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Abstract. We study the problem of selling n items to a single buyer
with an additive valuation function. We consider the valuation of the
items to be correlated, i.e., desirabilities of the buyer for the items are
not drawn independently. Ideally, the goal is to design a mechanism
to maximize the revenue. However, it has been shown that a revenue
optimal mechanism might be very complicated and as a result inappli-
cable to real-world auctions. Therefore, our focus is on designing a sim-
ple mechanism that achieves a constant fraction of the optimal revenue.
Babaioff et al. [3] (FOCS’14) propose a simple mechanism that achieves
a constant fraction of the optimal revenue for independent setting with
a single additive buyer. However, they leave the following problem as an
open question: “Is there a simple, approximately optimal mechanism for
a single additive buyer whose value for n items is sampled from a com-
mon base-value distribution?” Babaioff et al. show a constant approxi-
mation factor of the optimal revenue can be achieved by either selling
the items separately or as a whole bundle in the independent setting.
We show a similar result for the correlated setting when the desirabili-
ties of the buyer are drawn from a common base-value distribution. It
is worth mentioning that the core decomposition lemma which is mainly
the heart of the proofs for efficiency of the mechanisms does not hold
for correlated settings. Therefore we propose a modified version of this
lemma which is applicable to the correlated settings as well. Although
we apply this technique to show the proposed mechanism can guarantee
a constant fraction of the optimal revenue in a very weak correlation,
this method alone can not directly show the efficiency of the mechanism
in stronger correlations. Therefore, via a combinatorial approach we re-
duce the problem to an auction with a weak correlation to which the
core decomposition technique is applicable. In addition, we introduce a
generalized model of correlation for items and show the proposed mech-
anism achieves an O(log k) approximation factor of the optimal revenue
in that setting.

* Supported in part by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR
YIP award N000141110662, and a DARPA/AFOSR grant FA9550-12-1-0423.
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1 Introduction

Suppose an auctioneer wants to sell n items to a single buyer. The buyer’s valu-
ation for a particular item comes from a known distribution, and his values are
assumed to be additive (i.e., value of a set of items for the buyer is equal to the
summation of the values of the items within the set). The buyer is considered
to be strategic, that is, his aim is to maximize v(S) — p(S), where S is the set
of purchased items, v(.S) is the value of these items to the buyer and p(S) is the
price of the set. Given that the valuation of the buyer for item j is drawn from a
given distribution D;, what is a revenue optimal mechanism for the auctioneer
to sell the items? Myerson [18] solves the problem for a very simple case where
we only have a single item and a single buyer. He shows that in this special case
the optimal mechanism is to set a reserve price for the item. Despite the sim-
plicity of the revenue optimal mechanism for selling a single item, this problem
becomes quite complicated when it comes to selling two items even when we
have only one buyer. Hart and Reny [14] show an optimal mechanism for selling
two independent items is much more subtle and may involve randomization.

Though there were several attempts to characterize the properties of a rev-
enue optimal mechanism of an auction, most approaches seem to be too complex
and as a result impractical to real-world auctions [1, 2, 4, 5,6, 7, 8,11, 9, 12, 15].
Therefore, a new line of investigation is to design simple mechanisms that are
approximately optimal. In a recent work of Babaioff, Immorlica, Lucier, and
Weinberg [3] (FOCS 2014), it is shown that we can achieve a constant factor
approximation of the optimal revenue by selling items either separately or as
a whole bundle in the independent setting. However, they leave the following
important problem as an open question:

— “Open Problem 3. Is there a simple, approximately optimal mechanism for
a single additive buyer whose value for n items is sampled from a common
base-value distribution? What about other models of limited correlation?”

Hart and Nisan [13] show there are instances with correlated valuations in
which neither selling items separately nor as a whole bundle can achieve any
approximation of the optimal revenue. This holds, even when we have only two
items. Therefore, it is essential to consider limited models of correlation for this
problem. As an example, Babaioff et al. propose to study common base-value
distributions. This model has also been considered by Chawla, Malec, and Sivan
[10] to study optimal mechanisms for selling multiple items in a unit-demand
setting.

In this work we study the problem for the case of correlated valuation func-
tions and answer the above open question. In addition we also introduce a gen-
eralized model of correlation between items. Suppose we have a set of items and
want to sell them to a single buyer. The buyer has a set of features in his mind
and considers a value for each feature which is randomly drawn from a known
distribution. Furthermore, the buyer formulates his desirability for each item as
a linear combination of the values of the features. More precisely, the buyer has [
distributions Fy, Fs, ..., F; and an | X n matrix M (which are known in advance)
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such that the value of feature i, denoted by f;, is drawn from F; and the value
of item j is calculated by V; - M; where Vy = (f1, fo,..., fi) and M; is the j-th
row of matrix M.

This model enables us to captures the behavior of the auctions especially
when the items have different features that are of different value to the buyers.
Note that every common base-value distribution is a special case of this general
correlation where we have n + 1 features Fy, Fs, ..., F,, B and the value of item
Jj is determined by v; 4+ b where v; is drawn from F; and b is equal for all items
which is drawn from distribution B.

2 Related Work

As mentioned earlier, the problem originates from the seminal work of Myerson
[18] in 1981 which characterizes a revenue optimal mechanism for selling a single
item to a single buyer. This result was important in the sense that it was simple
and practical while promising the maximum possible revenue. In contrast to this
result, it is known that designing an optimal mechanism is much harder for the
case of multiple items. There has been some efforts to find a revenue optimal
mechanism for selling two heterogeneous items [19] but, unfortunately, so far too
little is known about the problem even for this simple case.

