object file. This simulates the capabilities available
(and overhead obtained) of a binary CFI rewriter that has
access to the (dis-)assembly but not source code. It is possi-
ble, but laborious, to add setupShadowStack at the assem-
bly level; we “cheated” by adding it at the source code level,
since this would not substantially affect the overhead.

Since we are instrumenting the prologue for ease of im-
plementation, the instrumented prologue has a TOCTTOU
vulnerability in the presence of concurrency (e.g., multi-
threaded programs). One could avoid the TOCTTOU vul-
nerability by instrumenting the CALL instructions instead of
function prologues. We expect this would have similar per-
formance, but we have not implemented it.

7. RESULTS

7.1 Cost of Instrumentation Schemes
The overheads (though not baseline times) from a pilot

study were roughly the same for x86 vs x64 and -O2 vs -O3,
hence, for brevity, we will only discuss the x86 -O3 results
(Figure 9, left), as they are marginally lower, and therefore
provide a lower bound.

Two of the programs (perlbench, gcc) did not work with
the traditional shadow stack instrumentation; we suspect
it may be related to forking and our (mis-)use of %gs:108

to store the shadow stack pointer (i.e., an artifact of our
implementation, rather than a fundamental limitation of
traditional shadow stacks).2 To provide a fair comparison
with the other schemes, we calculated the overhead of each
scheme, with and without these two programs.

On SPEC CPU, excluding Fortran, perlbench and gcc,
the average overhead of each scheme was as follows: a tra-
ditional shadow stack cost 9.69% overhead in CPU time; a
no-frills parallel shadow stack cost 3.51%; checking the re-
turn address cost 0.8% extra, compared to the no-frills par-
allel shadow stack; zeroing out expired shadow stack entries
(for a parallel shadow stack) cost 0.16%; stack canaries cost
2.54%. See the bottom row of Figure 9 for details.

For apache, the parallel shadow stack (overwriting, no
zeroing out) had 2.73% overhead. Had our test been network
bound or I/O bound, we would expect the CPU overhead to
be even lower.

Replacing RETs with indirect jumps incurs much higher
overhead, except for the checking version of the parallel
shadow stack, which had comparable overhead. See Figure 9
(right).

8. DISCUSSION

8.1 Determinants of overhead
As a first-order approximation, we expected the overhead

of the instrumentation to depend on the frequency of func-
tion calls/returns (to avoid collinearity, we only consider
RETs); while Abadi et al. [7] reported that their overhead
was “not simply correlated with the frequency of executed
computed control-flow transfers”, their CFI instrumentation
is much more extensive than a shadow stack. Our hypothesis
was supported by the data (correlation coefficient r = .73,
which is very high). Figure 10 shows the overhead of the
parallel shadow stack (overwriting, zeroing out) compared to
the frequency of RET instructions (from Isen and John [27]).
We excluded dealII from our analyses, as it is an outlier
with 5.3% RETs (over twice as many as any other program).

Since our instrumentation uses cache and memory band-
width, we hypothesized that the overhead would depend on

2Interestingly, Mashtizadeh et al. [31] omitted (only) these
two benchmarks; they reported that they could not compile
them with the vanilla GCC or clang compilers.
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Figure 10: Correlation between the percentage of
RET instructions and the overhead.

the percentage of load and store instructions multiplied by
the percentage of RET instructions. For example, we would
expect that a program with few RET instructions but many
load/store instructions would still have low overhead. Using
data from Bird et al. [10], a linear regression of the form:

Overhead = α× (% RETs) + β × (% RETs × % loads) +
δ × (% RETs × % stores)

had a correlation of .86. This is a surprisingly high corre-
lation, considering the complexity of modern CPUs.

Interestingly, our regression shows that the percentage of
loads has a negative coefficient. We interpret this to mean
that stores are expensive, but once a value has been stored,
it is very cheap to load it due to caching.

Although correlation does not imply causation, we believe
simple causality is the most parsimonious explanation.

