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Abstract. Hybrid ASP (H-ASP) is an extension of ASP that allows users to combine ASP
type rules and numerical algorithms. Dynamic Remarketing Ads is Google’s platform for
serving customized ads based on past interactions with a user. In this paper we will describe
the use of H-ASP to diagnose failures of the automatic whitelisting system for Dynamic
Remarketing Ads. We will show that the diagnosing task is an instance of a computational
pattern that we call the Branching Computational Pattern (BCP). We will then describe a
Python H-ASP library (H-ASP PL) that allows to perform computations using a BCP, and
we will describe a H-ASP PL program that solves the diagnosing problem.

Past research has demonstrated that logic programming with the answer-set semantics, known as
answer-set programming or ASP, for short, is an expressive knowledge-representation formalism [2,
14, 16, 21, 20, 22]. The availability of the non-classical negation operator not allows the user to model
incomplete information, frame axioms, and default assumptions such as normality assumptions and
the closed-world assumption efficiently. Modeling these concepts in classical propositional logic is
less direct [14] and typically requires much larger representations.

A fundamental methodological principle behind ASP, which was identified in [21], is that to
model a problem, one designs a program so that its answer sets encode or represent problem
solutions. Niemelä [22] has argued that logic programming with the stable-model semantics should
be thought of as a language for representing constraint satisfaction problems. Thought of from this
point of view, ASP systems are ideal logic-based systems to reason about a variety of types of
data and integrate quantitative and qualitative reasoning. ASP systems allow the users to describe
solutions by giving a series of constraints and letting an ASP solver such as cmodels [15], smodels
[24], assat [17], clasp [13], and dlv [8], pbmodels [18] or aspps [10, 9] search for solutions. Such
systems can, in principle, solve any NP-search problem [19].

To solve many of the real world problems one needs to have an ASP programming environment
where one can perform external data searches and bring back information that can be used in the
program. Extensions of ASP that allow such external data searches include DLV DB system [25]
for querying relational databases, V I programs [7] for importing knowledge from external sources,
HEX programs [11] which allow access to external data sources via external atoms, GRINGO
grounder that provides an interface for calling function written in Lua during the grounding process
[12], and Hybrid ASP (H-ASP) introduced by the authors in [5].

In this paper, we will discuss applications of H-ASP which can perform external data searches.
In particular, we shall discuss an example of problems that can be solved by processing a connected
directed acyclic graph (cDAG for short) where each vertex of the cDAG contains both logical and
non-logical information in the form of parameters. The cDAG can be generated by following a
multi-step pattern of computation which we will call the Branching Computational Pattern (BCP
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for short). At any stage in the computation we are given a set of vertices. These vertices can either
be an initial set of vertices or a set of vertices produced at the previous step. Then the BCP instance
creates multiple new branches emanating from a particular vertex. For each new branch, the BCP
instance performs a computation using the data from the vertex and possibly auxiliary data from
external repositories to derive new logical information and parameters at that vertex as well as pass
relevant logical information and new parameters to its children. The result of such computation
defines new vertices of the cDAG. Then new edges from each parent vertex to its children are added
to the cDAG. The resulting cDAG is called a BCP cDAG.

The focus of this paper is the problem of diagnosing failures of the automatic whitelisting
system for Dynamic Remarketing Ads (automatic whitelisting, for short). Dynamic Remarketing
Ads is Google’s platform for delivering ads which are customized to an individual user based on the
user’s past interactions with the advertiser such as the user’s previously viewed items or abandoned
shopping carts. In order for Google to start serving dynamic remarketing ads for a particular
advertiser that advertiser needs to be whitelisted, i.e. the advertiser has to have been added to a list
of advertisers that are known to use Dynamic Remarketing Ads. Whitelisting is done automatically
by a system that detects whether an advertiser is ready to serve dynamic remarketing ads based
on the logs and the content of ads databases.

There are nine cases when an advertiser can be automatically whitelisted. In each case there is a
set of constraints that need to be satisfied in order for that case to apply. The technical challenge in
using ASP for diagnosing automatic whitelisting is that in order to check the constraints it is neces-
sary to search data stored in Google’s various data repositories. The fact that in our application, the
amount of data is quite large and the repository contents change in real time makes pre-computing
impractical. Moreover, data searches in repositories often depend on the data obtained in the pre-
vious steps. Under these circumstances what is required is an extension of ASP that allows the
following: (1) conclusions to be derived conditional on the results of the external data searches, and
(2) parameter passing between the algorithms that perform data searches. H-ASP provides this
functionality. To solve the problem of diagnosing failures of the automatic whitelisting system we
have implemented a Python library, which we call H-ASP PL for running H-ASP programs that use
a certain subset of H-ASP rules. We have then created a H-ASP program that runs using H-ASP
PL library. The program was successfully used for several months in the cases of many advertisers.

