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Abstract

We present a method of modeling non-lexical vocabulary items
such as numbers, times, dates, monetary amounts and address
components that avoids the data sparsity and out-of-vocabulary
problems of written-domain language models. Like previous
approaches, we use a class-based language model and efficient
finite-state class grammars during run-time decoding. We mit-
igate the problem of context-independent replacement of class
items by employing a contextual sequence labeling model to
identify which class instances should be replaced, leaving oth-
ers to appear in their original form. Applied to the task of gen-
eral voice-search audio transcription, our method achieves 10%
relative error reduction (on the numeric error rate metric) com-
pared to the previous system (based on a verbalizer transducer).
On a numeric entity recognition task, our method achieves a
23% relative error reduction on the same metric. In both cases,
word error rate remains the same or is reduced.
Index Terms: speech recognition, language modeling

1. Introduction
Recent improvements in Automatic Speech Recognition and
Natural Language Understanding have led to an increased inter-
est in developing voice-enabled personal assistants. To meet the
needs of the user, these assistants should have excellent support
for numbers, times, dates, monetary amounts, address compo-
nents and other non-lexical vocabulary items.

The task of producing correct and well-formatted written
text for non-lexical vocabulary items is a difficult one. The main
challenge is mapping between the verbal domain and the written
domain [1, 2]. First, there is ambiguity with respect to segmen-
tation. For example, “forty two dollars and thirty cents” could
be transcribed as “$42.30” or “40 $2.30” or “$42 and 30¢”,
etc. Second, there is ambiguity with respect to semantics. The
words “eleven thirty” could be a time “11:30”, a house num-
ber “1130” or they can be kept in the verbal domain as “eleven
thirty”. The correct decision depends on context.

Data sparsity and out-of-vocabulary (OOV) issues are also
a major problem for numeric entities. There may not be enough
training data to adequately estimate the n-gram statistics for ev-
ery numeric entity in the vocabulary. For some entities, such as
phone numbers, we cannot reasonably expect to have hundreds
of millions of lexicon entries to represent them all.

In this work, we resolve the above issues by using a sta-
tistical sequence tagger to identify and replace class instances
in raw text with their label, and then training a class-based lan-
guage model on the output of this tagger. We use class instance
statistics from the tagging step to train class acceptor grammars
in the verbal domain, which are substituted into the language
model at decode time as in [2].

There are a number of advantages of our approach:

• The mapping from verbal domain to written domain is
context dependent. When a user speaks “set alarm for
eleven thirty”, the class-based model produces “set alarm
for <time> eleven thirty </time>” as the most likely
path. There is no ambiguity about the correct written
form.

• The arc weights of the class grammars are adapted to the
semantic classes they represent. We obtain maximum-
likelihood probability estimates for the different verbal
forms of the same written entity.

• The OOV problem is greatly reduced as we are able
to generate written forms for any numeric entity up to
some pre-determined maximum length. The data spar-
sity problem is also greatly reduced as a result of model-
ing in the verbal domain.

2. Related Work
There have been a number of approaches to deal with the above
mentioned issues in representing classes in language models.

Verbal-domain language models attempt to first transform
all training data to the verbal domain leaving the correct format-
ting of classes to text-normalization of the verbal transcription
[3].

Language model verbalization (introduced in [1] and [2])
partially addresses the problem by introducing a finite-state ver-
balizer transducer into the decoding network. This allowed the
authors of [2] to preserve the richness of a written language
model while requiring only a verbal-domain lexicon for pro-
nunciations. Two problems remain:

Problem 1: The verbalizer transducer is not context-
dependent, thus introducing too many unnecessary
verbalization paths into the network.

Problem 2: All verbalizations are given equal probability,
which is suboptimal since adding additional rare variants
could easily hurt performance in the common case.

Class-based language models [4] have been used previ-
ously to model non-lexical vocabulary items with regular lan-
guages. While our work is based on this approach, we attempt
to avoid the problem of the context-independent replacement of
class items. In this work, we use a contextual sequence label-
ing model to identify which instances of a class should be re-
placed, leaving other instances to appear in their original form.
This is very similar to the motivation behind the Word-Phrase-
Entity (WPE) LMs presented in [5]. In the WPE models, they
show that context dependent models for class membership im-
prove performance. Unlike the iterative approach used in their
system, we directly transform the raw training material to the
class-based domain in a single pass. Another previous solu-
tion, presented in [6] used a semantic-role labeling parser to
identify date and time expressions which were then used in a
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Figure 1: Class acceptor grammar (top) and denormalization
grammar (bottom) example. These FSTs correspond to a small
excerpt of the full grammar for YEAR.

vocabulary-based deterministic tagging of the components of
these expressions.