Hardness of this problem was even more highlighted when Hart and Reny
[14] observed randomization is necessary for the case of multiple items. This
reveals the fact that even if we knew how to design an optimal mechanism for
selling multiple items, it would be almost impossible to implement the optimal
mechanism in a real-world auction. Therefore, recent studies are focused on
finding simple and approximately optimal mechanisms.

Speaking of simple mechanisms, it is very natural to think of selling items
separately or as a whole bundle. The former mechanism is denoted by SRev and
the latter is referred to by BRev. Hart and Nissan [12] show SRev mechanism
achieves at least an £2(1/log? n) approximation of the optimal revenue in the
independent setting and BRev mechanism yields at least an £2(1/logn) approxi-
mation for the case of identically independent distributions. Later on, this result
was improved by the work of Li and Yao, that prove an 2(1/logn) approxima-
tion factor for SRev and a constant factor approximation for BRev for identically
independent distributions [16]. These bounds are tight up to a constant factor.
Moreover, it is shown BRev can be 6(n) times worse than the revenue of an
optimal mechanism in the independent setting. Therefore in order to achieve a
constant factor approximation mechanism we should think of more non-trivial
mechanisms.

The seminal work of Babaioff et al. [3] shows despite the fact that both
mechanisms SRev and BRev may separately result in a bad approximation factor,
max{SRev, BRev} always has a revenue at least % of an optimal mechanism.
They also show we can determine which of these mechanisms has more revenue
in polynomial time which yields a deterministic simple mechanism that can be
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implemented in polynomial time. However, there has been no significant progress
in the case of correlated items, as Babaioff et al. leave it as an open question.

In addition to this, they posed two more questions which became the subject
of further studies. In the first question, they ask if there exists a simple mech-
anism which is approximately optimal in the case of multiple additive buyers?
This question is answered by Yao [21] (SODA’15) via proposing a reduction from
k-item m-bidder auctions to k-item auctions with one bidder. They show, as a
result of their reduction, a deterministic mechanism achieves a constant fraction
of the optimal revenue by any randomized mechanism. In the second question,
they ask if the same result can be obtained for a mechanism with a single buyer
whose valuation is k-demand? This question is also answered by a recent work
of Rubinstein and Weinberg [20] (EC’15). They show the same mechanism that
either sells the items separately or as a whole bundle, achieves a constant frac-
tion of the optimal revenue even in the sub-additive setting with independent
valuations. They, too, use the core decomposition technique as their main ap-
proach. Their work is very similar in spirit to ours since we both show the same
mechanism is approximately optimal in different settings.

Another line of research investigated optimal mechanisms for selling n items
to a single unit-demand buyer. Chawla et al. [10] show how complex the optimal
mechanism can become by proving the gap between the revenue of deterministic
mechanisms and that of non-deterministic mechanisms can grow unbounded even
when we have a constant number of items with correlated values. This highlights
the fact that when it comes to general correlations, there is not much that can
be achieved by deterministic mechanisms. However, Chawla et al. [10] study the
problem with a mild correlation known as the common base-value correlation
and present positive results for deterministic mechanisms in this case.

3 Results and Techniques

We study the mechanism design for selling n items to a single buyer with addi-
tive valuation function when desirabilities of each buyer for items are correlated.
The main result of the paper is max{SRev, BRev}, that is, the revenue we get by
the better of selling items separately or as a whole bundle achieves a constant
approximation of the optimal revenue when we have only one buyer and the dis-
tribution of valuations for this buyer is a common base-value distribution. This
problem was left open in [3]. Our method for proving the effectiveness of the pro-
posed mechanism is consisted of two parts. In the first part, we consider a very
weak correlation between the items, which we call semi-independent correlation,
and show the same mechanism achieves a constant fraction of the optimal rev-
enue in this setting. To this end, we use the core decomposition technique which
has been used by several similar works [16, 3, 20]. The second part, however,
is based on a combinatorial reduction which reduces the problem to an auction
with a semi-independent valuation function.

Theorem 1. For an auction with one seller, one buyer, and a common base-
value distribution of valuations we have max{SRev(D), BRev(D)} > 75 xRev(D).
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Furthermore, we consider a natural model of correlation in which the buyer has
a number of features and scores each item based on these features. The valuation
of each feature for the buyer is realized from a given distributions which is known
in advance. The value of each item to the buyer is then determined by a linear
formula in terms of the values of the features. This can also be seen as a general-
ization of the common base-value correlation since a common base-value corre-
lation can be though of as a linear correlation with n+ 1 features. We show that
if all of the features have the same distribution then max{SRev(D), BRev(D)} is
at least a m fraction of Rev(D) where k is the maximum number of features
that determine the value of each item.

Theorem 2. In an auction with one seller, one buyer, and a linear correlation
with i.1.d distribution of valuations for the features max{SRev, BRev} > O(I(nge‘;c)
where the value of each item depends on at most k features.

Our approach is as follows: First we study the problem in a setting which
we call semi-independent. In this setting, the valuation of the items are realized
independently, but each item can have many copies with the same value. More
precisely, each pair of items are either similar or different. In the former case,
they have the same value for the buyer in each realization whereas in the latter
case they have independent valuations.