Another problem that can be solved by processing a cDAG is computing an optimal strategy for
an agent acting in a dynamic domain. In [6], the authors showed how H-ASP programs can be used
to combine logical reasoning, continuous parameters, and probabilistic reasoning in the context of
computing optimal strategy using Markov Decision Processes. A feature of the solution in [6] was
that one started with a basic H-ASP program and performed a series of program transformations
so that one could compute a maximal stable model which contains all of the stable models of the
original program. That is, according to the H-ASP semantics, which we will define in a subsequent
section, a H-ASP program can have multiple stable models where some of the stable models can be
subsets of other stable models. In the context of computing an optimal strategy, such stable models
would describe only a part of the evolution tree of the dynamic domain. Such dynamic domains
can be represented as BCP cDAGs. Hence, each stable model represents a part of the BCP cDAG.
However, in order to compute an optimal strategy, one needs to compute the entire evolution tree
of a dynamic domain. Thus the full BCP cDAG is required.

We have a similar situation in the case of diagnosing automatic whitelisting. We are also inter-
ested in the full BCP cDAG which in our case will encode all of the possible whitelisting paths.
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There already exists a literature discussing the use of ASP for diagnosing malfunctioning devices.
In [1] Balduccini and Gelfond describe an approach for diagnosing a malfunctioning device based on
the theory of the action languageAL. In their approach the underlying diagnostic program explicitly
describes the laws that govern the behavior of the dynamic domain, and the non-monotonicity of
ASP is used to compute all the possible scenarios under which a malfunction could occur. In the
case of diagnosing automatic whitelisting, we use the non-monotonicity of ASP to compute all the
possible scenarios for a malfunction, however we do not explicitly describe the laws that govern the
behavior of the dynamic domain. The latter is motivated by the relative simplicity of the domain
for the automatic whitelisting and by the time constraints of the project.

There are two main advantages of using H-ASP rather than a common programming language
such as Python directly. The first advantage is the efficiency of representation. Our H-ASP program
specifies how automatic whitelisting occurs and lets the solver report back failures when automatic
whitelisting fails. An equivalent Python program will have to specify both how the automatic
whitelisting occurs and the details of the diagnostic logic. Hence, H-ASP program is smaller than
one would expect the equivalent Python program to be. The second advantage is the robustness
of the H-ASP program. Because H-ASP program describes mostly the problem domain, it is easier
to update the program when changes to the automatic whitelisting logic occur. This is important
since the requirements for automatic whitelisting are continually being modified.

The outline of this paper is the following. In Section 1, we formally define the Branching Com-
putational Pattern (BCP). Our problem of diagnosing automatic whitelisting is a special case of
the BCP. In Section 2, we give an overview of H-ASP. In Section 3, we discuss the computational
pattern as it relates to H-ASP and we briefly describe the H-ASP PL library. In Section 4, we
present a toy example to illustrate how the problem of diagnosing automatic whitelisting is solved.
In Section 5, we describe the semantics of H-ASP PL, and the Local Algorithm which is used in
H-ASP PL. In Section 6, we discuss some of the related work and give the closing comments.

1 The Branching Computational Pattern (BCP)

Let 〈V,E〉 be a connected directed acyclic graph (cDAG). Let R (V,E) be the set of vertices with
no in-edges. If |R (V,E)| = 1, then we will refer to the unique vertex r (V,E) ∈ R (V,E) as the root
node. If (v, w) ∈ E, we will say that v is a parent of w and that w is a child of v. If there exists
v1, v2, ..., vn such that for all i ∈ {2, ..., n}, (vi−1, vi) ∈ E and v1 = v and vn = w, then we say that
v is an ancestor of w and w is a descendant of v. It is easy to see that for all v ∈ V such that
v /∈ R (V,E), there exists a vertex in R (V,E) which is an ancestor of v.

Our branching computational patterns allow the user to compute a cDAG 〈V,E〉 where each
vertex v ∈ V is a pair (A,p) where A is a set of propositional atoms and p is a vector of parameter
values representable by a computer. We will refer to such a cDAG as a computational cDAG. If all
(A,p) ∈ V , A ⊆ At and p ∈ S, then we will say that 〈V,E〉 is a computational cDAG over At and
S. At each cDAG vertex (A,p), the computation consists of the two steps:
1. use A and p to choose algorithms (that will possibly access external data repositories and/or
perform computations) to produce the set of next parameter value vectors q1, ...,qk and
2. for each qi produced in step 1, derive atoms Bi,1, Bi,2, ..., Bi,mi

.