3. Methodology
In this paper, we propose a context-aware method for building
class-based language models. To build such a system, we pro-
ceed in four steps:

1. Construct written-to-verbal verbalization grammars for
each class we wish to model.

2. Train a conditional random field (CRF) tagger to identify
spans of tokens in language model training material that
correspond to each of the classes [7].

3. Rewrite the language model training material into the
class-based domain by replacing class text spans with a
class placeholder symbol as dictated by the tagger. Save
the count statistics for pairs of (class, replaced-text).
Use these statistics to train the class acceptor grammar
weights.

4. Train the language model from the classed text produced
in the previous step and incorporate the class acceptors
with either static expansion or dynamic expansion. The
class denormalization grammars can then be applied as
a post-processing step to convert recognition results into
written form.

3.1. Constructing the verbalization grammar

We use OpenGRM1 to write the grammars. Such grammars
can be efficiently compiled into finite-state transducers [8, 9].
Suppose R is one such rewrite grammar. Then we also produce
a pair of derived grammars:

• a verbal form class acceptor grammar:

(ε : <r>) ProjectOUTPUT (R) (ε : </r>)

This grammar must be word-based and relabeled to
match the recognition engine’s word list because it is
used as part of the first-pass language model.

• a class denormalization grammar:

(<r> : ε) Invert(R) (</r> : ε)

This grammar must be character-based so that it can pro-
duce arbitrary output strings.

In Figure 1, we show the derived grammars for a simple verbal-
ization grammar that maps the written symbol “2010” to two
possible verbal forms.

1http://www.opengrm.org.

3.2. Training the class tagger

We obtained a data set of 24,246 manually labeled sentences
(175K tokens), with a mean sentence length of 7.2 tokens. Each
token is labeled with one of 17 possible tags. About 80% of the
tokens are labeled with a ‘none’ tag, meaning that the token is
not part of one of the pre-determined non-lexical classes. The
remaining tokens are tagged with an actual class tag. The counts
for the top 11 classes are given in Table 1. The data evaluators
were instructed to use the ’none’ tag when labeling a numeric
token that appears as part of a named entity (e.g. “xbox 360”).

We use the following set of baseline features:

isolated features: wi, di, ci, ni

neighboring words: wi−2, wi−1, wi+1, wi+2, wi+3

neighboring clusters: ci−2, ci−1, ci+1, ci+2, ci+3

word-digit pairs: (wi, di−1), (wi, di+1)
digit-digit pairs: (di, di−1), (di, di+1)
range features: Ri(B,E)
divisibility: Di(10)
divisibility pairs: (wi−1, Di(10))
transition: (wi, ti−1)

Here, i denotes a position in the input sentence; wi and
ti are the word and output label (respectively) at that position,
di are indicators of word types, ni are indicators of number
types, and ci is the cluster assigned to the word. We also de-
signed some domain-specific features: Di(x) indicates whether
the word at position i is a representation of an integer number
divisible by x and Ri(B,E) indicates whether it is an integer
in the range [B,E]. We also include class bias features, which
capture the class distribution found in the training set.

Tag Train Set Held-out Set
Address Number 4568 495

Day 592 76
Money 6713 780
Month 617 78

Number 9032 980
Percent 1014 130

Phone Number 1187 125
Postal Code 1210 138

Street Number 991 133
Time 2171 234
Year 2287 262

Table 1: Distribution of the 11 most common output tags in the
training set consisting of 21,817 sentences, and in the held-out
set consisting of 2,429 sentences.

3.3. Phrase cluster features

In addition to the small, supervised dataset described above, we
wish to take advantage of the large amounts of unlabeled data
available to us. The inclusion of unsupervised cluster features
is a common tactic to improve performance on rare examples
in classification, named-entity recognition [10], and slot-filling
[11]. Word clusters are already included in our baseline feature
set. Lin and Wu [12] showed good results using phrase clusters,
and we adapt their solution for our use case. We expect phrase
clusters to solve several problems that word-based features do
not handle well:

• Classes may be variable token length, especially given



poorly formatted input data: e.g. “212 555 1234” and
“212-555-1234” are both phone numbers.