The traditional shadow stack likely has higher overhead
than the parallel shadow stack because of the extra mem-
ory transfer instructions needed for additional scratch reg-
isters and the shadow stack pointer. This is strongly sup-
ported by an experiment where we augmented the parallel
shadow stack with those extra instructions: the overhead
approached that of the traditional shadow stack.

This model suggests that the overheads of different in-
strumentation schemes should be correlated with each other:
the programs that incur high overhead with one instrumen-
tation scheme, will also tend to incur relatively high over-
head on other instrumentation schemes as well. This ap-
pears to be supported by our data; for example, xalancbmk
and povray have the highest overheads for every instru-
mentation scheme. The overhead of the schemes we in-
vestigate also appears to be correlated with that of other
published shadow stack schemes [20, 54] and instrumenta-
tion schemes [40,54,55]. Thus, our discussion of avenues for
improvement is generalizable to other shadow stack imple-
mentations and to CFI.

8.1.1 Omitted Benchmarks
We omitted the Fortran benchmarks due to the engineer-

ing effort required, relative to their relevance in a security
context. These benchmarks have an extremely low percent-
age of RET instructions: 6 out of 10 have ≤ 0.02%, and the

maximum is 0.21%. Our model suggests that shadow stacks
will have low overhead on the Fortran benchmarks. Thus,
our results overestimate the overhead for SPECfp and SPEC
CPU.

We were not able to instrument perlbench and gcc with a
traditional shadow stack. We anticipate their overhead with
a traditional shadow stack would be substantial, as 0.81%
and 0.77% of their instructions are RETs, respectively. These
programs have relatively high overheads when instrumented
with the parallel shadow stack or -fstack-protector-all.

There are a number of other CFI or shadow stack stud-
ies that omit some of the SPEC CPU benchmarks, as we
have. However, in some cases, their omitted benchmarks
are those which we would predict to be expensive (based on
the percentage of RETs, and our own measurements); thus,
their omission suggests that their estimate of performance
overhead might be overly optimistic.

8.1.2 Indirect Jumps vs RETs
With indirect jumps, the CPU can no longer predict the

return address using its internal stack, but there is still dy-
namic branch prediction for indirect jumps. Our results
show that this is noticeably imperfect, implying that the
indirect jump has highly variable targets (i.e., the same func-
tion is called from multiple locations); this is somewhat sim-
ilar to BinCFI [55], where its “trampoline” (address transla-
tion) routine would“return”(with an indirect jump) to many
different functions. This arguably supports the prioritiza-
tion of performance over TOCTTOU protection, as done by
many CFI and shadow stack schemes [55]. In the context of
software fault isolation (not a shadow stack), PittSFIeld [33]
reported that replacing RETs with indirect jumps increased
the overhead on SPECint2000 from 21% to 27%.

8.2 Avenues for improvement
The traditional shadow stack has close to 10% overhead

– which is unlikely to be acceptable for widespread deploy-
ment [47] – and even a minimalist parallel shadow stack has
roughly 3.5% overhead. However, these were obtained by
measuring the overhead of (a) our hand-coded assem-
bly, for (b) a traditional shadow stack, when we instru-
mented (c) 100% of (d) the (intended) RETs normally
emitted by the compiler. We can potentially improve
performance by modifying each of those aspects:

(a) Equivalent but faster prologues and epilogues: we al-
ready tried many functionally equivalent prologues and
epilogues, and even super-optimization [32] can pro-
vide only limited savings, as the overhead depends in
part on the percentage of memory loads and stores,
which are mostly unavoidable; for the limited case
of leaf functions (those which make no calls), Crypto
CFI [31] uses XMM4 (an SSE register) to store the re-
turn instruction pointer and frame pointer.
For the traditional shadow stack, we could modify the
setjmp/longjmp functions or instrument their call sites
(as done by Kuznetsov et al. [29] for their dual stacks),
to maintain the invariant that the top of the shadow
stack is always the correct return address. This means
that, rather than using a loop to check the return ad-
dress, we could use simpler instrumentation similar
to the parallel shadow stack (albeit still with another
layer of indirection in the form of the shadow stack
pointer).
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(b) Relaxations or variations of a shadow stack: for ex-
ample, the parallel shadow stack scheme, a shadow
set rather than a shadow stack [18], or monitoring the
taintedness of the return address in only the most re-
cent one or two stack frames [28]. All of these, to some
extent, trade off some security for performance.