Inspired by [3], we show max{SRev(D),BRev(D)} > ReVT(D) for every semi-
independent distribution D. To do so, we first modify the core decomposition
lemma to make it applicable to the correlated settings. Next, we apply this
lemma to the problem and prove max{SRev(D),BRev(D)} achieves a constant
fraction of the optimal revenue.

Given max{SRev(D),BRev(D)} is optimal up to a constant factor in the
semi-independent setting, we analyze the behavior of max{SRev, BRev} in each
of the settings by creating another auction in which each item of the original
auction is split into several items and the distributions are semi-independent.
We show that the maximum achievable revenue in the secondary auction is no
less than the optimal revenue of the original auction and also selling all items
together has the same revenue in both auctions. Finally, we bound the revenue of
SRev in the original auction by a fraction of the revenue that SRev achieves in the
new auction and by putting all inequalities together we prove an approximation
factor for max{SRev, BRev}. In contrast to the prior methods for analyzing the
efficiency of mechanism, our approach in this part is purely combinatorial.

Although the main contribution of the paper is analyzing max{SRev, BRev}
in common base-value and linear correlations, we show the following as auxiliary
lemmas which might be of independent interest.

— One could consider a variation of independent setting, wherein each item
has a number of copies and the value of all copies of an item to the buyer is
always the same. We show in this setting max{SRev, BRev} is still a constant
fraction of Rev.

— A natural generalization of i.i.d settings, is a setting in which the distribu-
tions of valuations are not exactly the same, but are the same up to scaling.
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We show, in the independent setting with such valuation functions BRev is

at least an O(y5,;) fraction of Rev.

4 Preliminaries

Throughout this paper we study the optimal mechanisms for selling n items
to a risk-neutral, quasi-linear buyer. The items are considered to be indivisible
and not necessarily identical i.e. the buyer can have different distributions of
desirabilities for different items. In our setting, distributions are denoted by
D = (D1,Dy,...,D,) where D; is the distribution for item j. Moreover, the
buyer has a valuation vector V' = (vy,vs,...,v,) which is randomly drawn from
D specifying the values he has for the items. Note that, values may be correlated.
Once a mechanism is set for selling items, the buyer purchases a set Sy of the
items that maximizes v(Sy) — p(Sy), where v(Sy) is the desirability of Sy
for the buyer and p(Sy) is the price that he pays. The revenue achieved by a
mechanism is equal to Y E[p(Sy)] where V is randomly drawn from D. The
following terminology is used in [3] in order to compare the performance of
different mechanisms. In this paper we use similar notations.

— Rev(D): Maximum possible revenue that can be achieved by any truthful
mechanism.

— SRev(D): The revenue that we get when selling items separately using My-
erson’s optimal mechanism for selling each item.

— BRev(D): The revenue that we get when selling all items as a whole bundle
using Myerson’s optimal mechanism.

We refer to the expected value and variance of a one-dimensional distribution
D by Val(D) and Var(D) respectively. We say an n-dimensional distribution D
of the desirabilities of a buyer is independent over the items if for every a # b,
v, and vy are independent variables when V' = (vy,vs,...,v,) is drawn from D.
Furthermore, we define the semi-independent distributions as follows.

Definition 1. Let D be a distribution of valuations of a buyer over a set of
items. We say D is semi-independent iff the valuations of every two different
items are either always equal or completely independent. Moreover, we say two
items a and b are similar in a semi-independent distribution D if for every
V ~ D we have v, = vp.

Moreover, we define the common base-value distributions as follows.

Definition 2. We say a distribution D is common base-value, if there exist
independent distributions Fy, Fs, ..., F,, B such that for V. = (v1,ve,...,0,) ~
D and every 1 < j < n, v; = f; +b where f; comes from distribution F; and b
is drawn from B which is equal for all items.

A natural generalization of common base-value distributions are distributions
in which the valuation of each item is determined by a linear combination of k
independent variables which are the same for all items. More precisely, we define
the linear distributions as follows.



Revenue Maximization for Selling Multiple Correlated Items 7

Definition 3. Let D be a distribution of valuations of a buyer for n items. We
say D is a linear distribution if there exist independent desirability distributions
F1, Fs, ..., F and a k xn matriz M with non-negative rational values such that
V = (v1,v2,...,0,) ~ D, can be written as W x M where W = (w1, wa, ..., wy)
18 a vector such that w; is drawn from F;.

5 The Core Decomposition Technique

Most of the results in this area are mainly achieved by the core decomposi-
tion technique which was first introduced in [16]. Using this technique we can
bound the revenue of an optimal mechanism without taking into account the
complexities of the revenue optimal mechanism. The underlying idea is to split
distributions into two parts: the core and the tail. If for each realization of the
values we were to know in advance for which items the valuations in the core
part will be and for which items the valuations in the tail part will be, we would
achieve at least the optimal revenue achievable without such information. This
gives us an intuition which we can bound the optimal revenue by the total sum
of the revenues of 2™ auctions where in each auction we know which valuation
is in which part. The tricky part then would be to separate the items whose
valuations are in the core part from the items whose valuations are in the tail
and sum them up separately. We use the same notation which was used in [3]
for formalizing our arguments as follows.

— D;: The distribution of desirabilities of the buyer for item 3.

— Dy: (A is a subset of items): The distribution of desirabilities of the buyer
for items in A.

— 7;: The revenue that we get by selling item ¢ using Myerson’s optimal mech-
anism.

— r: The revenue we get by selling all of the items separately using Myerson’s
optimal mechanism which is equal to > r;.