The set of children of (A,p) will be the pairs ({Bi,1, Bi,2, . . . , Bi,mi
},qi) for i = 1, . . . , k. To produce

the root nodes of the cDAGs, step 2 is applied to the initial set of parameter values specified as an
input. The computation can then be repeated at each child node.
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Fig. 1. Computational pattern illustration

This computational process is illustrated in Fig. 1. At the node C0, we obtain data1 from
database Database1 and data2 from database Database2. C0 then creates three new children:
({Ai}, fi(data1, data2)) for i = 1, 2, 3 where fi is one of the computational algorithms associated
with an H-ASP rule that can be applied at C0. At node C1, we obtain data3 from database
Database3. Then C1, creates two new children: ({Ai}, fi(p1, data3)) for i = 4, 5. Fig. 1 illustrates
the main aspects of the BCP. At each node, external data sources can be accessed. This new data,
the value of the parameters stored at the node, and the logical information stored at the node are
then used to create new children by passing new parameters and logical information to each child
as well as updating the logic information stored at the node.

The problem of diagnosing failures for automatic whitelisting fits the general BCP paradigm.
There are nine cases for the automatic whitelisting. In order to help in understanding the types of
criteria used, we shall describe one of these cases.
Case one: An advertiser is whitelisted if the advertiser has installed a Javascript tag containing
the id of one of the advertiser’s products, a user visits advertiser’s website, and the advertiser has
created a dynamic remarketing ad.

Here the initial set of candidate advertisers for whitelisting is obtained from the table, which
we will call T init, containing the information about advertisers who have installed a Javascript
tag. Whether a user has visited advertiser’s website can be determined by examining a log called
L userevents. The id of each advertiser from the candidate set will be used to search L userevents
to determine whether a user has visited advertiser’s website or not. The remaining advertiser ids
will be used to determine whether the advertiser has created a dynamic remarketing ad by using
an external function GetCreatedAdIds().

The cDAG representing the automatic whitelisting system can be constructed by making a
vertex represent a whitelisting condition that needs to be satisfied. An edge from a vertex x to a
vertex y will be added to indicate that the condition for y needs to be checked immediately after
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checking the condition for x . This may be necessary, for instance if data derived when checking the
condition for x needs to be used to check the condition for y. A root node will have as its children
the first conditions for each of the nine cases. Thus the cDAG will be a tree with 9 branches.

2 Hybrid ASP

In this section we shall give a brief overview of H-ASP. A H-ASP program P has an underlying
parameter space S and a set of atoms At. Elements of S are of the form p = (t, x1, . . . , xm) where t
is time and xi are parameter values. We shall let t(p) denote t and xi(p) denote xi for i = 1, . . . ,m.
We refer to the elements of S as generalized positions. The universe of P is At × S. For ease of
notation, we will often identify an atom and the string representing an atom.

Let M ⊆ At × S. Define M̂ = {p ∈ S : (∃a ∈ At)((a,p) ∈ M)}. For a generalized position
p ∈ S, define WM (p) = {a ∈ At : (a,p) ∈ M}. A hybrid state at generalized position p ∈ S is a
pair (WM (p) , p). In general, a pair (A,p) where A ⊆ At and p ∈ S will be referred to as a hybrid

state. For a hybrid state (A,p), we write (A,p) ∈M if p ∈ M̂ and WM (p) = A.
A block B is an object of the form B = a1,. . . , an,not b1, . . . ,not bk where a1,. . . , an,b1,. . . ,bk

∈ At. We let B− = not b1, . . . , not bk. Given M ⊆ At × S, B = a1,. . . , an,not b1, . . . ,not bk, and
p ∈ S, we say that M satisfies B at the generalized position p, written M |= (B,p), if (ai,p) ∈M
for i = 1, . . . , n and (bj ,p) /∈ M for j = 1, . . . , k. If B is empty, then M |= (B,p) automatically
holds.

There are two types of rules in H-ASP.

Advancing rules are of the form a← B1;B2; . . . ;Br : A,O
where A is an algorithm, each Bi is a block, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then
t(p1) < . . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr), t(q) > t(pr). Here and in
the next rule, we allow n or k to be equal to 0 for any given i. Moreover, if n = k = 0, then Bi is
empty and we automatically assume that Bi is satisfied by any M ⊆ At×S. We shall refer to O as
the constraint set of the rule and the algorithm A as the advancing algorithm of the rule. The idea
is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the generalized position pi, then the
algorithm A can be applied to (p1, . . . ,pr) to produce a set of generalized positions O′ such that if
q ∈ O′, then t(q) > t(pr) and (a,q) holds.