(c) Selectively instrumenting functions: choosing a ran-
dom subset of functions to instrument would greatly
sacrifice security – if we randomly selected 1/nth of
functions to instrument, then the expected overhead is
1/nth (even if the function run-times are not uniform).
A better choice might be identifying (in-)frequently
called functions, using profiling [48]. Alternatively,
SecondWrite’s [37] return address check optimization
omits the shadow stack instrumentation from functions
that do not have indexed array writes. They noted
that small leaf functions and recursive functions, which
benefit the most from this optimization, are also the
most frequently called.3 Crypto CFI [31] also opti-
mizes leaves, instead by storing the return address in
a register rather than encrypting.

(d) Reducing the number of RETs through inlining (e.g.,
our use of -O3, or with link-time optimization [31])

Although reducing the number of RETs or selectively in-
strumenting functions (chosen appropriately) are valuable
contributions, these are orthogonal to improving the pro-
logues/epilogues or relaxations of the shadow stack paradigm.
We should beware of conflating the speed of an instrumen-
tation scheme with the advantage gained from a particu-
lar optimization: although shadow stack scheme A, run on
benchmarks with aggressive inlining, may appear to have
lower overhead than shadow stack scheme B, this might be
attributable to the inlining rather than the merits of scheme
A, in which case the “best” solution would be scheme B with
aggressive inlining.

Since software-only shadow stacks are expensive – even
with the aforementioned incremental improvements – many
authors [16,25,38,52] have proposed hardware shadow-stack
support. These are distinct from the return-address stack al-
ready present in modern processors for branch prediction [3,
6], which are not secure: if there is a mismatch between
them, the hardware reverts to using the main stack. Hard-
ware shadow stack schemes are usually extremely fast, in-
strument all RETs (even unintended RETs), and do not require
recompilation, but introduce complications for code that in-
tentionally violates CALL-RET matching.

Davi et al. [18] proposed a hardware-assisted CFI scheme
that includes a shadow set ; this requires the addition of new
labels/instructions to the code. Kao and Wu [28] proposed
new registers for the Intel architecture, to store the location
of the current return address, and the old value of %ebp.

New hardware features that are not security specific can
also improve performance. For example, Crypto CFI [31]
uses multiple XMM registers. Anecdotally, our parallel shadow
stack appears to have lower overhead on a newer processor (a
2011 Intel Core i7-3930K) – perhaps because of an improved

3Unfortunately, the claim of “not sacrificing any protection”
is incorrect, e.g., a bufferless function foo that calls bar
could have its return address overwritten by bar, if bar has
a vulnerable indexed array write.

stack engine [22]. However, we expect that non-security spe-
cific hardware improvements will not significantly change the
overheads, since there are the memory load/store costs, and
there is little room for improvement with branch prediction
(the indirect jumps in the RET variants of the shadow stacks
are usually not taken, and can be predicted dynamically; the
overheads of the indirect jump variants are lower-bounded
by the RET variants, which have nearly perfect branch pre-
diction).

8.3 Deployment issues
The parallel shadow stack variants have lower overhead

than the traditional shadow stack, but not sufficiently low
that widespread deployment would be an obvious decision.
Even faster is -fstack-protector-all, but its attractive-
ness is tempered by its security properties (as per Figure 5).
Additionally, -fstack-protector-all was applied at the
compiler level, though it is possible to add it through bi-
nary rewriting (e.g., SecondWrite [37]).

Our implementation is designed only to provide accurate
estimates of the overhead of shadow stacks, not shelf-ready
code. Nonetheless, some seemingly tricky cases are actu-
ally non-issues. For example, tail call elimination does not
change the assumption that the top of the stack in the pro-
logue is the expected return address; and the get-EIP id-
iom on x86 still works because we instrument neither the
CALL nor POP. For other corner cases (e.g., exceptions, multi-
threading), we defer to Szekeres et al.’s [47] assessment that
compatibility issues can be avoided through careful engi-
neering.