— t;: A real number separating the core from the tail for the distribution of
item ¢. we say a valuation v; for item 4 is in the core if 0 < v; < r;t; and is
in the tail otherwise.

— pi: A real number equal to the probability that v; > r;t; when v; is drawn
from D;.

— pa: (A is a subset of items): A real number equal to the probability that
Vi ¢ A,Ul' S Titi and Vi € A,UZ‘ > T‘iti.

— D¢ A distribution of valuations of the i-th item that is equal to D; condi-
tioned on v; < r;t;.

— DI A distribution of valuations of the i-th item for the buyer that is equal
to D; conditioned on v; > r;t;.

— DS: (A is a subset of items): A distribution of valuations of the items in
[V]— A for the buyer that is equal to Dyy)— 4 conditioned on Vi ¢ A,v; < rit;.

— D%: (A is a subset of items): A distribution of valuations of the items in A
for the buyer that is equal to D 4 conditioned on Vi € A, v; > r;t;.
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— DA: A distribution of valuations for all items which is equal to D conditioned
on both Vi ¢ A,v; < r;it; and Vi € A, v; > rit;.

In Lemma 2 we provide an upper bound for p;. Next we bound Rev(DZvc ) and
Rev(D) in Lemmas 3 and 4 and finally in Lemma 6 which is known as Core
Decomposition Lemma we prove an upper bound for Rev(D). All these lemmas
are proved in [3] for the case of independent setting. For all these lemmas we
give similar proofs in the appendix that work for the correlated settings as well.

Lemma 1. For every A C [N], if the valuation of items in A are independent
of items in [N] — A then we have Rev(D) < Rev(D4) + Val(Din)—4)-

Lemma 2. p; <

S

Lemma 3. Rev(DY) <r;.
Lemma 4. Rev(DI) < r;/p;.
Lemma 5. Rev(D) <Y, paRev(D4).

For independent setting we can apply Lemma 1 to Lemma 5 and finally with
application of some algebraic inequalities come up with the following inequality

Rev(D) < Val(D) + > paRev(D}).
A

Unfortunately this does not hold for correlated settings since in Lemma 1 we
assume valuation of items of A are independent of the items of [N]— A. Therefore,
we need to slightly modify this lemma such that it becomes applicable to the
correlated settings as well. Thus, we add the following restriction to the valuation
of items: For each subset A such that p, is non-zero, the valuation of items in
A are independent of items of [N] — A.

Lemma 6. If for every A with pay > 0 the values of items in A are drawn inde-
pendent of the items in [N] — A we have Rev(D) < Val(D§') + > , paRev(DT).

Proof. According to Lemma 5 we have

Rev(D) < paRev(D?). (1)
A

Since for every A such that p4 > 0 we know the values of items in A are drawn
independent of items in [N] — A, we can apply Lemma 1 to Inequality (1) and
come up with the following inequality.

Rev(D) <> pa[Val(D§) + Rev(D})].
A

Note that, Dg is an upper bound for Val(D§) for all A. Therefore

Rev(D) <> pa[Val(D§) + Rev(D})].
A
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We rewrite the inequality to separate Val(D§') from Rev(DY).

Rev(D) <> paRev(D}) + > paVal(Df).
A A

Since > pa =1
Rev(D) < Val(Df) + > paRev(D}).
A

6 Semi-Independent distributions

In this section we show the better of selling items separately and as a whole
bundle is approximately optimal for the semi-independent correlations. To do so,
we first show k - SRev(D) > Rev(D) where we have n items divided into k types
such that items of each type are similar. Next we leverage this lemma in order
to prove max{SRev(D), BRev(D)} achieves a constant-factor approximation of
the revenue of an optimal mechanism. We start by stating the following lemma
which is proved in [17]. All of the proofs of this section are omitted and included
in the appendix.

Lemma 7. In an auction with one seller, one buyer, and multiple similar items
we have Rev(D) = SRev(D).

We also need Lemma 8 proved in [12] and [3] which bounds the revenue
when we have a sub-domain S two independent value distributions D and D’
over disjoint sets of items. Moreover we use Lemma 9 as an auxiliary lemma in
the proof of Lemma 10.

Lemma 8. (“Marginal Mechanism on Sub-Domain [12, 3]”) Let D and
D’ be two independent distributions over disjoint sets of items. Let S be a set of
values of D and D' and s be the probability that a sample of D and D' lies in S,
i.e. s = Pr{(v,v') ~ D x D" € §]. sRev(D x D'|(v,v") € S) < sVal(D|(v,v") €
S) + Rev(D’).

Lemma 9. In a single-seller mechanism with m buyers and n items with a
semi-independent correlation between the items in which there are at most k
non-similar items we have Rev(D) < mk - SRev(D).

Next, we show max{SRev(D),BRev(D)} > & - Rev(D). The proof is very simi-
lar in spirit to the proof of Babaioff et al. for showing max{SRev(D), BRev(D)}
achieves a constant approximation factor of the revenue optimal mechanism
in independent setting [3]. In this proof, we first apply the core decomposi-
tion lemma with ¢; = r/(r;n;) and break down the problem into two sub-
problems. In the first sub-problem we show 3~ , paRev(D%) < 2SRev(D) and in
the second sub-problem we prove 4 max{SRev(D),BRev(D)} > VaI(Dg). Hav-
ing these two bounds together, we apply the core decomposition lemma to imply
max{SRev(D), BRev(D)} > % - Rev(D).