Stationary rules are of the form a← B1;B2; . . . ;Br : H,O
where each Bi is a block, O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) < · · · < t(pr), and H
is a Boolean algorithm defined on O. We shall refer to O as the constraint set of the rule and the
algorithm H as the Boolean algorithm of the rule. The idea is that if (p1, . . . ,pr) ∈ O and for each
i, Bi is satisfied at the generalized position pi, and H(p1, . . . ,pr) is true, then (a,pr) holds.

A H-ASP Horn program is a H-ASP program which does not contain any negated atoms in At.
Let P be a Horn H-ASP program, let I ∈ S be an initial condition. Then the one-step provability
operator TP,I is defined so that given M ⊆ At× S, TP,I(M) consists of M together with the set of
all (a, J) ∈ At× S such that

(1) there exists a stationary rule C = a← B1;B2; . . . ;Br : H,O and (p1, . . . ,pr) ∈ O∩
(
M̂ ∪ {I}

)r
such that (a, J) = (a,pr), M |= (Bi,pi) for i = 1, . . . , r, and H(p1, . . . ,pr) = 1 or
(2) there exists an advancing rule C = a ← B1;B2; . . . ;Br : A,O and (p1, . . . ,pr) ∈ O ∩(
M̂ ∪ {I}

)r
such that J ∈ A(p1, . . . ,pr) and M |= (Bi,pi) for i = 1, . . . , r.
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The stable model semantics for H-ASP programs is defined as follows. Let M ⊆ At × S and
I ∈ S. An H-ASP rule C = a← B1; . . . , Br : A,O is inconsistent with (M, I) if for all (p1, . . . ,pr) ∈
O ∩

(
M̂ ∪ {I}

)r
, either (i) there is an i such that M 6|= (B−i ,pi), (ii) A (p1, . . . ,pr) ∩ M̂ = ∅ if A

is an advancing algorithm, or (iii) A(p1, . . . ,pr) = 0 if A is a Boolean algorithm. Then we form the
Gelfond-Lifschitz reduct of P over M and I, PM,I as follows.
(1) Eliminate all rules that are inconsistent with (M, I).
(2) If the advancing rule C = a ← B1; . . . , Br : A,O is not eliminated by (1), then replace it by
a ← B+

1 ; . . . , B+
r : A+, O+ where for each i, B+

i is the result of removing all the negated atoms

from Bi, O
+ is equal to the set of all (p1, . . . ,pr) in O ∩

(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi) for

i = 1, . . . , r and A(p1, . . . ,pr) ∩ M̂ 6= ∅, and A+(p1, . . . ,pr) is defined to be A(p1, . . . ,pr) ∩ M̂ .
(3) If the stationary rule C = a ← B1; . . . , Br : H,O is not eliminated by (1), then replace it by
a ← B+

1 ; . . . , B+
r : H|O+ , O+ where for each i, B+

i is the result of removing all the negated atoms

from Bi, O
+ is equal to the set of all (p1, . . . ,pr) in O ∩

(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi) for

i = 1, . . . , r and H(p1, . . . ,pr) = 1.

Then M is a stable model of P with initial condition I if

∞⋃
k=0

T k
PM,I ,I (∅) = M.

We say that M is a single trajectory stable model of P with initial condition I if M is a stable
model of P with initial condition I and for each t ∈ {t(p)|p ∈ S}, there exists at most one

p ∈ M̂ ∪ {I} such that t(p) = t.
We say that an advancing algorithm A lets a parameter y be free if the domain of y is Y and

for all generalized positions p and q and all y′ ∈ Y , whenever q ∈ A(p), then there exist q′ ∈ A(p)
such that y (q′) = y′ and q and q′ are identical in all the parameter values except possibly y. We
say that an advancing algorithm A fixes a parameter y if A does not let y be free.

The reason for introducing the last two definitions is that we often want to limit the effects of
algorithms to specifying only a subsets of the parameters to make programs easier to understand.
The exact mechanism for doing so will be discussed in the next section. For now, however we
will note that the parameters that the advancing algorithm will be responsible for producing will
correspond to the fixed parameters of the algorithm. The rest of the parameters will correspond to
the free parameters.

3 H-ASP Library

H-ASP programs can be used to perform the computations for a BCP. In fact, BCP computations
can be carried by H-ASP programs which use only a restricted set of H-ASP rules which we call
H-ASP programs of order 1. A H-ASP program P is of order 1 if all its advancing rules are of the
form a ← B : A,O, and all its stationary rules of the form a ← B : H,O. If P is of order 1, then
we will say that p is a child of q (and q is a parent of p) under P, I if there exists a stable model
M of P with the initial condition I and there exists an advancing rule a← B : A,O ∈ P such that
M |= (B,q) and q ∈ O and p ∈ A (q).