8.4 Generalizability
Mytkowicz et al. [34] demonstrated that a narrow set of

environment and compilation options etc. may lead to in-
valid results. Nonetheless, we are confident in our calcu-
lated overheads due to 1) the consistency of results across
a variety of parameters (x86/x64, -O2/-O3, ad-hoc tests on
a different CPU); 2) the strong correlation of per-program
overheads between different instrumentation options, and
with the static RET instruction counts; 3) other steps in our
methodology (e.g., disabling Turbo Boost).

9. RELATED WORK
Table 1 summarizes the overheads reported for various

software-based shadow-stack schemes. Many of the papers
use an older benchmark suite, SPEC2000; note that SPEC
specifically cautions against comparing individual bench-
marks between CPU2000 and CPU2006 [2]. We have omit-
ted a number of studies where the shadow stack is a compo-
nent of a security solution, for which we could not infer the
cost of the shadow stack alone [37,40,41].

There are also many hardware assisted schemes [16,26,30,
38,52]; those papers all report low overheads on SPEC2000
(or a subset thereof), when using the SimpleScalar simula-
tor. StackGhost [23] was a proposal for a shadow stack on
SPARC. We chose instead to benchmark instrumentation
schemes that could be deployed on today’s hardware, but
hardware support may be a necessary evil.

Ozdoganoglu et al. [38] observed that SPECint programs
had higher overhead from instrumentation than SPECfp,
which they attributed to the higher call frequencies of the
integer benchmarks. They did not calculate a correlation,
nor consider the percentage of memory loads and stores.
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Table 1: Reported overheads of shadow stacks. Schemes are roughly sorted by the modifications involved.
Reference Scheme Modifications Overhead on macro-benchmarks
Chiueh & Hsu [15] Shadow stack

(checking)
Compiler Only macro-benchmarks are short-lived

programs (0.63s real-time for their ctags

benchmark, and <5s for gcc)
Szekeres et al. [47] Shadow stack

(?)
Compiler
(LLVM plugin)

5% on SPEC2006.

Mashtizadeh et al. [31] Misc Compiler with ABI
changes

45% for leaf-optimized on SPECint 2006a.
Cost of stand-alone shadow stack is only
shown in graph form; as an indication,
for xalancbmk, it is 2.5x baseline for un-
optimized.

Vendicator [49] Shadow stack
(checking)

Assembler file pro-
cessor

Unknown

Prasad & Chiueh [42] Shadow stack
(checking)

Binary rewriting
with trampolines

1-3% overhead on BIND, DHCP server,
PowerPoint and Outlook Express.

Baratloo et al. [8] Shadow stack
(checking)

Binary rewriting
with trampolines

9.5% for quicksort, which they deemed
to be-CPU bound. They also measured
imapd (network bound), xv (CPU and
video bound), tar (I/O).
All execution times were <6s.

Abadi et al. [7] CFI + shadow
stack (overwrit-
ing)

Binary rewriting
with Vulcan

� 5% on SPEC2000 for the shadow stack
component; >50% for one benchmark.b

Gupta et al. [25] Shadow stack
(checking)

Binary rewriting
with trampolines

No macro-benchmarks.

Park et al. [39] Shadow stacks
(checking and
overwriting)

Binary rewriting
with trampolines

Checking: 2.56% and 2.58% for bzip2 and
gzip.
Overwriting: 1.56% and 1.7% respectively.
Doesn’t state whether this is compress or
decompress.c

Corliss et al. [16] Shadow stacks
(checking)

Binary rewriting Average not reported, but non-trivial
(overheads exceeds 40% for some
SPEC2000 benchmarks)

Nebenzahl et al. [35] Shadow stack
(checking)

Binary rewriting
with trampolines

4.33% on bzip2, 4.36% on gzip, and 7.09%
on mcf from SPEC2000

Davi et al. [20] Shadow stack
(checking)

Pin tool 2.17x for SPECint2006, 1.41x for SPECfp.
Run-time of Pin alone is 1.58x and 1.15x
respectively.