Lemma 10. Let D be a semi-independent distribution of valuations for n items
in single buyer setting. In this problem we have max{SRev(D),BRev(D)} > % .
Rev(D).
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7 Common Base-Value Distributions

In this section we study the same problem with a common base-value distri-
bution. Recall that in such distributions desirabilities of the buyer are of the
form v; = f; + b; where f; is drawn from a known distribution F; and b; is
the same for all items and is drawn from a known distribution B. Again, we
show max{SRev, BRev} achieves a constant factor approximation of Rev when
we have only one buyer. Note that, this result answers an open question raised
by Babaioff et al. in [3].

Theorem 3. For an auction with one seller, one buyer, and a common base-
value distribution of valuations we have max{SRev(D), BRev(D)} > & xRev(D).

Proof. Let | be an instance of the auction. We create an instance Cor(l) of
an auction with 2n items such that the distribution of valuations is a semi-
independent distribution D’ where D, = F; for 1 < i < n and D, = B for
n+ 1 < i < 2n. Moreover, the valuations of the items n+ 1,7+ 2,...,2n are
always equal and all other valuations are independent. Thus, by the definition,
D' is a semi-independent distribution of valuations and by Lemma 10 we have

max{SRev(D'), BRev(D')} > é « Rev(D'). @)

Since every mechanism for selling the items of D can be mapped to a mechanism
for selling the items of D’ where items ¢ and n + ¢ are considered as a single
package containing both items, we have

Rev(D) < Rev(D"). (3)

Moreover, since in the bundle mechanism we sell all of the items as a whole
bundle, the revenue achieved by bundle mechanism is the same in both auctions.
Hence,

BRev(D) = BRev(D'). (4)

Note that, we can consider SRev(D) as a mechanism for selling items of Cor(l)
such that items are packed into partitions of size 2 (item ¢ is packed with item
n + i) and each partition is priced with Myerson’s optimal mechanism. Since
for every two independent distributions F;, F;y, we have SRev(F; x F, ;) <
2 BRev(F; x F,,1;) we can imply

n n 4 v ,
SRev(D) = 3" BRev(F, x F ) > 3 2revtli X Fin) _ SRev(DY)
i=1 i=1

5 5 ()

According to Inequalities (2),(3), and (4) we have
max{SRev(D), BRev(D)} > max{SRev(D’)/2,BRev(D’)} >

max{SRev(D’),BRev(D’)}/2 > Rev(D')/12 > Rev(D)/12.
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A Linear Correlations

A natural generalization of common base-value distributions is an extended cor-
relation such that the valuation of each item for a buyer is a linear combination of
his desirabilities for some features where the distribution of desirabilities for the
features are independent and known in advance. More precisely, let Fy, Fy, ..., F]
be ! independent distributions of desirabilities of features for the buyer and once
each value f; is drawn from Fj, desirability of the buyer for j-th item is deter-
mined by Vy-M; where Vy = (f1, fa,..., fi) and M is an n x | matrix containing
non-negative values.

Note that, a semi-independent distribution of valuations is a special case of
linear correlation where we have n + 1 features Fy, Fs,...,F,,41 and M is a
matrix such that M, = 1 if either a =b or b =n+ 1 and M, = 0 otherwise.
In this case, F),4; is the base value which is shared between all items and each
of the other distributions is dedicated to a single item.

In this section we show the better of selling items separately or as a whole
bundle achieves an O(log k) factor approximation of Rev(D) when the distribu-
tion of valuations for all features are the same and the value of each item is
determined by the value of at most k features. To this end, we first consider an
independent setting where the distribution of items are the same up to scaling
and prove BRev is at least O(lsoze;’b). Next, we leverage this lemma to show the
main result of this section.

A.1 Independent Setting

In this part, we consider distributions which are similar to independent identical
distributions, but their values are scaled by a constant factor. In particular,
D is a scaled distribution of F' if and only if for every X, Pr,.plu = X] =
Pry~rlu = aX]. We provide an upper bound for the ratio of the separate pricing
revenue to the bundle pricing revenue for a set of items with independent scaled
distributions. The following proposition shows this ratio is maximized when the
value for each item 7 is either 0 or a constant number.

Proposition 1. For every distribution D = D1 X Dy X ... X D,,, where D;’s are

independent, there is a D' = D} x D} x ... x D!, such that éﬁ:\;((gl,g > ég:\;((g))

and for each Dj there is an X; and p; such that Pry.p/[u = X;] = p; and
Pryp/lu=0]=1-p;.

Proof. For each 1 < ¢ < n let u; denote the Myerson price for D;. Let p;, =
Pry~p,[u > wu;]. Thus the revenue for selling i separately is p;u;. Now Let D]
be a distribution which is 0 with probability 1 — p; and u; with probability p;.
Thus SRev(D’) = u;p; = SRev(D). However since for each i, D; dominates D;,

BRev(D’) < BRev(D). Therefore, g';:i((gl,; > SE:\\//E];))'

Thus from now on, we assume each item i has value u; = ;v with probability
p and 0 with probability 1 — p. Without loss of generality we can assume wu; >
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Ug > ... > uy,. In order to prove our bound we need to use the following theorem
and Lemma 11.

Theorem 4 (See Yao[21]). There exists a constant ¢y such that for every
integer n > 2 and every D = D1 X Dy X ...x D,,, where D; = F are independent
and identical distributions, we have coBRev(D) > Rev(D).