Given an H-ASP program P of order 1 and the initial condition I, we define the computational
cDAG induced by P , I, comp(P, I) = 〈V,E〉, as follows.
(1) V is the set of all the hybrid states (A,p) such that there exists a stable model M of P with
initial condition I and (A,p) ∈M.
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(2) E is the set of all pairs ((A,p) , (B,q)) ∈ V 2 such that there exists a stable model M of P
initial condition I and (A,p) ∈M and (B,q) ∈M and (A,p) is a parent of (B,q) under P, I.

We can prove the following theorem.

Theorem 1. Let At be a set of propositional atoms and let S be a set of parameter values. Let
〈V,E〉 be a computational cDAG over At and S. Then there exists a H-ASP program P of order 1
and an initial condition I for P such that comp (P, I) = 〈W,U〉 is isomorphic to 〈V,E〉. Moreover,
P can be chosen to have a maximal stable model M and a parameter space X such that there
exists a map π : X → S so that the isomorphism g from comp (P, I) to 〈V,E〉 is defined by setting
g ((A,p)) = (A ∩At, π (p)) for (A,p) ∈W where W is the set of all the hybrid states of M.

The proof of the theorem consists of construction of a H-ASP program P of order 1, an initial
condition I, and a simple isomorphism π that satisfy the conditions of the theorem. The idea is that
for every edge ((A,p), (B,q)) ∈ E, P contains a set of rules with constraint sets that are satisfied
only by π (p), and that generate (B ∩At, π (q)).

It is also easy to see that for a H-ASP program P of order 1 and an initial condition I, the
computation of a stable model is performed according to the BCP along the computational cDAG
induced by P, I.

Practical applications of BCP’s require either a computer language or a library. Due to the
time constraints of our project, we created a Python library which allows us to compute the stable
models for H-ASP programs of order 1. However, to make the task of programming with the library
easier, we have added one more type of rule beyond those allowed in H-ASP programs of order 1.
We will now briefly describe some of the key features of the library and the programs called H-ASP
PL programs that it processes.

Let At be the set of atoms and let S be the parameter space.
1. A H-ASP PL program consists of a collection of three types of H-ASP rules: advancing rules

of the form a ← B : A,O, stationary rules of the form a ← B : H,O, and stationary rules of the
form a← B1;B2 : G,Θ.

2. The parameters in the parameter space S are named. If p is a generalized position and Q is
a parameter, we denote the value of Q at p by p[Q].

3. The time parameter is named TIME and it is assumed that every advancing algorithm incre-
ments the value of TIME by 1. That is, if A is an advancing algorithm, p is a generalized position,
then for all q ∈ A (p), q[TIME] = p[TIME] + 1. Because of this assumption, the advancing algo-
rithms are not required to specify the value of the parameter TIME.

4. In [5], the authors suggested an indirect approach by which the advancing algorithms can
specify the values for only some of the parameters. The approach requires extending the Herbrand
base of a program P by a set of new atoms S1, ..., Sm one for each parameter. Suppose that there
is an advancing algorithm A in a rule a ← B : A,O that specifies parameters with indexes i1, i2,
. . . , ik and lets other parameters be free. Then we add to P rules of the form Sij ← B : A,O for
each j from 1 to k. This is, repeated for every advancing rule of P . Then if M is a stable model of
P and p ∈ M̂ , we will require that {S1, . . . , Sm} ⊆WM (p). This will ensure that every parameter
at p is set by some advancing rule. For our library, we assume that this mechanism is used by any
H-ASP program that it will process. This allows us to implement it implicitly without requiring
the H-ASP user to specify the additional rules.

5. For our application, we would like to have the ability to apply a constraint to two hybrid states
belonging to the same single trajectory stable model of P . In order to do that in our library, for a
stationary rule of the form a← B1;B2 : G,Θ, we assume that if G (p,q) = 1, then t (p) + 1 = t (q)
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Fig. 2. Decision tree diagram

and there exists a single trajectory stable model M of P such that {p,q} ⊆ M̂ . (The details can
be found in [4].)

4 Example

The following example illustrates a typical step of processing performed by the program for diag-
nosing automatic whitelisting. The complete diagnosis requires many steps of this type.