Sinnadurai et al. [46] Shadow stack
(checking)

DynamicRIO 18.21% for SPECint 2000 on Linux; 24.82%
(with compatibility issues) on Windows.

Zhang et al. [54] General security
instrumentation
+ shadow stack
(checking)

PSI 18% overhead on a subset of SPEC2006.

aOmitting gcc and perlbench due to compilation issues
bCFI + ID check on returns cost 21%, while CFI + shadow stack (without ID check) cost 16%. But in some benchmarks
(e.g., crafty), the shadow stack is cheaper than the ID check (roughly 45% vs. 18%). Hence, 5% is grossly underestimating
the cost of a shadow stack.
cIn our own experience, the overhead of instrumented compress is far higher than instrumented decompress.
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Corliss et al. [16] assumes that the stack pointer cannot be
modified by an attacker. Such a assumption would remove
the main weakness of our parallel shadow stack (compared to
a traditional shadow stack); however, it is unrealistic given
the increasing prevalence of stack pivots [5].

The choice of checking vs. overwriting the return address
is similar to the “ensure, don’t check” philosophy of SFI
schemes [33,51].

The memory-safety community, besides providing a some-
what heavy-weight solution to data- and control-flow in-
tegrity, has extensively studied how to implement shadow
memory. In the parlance of AddressSanitizer [43], the ad-
dress mapping used by traditional shadow stacks is similar
to a single-level translation, while the parallel shadow stack
is a direct offset (without scaling).

An ideal shadow stack would be protected from any writes
by the attacker. Chiueh and Hsu’s [15] Read-Only RAD ac-
complishes this through memory protection, albeit at a sub-
stantial overhead. Abadi et al.’s [7] protected shadow stack
has much lower overhead than Chiueh and Hsu through the
use of segmentation (which is not possible on 64-bit) and
the security guarantees of CFI, though the overhead is still
not trivial (� 5%; see Table 1). While our shadow stacks
are unprotected, Szekeres et al. [47] observe that even an
unprotected shadow stack that checks for a match renders
an attack “much harder”, since an attacker would have to
modify the return address in two distinct locations. With a
shadow stack that overwrites the return address, an attacker
would only have to modify the return address stored in the
shadow stack, but this is somewhat harder than modifying
the copy in the main stack (e.g., a contiguous buffer overflow
would not suffice).

Some schemes use two stacks but do not duplicate the re-
turn address, hence we do not consider them to be shadow
stacks e.g., address space randomization (which uses their
“shadow stack” to store buffer-type variables) [9] and XFI
[21] (possibly with hardware support [12]). Importantly, due
to the change in stack layout, they require significantly more
code rewriting than shadow stacks. Xu et al. have sepa-
rated control and data stacks (essentially a shadow stack ap-
proach, but without the return address on the main stack) [52].
Their compiler implementation had up to 23% overhead on
one of the SPECint 2000 benchmarks, and non-negligible
overheads on most other benchmarks; they did not quote an
average overhead. Kuznetsov et al. [29] have a “safe stack”
that contains the return address, spilled registers, and other
provably safe variables, and a separate unsafe stack. They
benefit from improved locality of frequently used variables
on the safe stack, thereby incurring negligible overhead on
SPEC CPU2006, and can even improve performance in some
cases. Dahn et al. [17] and Sidiroglou et al. [45] move stack-
allocated buffers to the heap. Some non-x86/x64 architec-
tures, such as Itanium [1], have a separate register stack.

10. CONCLUSION
In this paper we considered the performance costs of us-

ing a shadow stack. Our results suggest that a shadow
stack, even when pared to its bare minimum (the overwrit-
ing, non-zeroing version of the parallel shadow stack), has
non-negligible performance overhead, due to increased mem-
ory pressure. Achieving low-overhead protection against
control-flow attacks will likely require alternative paradigms,
such as Code Pointer Separation with their Safe Stack [29] –

which unfortunately currently requires recompilation, unlike
coarse-grained CFI [53,55] – or hardware support.
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[12] M. Budiu, Ú. Erlingsson, and M. Abadi. Architectural
support for software-based protection. In Proceedings
of the 1st workshop on Architectural and system
support for improving software dependability, 2006.