Lemma 11. There exists a constant ¢ such that for every integer 1 < j < n
and every D = Dy X Dy X ... X D,, where D; = a;F are independent scaled
distributions, we have cBRev(D) > jpu;.

Proof. To show there exists a constant ¢ such that cBRev(D) > jpu;, first we con-
sider another set of items with distribution D’ such that BRev(D) > BRev(D’).
Then we show there is a constant ¢ such that ¢BRev(D’) > jpu;.

Let D' = Dg: i.e., a set of j items with independent and identical distribution
Dj. Note that for each ¢ < j, u; > u;. Thus if ¢ < j, D; dominates D;. Moreover
we are ignoring the other n — j items. This implies BRev(D) > BRev(D’).

Now by Theorem 4, there is a constant ¢y such that

coBRev(D') > Rev(D'). (6)

On the other hand, by selling the items separately the revenue for each item is
pu;. Hence

SRev(D') = jpu;. (7)
Thus we can conclude,
coBRev(D) > coBRev(D') By Inequality (6)
> Rev(D’)
> SRev(D') By Equation (7)

= Jpu;.

Lemma 12. There ezists a constant ¢’ such that for every D = Dy x Dy X ... X
Dn, where D; = o F are independent scaled distributions, we have ¢/'BRev(D) >
log SRev( ).
Proof First we prove there exists an integer 1 < j < n such that jpu; >
1+1n ) SRev( ). Then using Lemma 11 we obtain ¢BRev(D) > 1_Hn(n)SRev( ).
Each item ¢ has value 0 with probability 1 — p, and u; with probability
p. Thus the optimal separate price for item ¢ is u; and the expected revenue
for that is pu;. Thus SRev( ) = p>.i, u; Assume by contradiction for every
1<7<n, jpu; < 1+1n ) SRev( )= mp > u;. Simplifying the equation
and moving j to the right hand size, for every 1 < j < n we have

u;j 1 n ln Z Uj. (8)
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Summing up Inequality (8) for all j we have

> < i o o g

This implies 1 < H,,, which is a contradiction. Thus there is an integer j

1
1+1n(n)
SRev( ). Now by Lemma 11, there is a constant ¢ such

SRev(D).

such that jpu; > 1+1 T+In(n)

that cBRev(D) > jpu;. Thus ¢'BRev(D) > 1og(n)

Babaioff et al. [3] show that for n independent items and a single additive
buyer the maximum of SRev and BRev is a constant fraction of the maximal rev-

enue. Thus from Lemma 12 we can conclude that ¢'BRev(D) > mReV(D)‘

Corollary 1. There exists a constant ¢’ such that for every D = D1 x Dy X ... X%
Dn, where D; = o F are independent scaled distributions, we have ¢'BRev(D) >

log(n) Rev(D).

A.2 Correlated Setting

The following theorem shows an O(log k) approximation factor for max{SRev, BRev}
when considering a linear correlation with i.i.d distributions for the features.

Theorem 5. Let D be a distribution of valuations for one buyer in an auction
such that the correlation between items is linear. If each row of M has at most
k mon-zero entries, then

Rev(D)
" logn

max{SRev(D), BRev(D)} >

where ¢’ > 0 is a constant real number.

Proof. Since we can multiply the entries of the matrix by any integer number and
divide the values of distribution by that number without violating any constraint
of the setting, for simplicity, we assume all values of M are integer numbers. Let
| be an instance of our auction. We create an instance Cor(l) of an auction a with
semi-independent distribution as follows: Let n; be the total sum of numbers in
i-th column of M. For each feature we put a set of items in Cor(l) containing
n; similar elements. Moreover, we consider every two items of different types to
be independent. We refer to the distribution of items in Cor(l) with D’. Each
mechanism of auction | can be mapped to a mechanism of auction Cor(l) by just
partitioning items of Cor(l) into some packages, such that package ¢ has M, ,
items from a-th type, and then treating each package as a single item. Therefore
we have

Rev(D) < Rev(D’). (10)

Moreover, bundle mechanism has the same revenue in both auctions since it sells
all items as a whole package. Therefore the following equation holds.

BRev(D) = BRev(D') (11)
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To complete the proof we leverage Lemma 12 to compare SRev(D) with SRev(D’).
In the following we show

SRev(D')

Rev(D) > .
SRev(D) c'logk

> (12)
for a constant number ¢’ > 0. Note that selling items of auction | separately,
can be thought of as selling items of Cor(l) in partitions with at most k non-
similar items. To compare SRev(D) with SRev(D’), we only need to compare
the revenue achieved by selling each item of | with the revenue achieved by
selling its corresponding partition in Cor(l). To this end, we create an instance
Cor(l); of an auction for each item ¢ of | which is consisted of all items in Cor(l)
corresponding to item 4 of | such that all similar items are considered as a single
item having a value equal to the sum of the values of those items. Let L; be a
partition of such items. When selling items of | separately, our revenue is as if
we sell all items of L; as a whole bundle. Therefore this gives us a total revenue
of BRev(Cor(l);). However, when we sell items of Cor(l) separately, the revenue
we get from selling items of L; is exactly SRev(Cor(l);). Note that, since all of
the features have the same distribution of valuation, Cor(l); contains at most k
independent items and the distribution of valuations for all items are the same
up to scaling. Therefore, according to Lemma 12 SRev(L;) < BRev(L;)c logk
for a constant number ¢’ > 0 and hence Inequality (12) holds.