Suppose that a decision is to be made based on a decision tree containing two branches. In the
first branch data repository 1 is searched for the data D1 relevant for condition C1. If condition C1
is satisfied based on D1, then data repository 2 is searched for an additional data D2[D1] which is
dependent on D1. Condition C2 is then evaluated based on D2[D1]. If the condition C2 is satisfied,
then an affirmative decision is made. If either the condition C1 or the condition C2 are not satisfied,
then the decision is made based on the evaluations for the second branch. In the second branch,
data repository 3 is searched for the data D3. Condition C3 is applied to D3 and if the condition is
satisfied, then an affirmative decision is made. If in neither branch 1 nor branch 2, an affirmative
decision is made, then a negative decision is made (see Fig. 2).

Suppose that we would like to explain why a negative decision was made. An explanation would
have to describe which condition in each of the two decision branches has failed.

We will use the following idea to create a H-ASP PL program P that will generate an explanation.
For each of the conditions C1, C2, C3, the program P will produce a state that will contain all of
the information necessary to make the decision for the corresponding Ci. Since to make the decision
C2 it is necessary to use data that is required to make the decision C1, the state corresponding to
C2 will be a child of the state corresponding to C1. The states corresponding to C3 and C1 will
be children of the initial state. In effect, P will produce a stable model whose computational cDAG
will model the decision tree in that the nodes of the computational cDAG will correspond to the
conditions of the decision tree, the edges will correspond to the successor relations of the tree.

We will need the following H-ASP PL parameters: DATA - to pass the data from the state
corresponding to C1 to the state corresponding to C2, EXPLANATION - to record the description
of the conditions that were not satisfied. We will assume that the advancing algorithm SetData1
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gets data D1 and sets the output parameter DATA. The advancing algorithm SetData2 uses the
value of DATA parameter in order to get data D2[D1]. The algorithm then sets the parameter
DATA of the produced generalized position D2[D1]. The advancing algorithm SetData3 gets data
D3 and sets output parameter DATA.

In order to check condition Ci where i ∈ {1, 2, 3}, we will assume that the Boolean algorithms
CheckCondition{i} for i ∈ {1, 2, 3} are implemented and return TRUE iff Ci is satisfied.

EXPLANATION parameter will be set by the advancing algorithms Condition{i}Fails, which
will set the value of EXPLANATION parameter to a string “condition {i} is not satisfied” for
i ∈ {1, 2, 3}. The advancing algorithm SetExplanationEmpty sets the value of EXPLANATION to
the empty string.

This gives us the following H-ASP PL rules (rule label is in the brackets in the following format
R{branch#}{time that the rule will affect}.{rule index}):

# Initial branching. IsTime0 is a boolean algorithm that returns TRUE iff the

# time of the input generalized position is 0.

[R1.0.1] BRANCH1 :- not BRANCH2: IsTime0

[R2.0.1] BRANCH2 :- not BRANCH1: IsTime0

# Produce generalized position for making decision C1

[R1.1.1] CHECK_C1 :- BRANCH1: SetData1

[R1.1.2] CHECK_C1 :- BRANCH1: SetExplanationEmpty

# Check condition C1

[R1.1.3] C1_SAT :- CHECK_C1: CheckCondition1

[R1.1.4] C1_DONE :- CHECK_C1

# If condition C1 is not satisfied then generate the appropriate explanation

# and set DATA to empty - branch 1 negative decision is explained.

[R1.2.1] EXPLAINED :- C1_DONE, not C1_SAT: Condition1Fails

[R1.2.2] END :- C1_DONE, not C1_SAT: SetDataEmpty

# If condition C1 is satisfied, then proceed with getting D2[D1]

# Data D1 is the value of DATA for the appropriate generalized position

[R1.2.3] CHECK_C2 :- C1_SAT: SetData2

[R1.2.4] CHECK_C2 :- C1_SAT: SetExplanationEmpty

# Check condition C2

[R1.2.5] C2_SAT :- CHECK_C2: CheckCondition2

[R1.2.6] C2_DONE :- CHECK_C2

# If condition C2 is not satisfied then produce the corresponding explanation

[R1.3.1] EXPLAINED :- C2_DONE, not C2_SAT: Condition2Fails

# If condition C2 is satisfied, set EXPLANATION to empty

[R1.3.2] END :- C2_DONE, C2_SAT: SetExplanationEmpty

# In both cases set DATA to empty

[R1.3.3] END :- C2_DONE: SetDataEmpty

# Now, for branch 2 - get D3

[R2.1.1] CHECK_C3 :- BRANCH2: SetData3

[R2.1.2] CHECK_C3 :- BRANCH2: SetExplanationEmpty

# Check condition C3

[R2.1.3] C3_SAT :- CHECK_C3: CheckCondition3

[R2.1.4] C3_DONE :- CHECK_C3

# If C3 is not satisfied then state that in EXPLANATION, otherwise set
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# EXPLANATION to empty