[13] N. Carlini and D. Wagner. ROP is still dangerous:
Breaking modern defenses. In USENIX Security, 2014.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In CCS, 2010.

564

https://software.intel.com/en-us/articles/itaniumr-processor-family-performance-advantages-register-stack-architecture
https://software.intel.com/en-us/articles/itaniumr-processor-family-performance-advantages-register-stack-architecture
https://software.intel.com/en-us/articles/itaniumr-processor-family-performance-advantages-register-stack-architecture
http://www.spec.org/cpu2006/Docs/readme1st.html
http://www.spec.org/cpu2006/Docs/readme1st.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/Chdedegj.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/Chdedegj.html
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security


[15] T.-c. Chiueh and F.-H. Hsu. RAD: A compile-time
solution to buffer overflow attacks. In ICDCS, 2001.

[16] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE
to protect return addresses from attack. ACM
SIGARCH Computer Architecture News, 2005.

[17] C. Dahn and S. Mancoridis. Using program
transformation to secure C programs against buffer
overflows. In 20th Working Conference on Reverse
Engineering, 2003.

[18] L. Davi, P. Koeberl, and A.-R. Sadeghi.
Hardware-Assisted Fine-Grained Control-Flow
Integrity: Towards Efficient Protection of Embedded
Systems Against Software Exploitation. In DAC, 2014.

[19] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of
coarse-grained control-flow integrity protection. In
USENIX Security, 2014.

[20] L. Davi, A.-R. Sadeghi, and M. Winandy.
ROPdefender: A detection tool to defend against
return-oriented programming attacks. In CCS, 2011.
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APPENDIX
A. PEEPHOLE OPTIMIZATIONS

Using our parallel shadow stack instrumentation as an
example: Instrumented prologues will often be of the form:
POP 999996(%esp); SUB $4, %esp; PUSH %ebp; MOV %esp,

%ebp; SUB <X>, %esp whereby the last three lines are the
standard idiom for functions with frame pointers. We could
replace this with POP 999996(%esp); MOV %ebp, -8(%esp);
LEA -8(%esp), %ebp; SUB <X+8>, %esp

In the instrumented epilogue, we could replace SUB $4,

%esp; PUSH 999996(%esp); RET with
SUB $4, %esp; JMP 999996(%esp).

Instrumented epilogues that have frame pointers but don’t
use the LEAVE instruction will often be of the form: MOV

%ebp, %esp; POP %ebp; SUB $4, %esp; PUSH 999996(%esp);
RET which can be converted into: LEA 8(%ebp), %esp; MOV
-8(%esp), %ebp; PUSH 999996(%esp); RET.

Alternatively, we can combine the stack pointer adjust-
ment with the RET instruction i.e., LEAVE etc.; SUB $4,

%esp; PUSH 999996(%esp); RET is equivalent to: LEAVE etc.;
PUSH 1000000(%esp); RET $4.

The second optimization can be combined with one of the
last two.

B. PROLOGUES AND EPILOGUES
• The prologues and epilogues we used are similar to, but

not the same as, those described in the Introduction;
for details, refer to a forthcoming technical report.

• A parallel shadow stack prologue alternative:

XCHGL (%esp ) , %ecx
MOVL %ecx , −0xb0000000(%esp )
XCHGL (%esp ) , %ecx

• A parallel shadow stack (checking) epilogue alternative:

POP %eax
CMPXCHG %esp , −0xa0000004(%esp )
JNZ abort
PUSH %eax
RET

abort :
HLT

• For the traditional shadow stack epilogue, we can omit
the comparison with the sentinel value (CMP $0, (%ecx);

JZ empty). The latter change is secure if we assume
that the logical bottom of the shadow stack is filled
with zeros (which would not be a useful return address
for an attacker) until a page boundary, below which
is a guard page. Hence, if no match is found, it will
eventually hit the guard page and abort.

• For “zeroing out” (MOV $0, ...) the old shadow stack
entry, we use MOV %esp, ... since it has a shorter in-
struction encoding. With a non-executable stack, %esp
is an invalid return address.
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