Next, we follow an approximation factor for max{SRev(D), BRev(D)} from
Inequalities (12), (10), and (11). By Inequalities (12) and (11) we have

max{SRev(D")BRev(D")}

>
max{SRev(D), BRev(D)} > clogk

(13)

Moreover according to Inequality (10) Rev(D) < Rev(D’) holds and by Lemma
10 we have max{SRev(D’),BRev(D")} > % which yields

Rev(D)
6c log k

max{SRev(D),BRev(D)} >

Setting ¢’ = 6¢’ the proof is complete. O

B Omitted proofs of Section 5

Proof (Proof of Lemma 1). Suppose for the sake of contradiction that Rev(D) >
Rev(D4) + Val(Dnj—4), we show one can sell items of A to obtain an expected
revenue more than Rev(D 4) which contradicts with maximality of Rev(D4). To
this end, we add items of [N] — A (which are of no value to the buyer) and do
the following:

— We draw a valuation for items in [N] — A based on D.
— We sell all items with the optimal mechanism for selling items of D.
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— Finally, the buyer can return each item that has bought from the set [N]— A
and get refunded by the auctioneer a value equal to what has been drawn
for that item. Note that, since the buyer has no desirability for these items,
it is in his best interest to return them.

Note that, we fake the desirabilities of the buyer for items in [N] — A with the
money that the auctioneer returns in the last step. Therefore, the behavior of
the buyer is as if he had a value for those items as well. Since the money that
the auctioneer returns to the buyer is at most Val([N] — A) (in expectation),
and we he achieves Rev(D) (in expectation) at first, the expected revenue that
we obtain is at least Rev(D) — Val([N] — A) which is greater than Rev(Dj4) and
contradicts with the maximality of Rev(D4). O

Proof (Proof of Lemma 2). Suppose we run a second price auction with reserve
price t;r;. Since the revenue achieved by this auction is equal to p;t;r; and is at
most Rev(D;) = r; we have p; < tl |

Proof (Proof of Lemma 3). This lemma follows from the fact that D¢ is stochas-
tically dominated by D;. Therefore Rev(D;) > Rev(D{) and thus Rev(D{) < ;.
O

Proof (Proof of Lemma 4). By definition, the probability that a random variable
drawn from D; lies in the tail is equal to p;, therefore Rev(D}) cannot be more
than p;r;, since otherwise Rev(D;) would be more than r; which is a contradic-
tion. a

Proof (Proof of Lemma 5). Suppose the seller has a magical oracle that after the
realization of desirabilities, it informs him for which items the valuation of the
buyer lies in the tail and for which items it lies in the core. Let A be the set of
items whose values lie in the tail. By definition, the maximum possible revenue
(in expectation) that the seller can achieve in this case is Rev(D#) and this
happens with probability p4, therefore having the magical oracle, the maximum
expected revenue of the seller is 3 , paRev(D?). Since this oracle gives the seller
some additional information, the optimal revenue that the seller can guarantee
in this case is at least as much as Rev(D) and hence

Rev(D) < paRev(D4).
A

C Omitted proofs of Section 6

Proof (Proof of Lemma 7). Suppose we have n similar items with valuation
function D for the buyer. By definition Rev(D) > SRev(D) since Rev(D) is
the maximal possible revenue that we can achieve. Therefore we need to show
Rev(D) cannot be more than SRev(D). Since all the items are similar, SRev(D) =
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nRev(D;) for all 1 < ¢ < n. In the rest we show Rev(D) cannot be more than n
times of Rev(D;). We design the following mechanism for selling just one of the
items:

— Pick an integer number g between 1 and n uniformly at random and keep it
private.

— Use the optimal mechanism for selling n similar items, except that the prices
are divided over n.

— At the end, give the item to the buyer that has bought item number g (if
any), and take back all other sold items.

Note that, in the buyer’s perspective both the prices and the expectation of
the number of items they buy are divided by n, therefore they’ll have the same
behavior as before. Since prices are divided by n the revenue we get by the above
mechanism is exactly ReVT(D) which implies Rev(D) < nRev(D;) and completes
the proof. ad

Proof (Proof of Lemma 9). First we prove the case m = 1. The proof is by
induction on k. For k = 1, all items are identical and by Lemma 7 Rev(D) =
SRev(D). Now we prove the case in which we have k non-similar types assuming
the theorem holds for £ — 1. Consider a partition of D into two parts S; and So
where in Sy, vic; > c;v; for each ¢ and in Sy there is at least one type ¢ such
that ¢;v; > c1v1. Let D! and D? denote the valuations conditioned on S; and
So, respectively, and let p; and po denote the probability that the valuations lie
in D' and D?. Since we do not lose revenue due to having extra information
about the domain

Rev(D) < p;Rev(D') + paRev(D?). (14)

Thus we need to bound p;Rev(D?!) and paRev(D?). Let D_; denote the distribu-
tion of valuations excluding the items of type i. Using Lemma 8, p;Rev(D?') <
p1Val(D! ) + Rev(D;) and paRev(D?) < pyVal(D?) + Rev(D_1). Hence by In-
equality (14),

Rev(D) < p1Val(D! ) + Rev(D;) + poVal(D?) + Rev(D_;). (15)

Now the goal is to bound four terms in Inequality (15). For the first term consider
the following truthful mechanism. Assume we only want to sell the items of type
one. We take a sample v ~ D and then sell all ¢; items of type one in a bundle
with price maxo<;<g{c;v;}. With probability p1, civ1 > maxo<;<i{c;v;} and
hence the bundle would be sold. Thus with probability p;, valuations lie in D!
which means for each i v1¢; > ¢;v; and the revenue we get is ¢yv1, therefore

p1Val(D!,) < kRev(Dy). (16)