[R2.2.1] EXPLAINED :- C3_DONE, not C3_SAT: Condition3Fails

[R2.2.2] END :- C3_SAT: SetExplanationEmpty

# In both cases set DATA to empty

[R2.2.3] END :- C3_DONE: SetDataEmpty

We will now consider an example of a stable model that the above rules can produce. For the
purpose of our example, suppose that the conditions C2 and C3 are not satisfied, whereas the
condition C1 is satisfied. The stable model will be represented by a list of hybrid states (A,p)
where p is a generalized position and A is a set of atoms corresponding to p. A generalized position
will be represented as a tuple (t,D,E) there t is time, D is data and E is an explanation.

# Apply R1.0.1 and R2.0.1

<{BRANCH1}, (0, null, null)>

<{BRANCH2}, (0, null, null)>

# For the branch 1 time 1:

# R1.1.1 is used to get data D1, R1.1.2 sets EXPLANATION parameter to ""

# R1.1.3 will produce the atom C1_SAT since C1 is satisfed by assumption

# R1.1.4 will produce the atom C1_DONE

<{CHECK_C1, C1_SAT, C1_DONE}, (1, D1, "")>

# For branch 1 time 2:

# The premises of R1.2.1 and R1.2.2 are not satisfied

# R1.2.3 will produce D2[D1] and R1.2.4 will set the parameter EXPLANATION to ""

# R1.2.5 will not produce anything since CheckCondition2 will return FALSE

# R1.2.6 will produce the atom C2_DONE

<{CHECK_C2, C2_DONE}, (2, D2[D1], "")>

# For branch 1 time 3:

# R1.3.1 will produce the atom EXPLAINED and set the parameter EXPLANATION to

# "condition 2 is not satisfied"

# R1.3.2 will not produce anything since C2_SAT is not in the previous state

# R1.3.3 will produce the atom END and will set DATA=null

<{EXPLAINED, END}, (3, null, "condition 2 is not satisfied")>

# For branch 2 time 1:

# R2.1.1 will produce the atom CHECK_C3 and will set the parameter DATA to D3

# R2.1.2 will set the parameter EXPLANATION to ""

# R2.1.3 will not produce anything since CheckCondition3 will produce FALSE

# R2.1.4 will produce the atom C3_DONE

<{CHECK_C3, C3_DONE}, (1, D3, "")>

# For branch 2 time 2:

# R2.2.1 will produce the atom EXPLAINED and set the parameter EXPLANATION to

# "condition 3 is not satisfied".

# R2.2.2 will not produce anything since C3_SAT is not in the previous state

# R2.2.3 will produce the atom END and will set DATA=null

<{EXPLAINED, END}, (2, null, "condition 3 is not satisfied")>

For every branch the results can be obtained by examining states containing the atom END. If
an explanation for a negative decision in a branch is found, then the atom EXPLAINED will be
present in the state. In the case of our example we have two states with the atom END. Both of
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these contain the atom EXPLAINED. Thus, the negative decision for all two branches is explained.
The explanations are the values of the parameter EXPLANATION (3rd value in the generalized
position tuple), which are “condition 2 is not satisfied” and “condition 3 is not satisfied”.

5 Semantics of H-ASP PL

The semantics for H-ASP PL programs is a variant of the H-ASP stable model semantics. In order
to diagnose failures of automatic whitelisting system, all the cases for whitelisting will need to be
examined. Our H-ASP PL program will describe all of the whitelisting cases. We will be interested
in a stable model of the underlying H-ASP program that will describe the results of examining
each case. We would like this to be the unique maximal stable model. We will thus construct the
semantics of H-ASP PL so that for a valid H-ASP PL program, its underlying H-ASP program has
a unique maximal stable model, which after an appropriate transform, will be the stable model of
the H-ASP PL program.

The semantics of H-ASP PL programs are defined in two steps. For a H-ASP PL program W ,
a transform Tr [PL] is used to produce a H-ASP program Tr [PL] (W ). Then the transform Tr
introduced in [4] is used to produce a H-ASP program Tr (Tr [PL] (W )). Tr (Tr [PL] (W )) has the
following properties for an initial condition I of Tr [PL] (W ):
1. There is a bijection between the set of stable models of Tr [PL] (W ) with the initial condition I
and the set of stable models of Tr (Tr [PL] (W )) with the corresponding initial condition J (I).
2. For the initial condition J (I), Tr (Tr [PL] (W )) has a unique maximal stable model M ′max. M ′max

is maximal in a sense that it contains all the stable models of Tr (Tr [PL] (W )) with the initial
condition J (I).
Then we set the stable model of W with initial condition I to be the unique maximal stable model
M ′max of Tr (Tr [PL] (W )) with initial condition J(I).