For the third term we provide another truthful mechanism which can sell all
items except the items of type one. Take a sample v ~ D, put all items of the
same type in the same bundles, except the items of type one. Hence we have
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k — 1 bundles. Price all bundles equal to cyv;. With probability ps at least one
bundle has a valuation greater than c;v; and as a result would be sold and
the revenue is more than Val(D?). Moreover by Lemma 7 in each bundle the
maximum revenue is achieved by selling the items separately, thus

p2Val(D3}) < SRev(D_,). (17)
Moreover by induction hypothesis,
Rev(D,l) < kSRev(D,l)). (18)

Summing up inequalities (16), (17), and (18), p;Val(D!,)+Rev(D;)+p2Val(D?)+
Rev(D_1) < kSRev(D;)+Rev(D1)+SRev(D_1)+kSRev(D_1). Therefore, Rev(D)
(k + 1)SRev(D), as desired.

Now we prove that for any m > 1, Rev(D) < mkSRev(D). Note that any
mechanism for m buyers provides m single buyer mechanisms and Rev(D) =
>t Rev;(D), where Rev; (D) is the revenue for i-th buyer. Thus max; Rev; (D) >
LRev(D) and as a result Rev(D) < mkSRev(D). O

Proof (Proof of Lemma 10). We use the core decomposition technique to prove
this lemma. Let n; be the number of items that are similar to item i. We set
t; = r/(rin;) and then apply the Core Decomposition Lemma to prove a lower
bound for max{SRev(D), BRev(D)}. According to this lemma we have

Rev(D) < [Z pARev<Dz;)} + [va|(Dg)]
A

To prove the theorem, we first show Y , paRev(D?) < 2SRev(D) and next prove
Val(D§') < 4 - max{SRev(D), BRev(D)} which together imply

Rev(D) < [ZpAReV(DZ;)} + [VaI(DQC)}
A

< 2SRev(D) + 4 max{SRev(D), BRev(D)}
< (2 4+ 4) max{SRev(D), BRev(D)} < 6 max{SRev(D), BRev(D)}.
Proposition 2. If we set t; = r/(r;n;) the following inequality holds in the
single buyer setting.

> paRev(DY) < 2SRev(D) (19)
A

where D is a semi-independent valuation function for n items.

Proof. According to Lemma 10 we have

Rev(D%) < daSRev(D%) < da( Y Rev(DI)) < da(d g). (20)
i€A icA

<
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Therefore, the following inequality holds.

ZpARev DY) < ZpAdA Zp ). (21)

€A

where d4 is the number of non-similar items in A. By rewriting Equation (21)
we get

ZpAReV DY) SZ% ZpAdA) ZZHZJL
A i—1

A3i i1 =1 P

Z pa).  (22)

ADinda=j

Note that, Zj 1750 ZAazAdA _; Pa is the expected number of different items in
the tail, condltloned on item 7 being in the tail. All of similar items lie in the
tail together, and this probability is at most =~ = “2. Therefore, apart from
1, the expected number of different sets of snmlar 1tems in the tail is at most 1
and hence ijl.]pi > Asinda—;Pa < 2. Therefore,

ZpARev(Dﬁ) < imij;( Z pA) < iQm = 2SRev(D).
A v i=1

i=1  j=1 A>inda=j
O

C
Next, we show that max{SRev(D), BRev(D)} is at least VallDs) which com-
pletes the proof. In the proof of this proposition, we use the following Lemma

which has been proved by Li and Yao in [16].

Lemma 13. Let F' be a one-dimensional distribution with optimal revenue at
most ¢ supported on [0,tc]. Then Var(F) < (2t — 1)c?

Proposition 3. For a single buyer in semi-independent setting we have
4max{SRev(D),BRev(D)} > Val(D§') (23)
where t; =71/(rin;).

Proof. Since SRev(D) = r, the proof is trivial when Val(D§') < 4r. Therefore,
from now on we assume Val(D§') > 4r. We show that Var(D§') < 2r? and use
this fact in order to show BRev(D) is a constant approximation of Rev(D§’). To
this end, we formulate the variance of D@C as follows:

Var(Df) = Var(D{ + D§ + ...+ DF) = > Y Covar(D, DY) (24)
i=1 j=1

Note that Covar(D{’, D§') = Var(Df) if items i and j are equal and 0 otherwise.
Therefore,

Var(D§) ZVar ) X ny (25)
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Recall that Lemma 13 states that Var(Df) < 2rr;/n;, and thus

Var(Df) < ZVar(DZ-C) X n; < 227“7“,» <272 (26)

i=1 i=1

Since Val(D§') > 4r and Var(D{') < 2r?, we can apply the Chebyshev’s Inequal-
ity to show

2 Var(D) 272 25
P : < =Val(D§)| < < <= (27
T[Z“ < pVvallDy)] < (1-2)2val(D§)? ~ (1 - 2)216r2 ~ 72 (27)

This implies that the following pricing algorithm yields a revenue at least of

222Val(D{'): put a price equal to 2Val(D§') on the whole set of items as a

bundle. Since, BRev(D) is the best pricing mechanism for selling all items as a
bundle we have

47 -2

Val(DS
BRev(D) > - Val(Df) > ValiDy)

4