The transform Tr [PL] is defined similarly to the transform Tr# introduced in [4] for trans-
forming valid H-ASP# programs. The definitions of both transforms are omitted due to the space
constraints. The following new theorem states that any computational cDAG representable by a
computer can be computed by a H-ASP PL program.

Theorem 2. Let At be a set of propositional atoms, and let S be a set whose elements are repre-
sentable by a computer. Let 〈V,E〉 be a computational cDAG over At and S. Then there exists a
H-ASP PL program P and an initial condition I for P such that comp (Tr (Tr [PL] (P )) , J (I)) =
〈W,U〉 is isomorphic to 〈V,E〉.

The theorem is proved by constructing an isomorphism based on a H-ASP PL program P and
initial condition I, chosen so that Tr (Tr [PL] (P )) and J (I) are the H-ASP program and the
corresponding initial condition constructed in the proof of theorem 1.

For a valid H-ASP PL program W and initial condition I of Tr [PL] (W ), the maximal stable
model M ′max of Tr (Tr [PL] (W )) with the initial condition J (I) can be computed by the Local
Algorithm [4].

An informal description of the Local Algorithm is as follows. The Local Algorithm is a multi-
stage process where the hybrid states derived at stage n are used to derive hybrid states at stage
n+ 1. Suppose that a hybrid state (V,p) was derived by the Local Algorithm at stage n. The Local
Algorithm first uses all the advancing rules applicable at (V,p) to derive a set of the candidate
next hybrid states (Z1,q1), ..., (Zk,qk). For each (Zi,qi) the stationary rules applicable at (Zi,qi)
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are then used to form an ASP program D (Zi,qi). Suppose that the stable models of D (Zi,qi) are
Y1, ..., Ym (for each Yj we have that Zi ⊆ Yj). Then the set of the next hybrid states with the
generalized position qi is (Y1,qi), ..., (Ym,qi).

Theorem 3. (Based on theorem 82, [4]) For a valid H-ASP PL program W and initial condition I
of Tr [PL] (W ), the result of the Local Algorithm applied to W produces M ′max, which is the unique
maximal stable model of Tr (Tr [PL] (W )) with the initial condition J (I).

6 Conclusion

The extensions of ASP that allow external data searches include DLV DB system [25], V I programs
[7], GRINGO grounder [12]. In [23], however Redl notes that HEX programs [11] can be viewed
as a generalization of these formalisms. We will thus only describe the relation of our work to HEX
programs.

HEX programs are an extension of ASP programs that allow accessing external data sources via
external atoms. The external atoms admit input and output variables, which after grounding, take
predicate or constant values for the input variables, and constant values for the output variables.
Through the external atoms and under the relaxed safety conditions, HEX programs can produce
constants that don’t appear in the original program. The main similarities with this approach and
our approach are that both H-ASP PL and HEX programs allow the use of external data sources,
and both support mechanisms for passing the information between external algorithms. The main
differences are the following: (1) in H-ASP PL the information processed by the external algorithms
represents a type of information that is different from the information contained in the logical atoms,
(2) the H-ASP PL programs have a built-in support for producing BCP cDAGs, and (3) a H-ASP
program underlying the H-ASP PL definitions has a unique maximal stable model under H-ASP
stable model semantics. The latter two properties make the H-ASP PL very convenient for the
problem of diagnosing automatic whitelisting.

A relation of our approach for solving diagnostic problems to that of Balduccini and Gelfond
(see [1]) was discussed in the beginning of this paper. We think that developing an approach similar
to that of Balduccini and Gelfond for H-ASP is an interesting problem for future work.

In this paper we have discussed the use of H-ASP to diagnose failures of the automatic whitelist-
ing system for Google’s Dynamic Remarketing Ads. The software, which we discuss in this paper
was used to diagnose and fix failures of the automatic whitelisting for many advertisers over a
time interval of several months. Whereas the time needed to diagnose a single failure without the
software was 30-60 minutes, the time needed to diagnose a single failure using the software was 1-3
minutes. The declarative nature of the H-ASP PL program made it easy to update the software so
as to reflect multiple changes to automatic whitelisting system that occurred over time.
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and Ilkka Niemelä, editors, LPNMR, volume 2923 of Lecture Notes in Computer Science, pages 167–179.
Springer, 2004.

21. V. Wiktor Marek and Miroslaw Truszczynski. Stable models and an alternative logic programming
paradigm. pages 375–398, 1999.
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