• Phrase clusters provide some of the benefits of bigram or
trigram features without the data sparsity issues.

Working off a large dataset of search queries, we cluster
all phrases based on the context words around them. For each
phrase, defined as any sequence of 1 to 4 words, we gather all
of the context words that appear adjacent to the phrase. We
calculate the pointwise mutual information (PMI) between the
phrase and the word as follows, where phr is the phrase and w
is a context word:

PMI(phr, w) = log

(
P (phr, w)

P (phr)P (w)

)
Each phrase is represented as a feature vector of PMI values for
all context words. We then cluster these feature vectors using an
SVD + Varimax soft clustering to generate 200 phrase clusters.

We add two new features to the CRF tagger: one for phrase
clusters for all phrases that include the token to be classified and
one for all context phrases, i.e. phrases that surround the active
token.

Table 2 shows examples of CRF class tagging with and
without phrase cluster features. We see that phrase clusters im-
prove generalization.

Sentence (focus token in bold). Without PC With PC
007 Daniel Craig ADDRESS NONE

what was the Judiciary Act of 1789 NUMBER YEAR
65 Malibu SS ADDRESS YEAR

house for rent under 5000 MONEY MONEY
house for rent under 50 NUMBER MONEY

Table 2: CRF tags with and without phrase clusters (PC).

3.4. Augmented loss

Another method to incorporate unsupervised data is an aug-
mented loss training set, which the CRF training algorithm uses
as a secondary metric to optimize [13]. We incorporate nega-
tive training examples, i.e. sentences with numeric tokens that
should not be in any class, via an augmented loss objective.
Tagging an entity that should not be in a class hurts the result-
ing language model in two ways: (1) it allows all class members
in a context where only one makes sense and (2) it biases the
class grammar towards the specific entity (see training section
below). The augmented loss dataset combats these errors with
unsupervised negative examples.

One very common type of negative example is verbal form
numbers. Our class-based system always produces numbers in
written form (e.g. 3), but in some cases verbal form is more
appropriate (e.g. three). This is especially common for single
digit numbers. We created an augmented loss dataset of sen-
tences with single digit numbers that should be transcribed in
the verbal form.

To generate this dataset, we made the assumption that the
verbal form is preferred for single digit numbers in all contexts
where the verbal form is valid (i.e. “two items on my todo
list” but not “2 * 47”). We mined human-transcribed utterances
for examples of the numbers 1 through 9 written out in verbal
form and duplicated those sentences to use the written form as
well. Both the verbal form and written form become negative
examples. Including the written form makes the model robust
to poorly formatted user input data.

3.5. Training the class acceptors

To calculate optimal arc weights for the class acceptor gram-
mars, we use a training corpus of the replaced text identified by
the tagger. Since most of our training material is in the writ-
ten domain, and the training examples need to be in the verbal
domain, we are forced to keep only those examples that can
be converted from written to verbal form by the verbalization
grammar for that class. In practice, this limitation is negligible
since we see enough examples that match the written side of
this grammar that we can obtain a broad verbal domain sample.

Given a verbal domain training corpus, and the FST rep-
resenting the acceptor grammar (as in Figure 1 (top)), we can
efficiently estimate maximum likelihood arc weights by apply-
ing the forward-backward algorithm.

One problem with using the verbalization grammar is that
the grammar is unweighted, thus giving uniform probabilities to
all verbalization options for a written entity. We can do better
if we decode untranscribed audio data with our initial system,
and then use the verbal domain class instances hypothesized by
the recognizer (before denormalization) to supplement the class
acceptor training corpus. Furthermore, these unsupervised tran-
scripts can be filtered by recognition confidence to reduce false
positives.

We apply these grammars to the general language model
either via static composition or via dynamic composition [14,
2]. In the case that there are cycles in the grammars, dynamic
composition is the most feasible solution as it is constrained by
the speech input being decoded.

4. Experimental Results
We use two manually transcribed test sets to evaluate the perfor-
mance of our approach in the context of numeric transcription.
The first test set VOICE-SEARCH (85,409 words, including
1,927 numeric entities) is a sample from general voice-search
traffic, and tracks any regressions that appear as a result of bi-
asing too heavily toward the selected classes. The other test
set NUMERIC (22,298 words, including 3,646 numeric entities)
contains utterances we expect to benefit from class-based mod-
eling of numeric entities.

4.1. Numeric error rate

In addition to the standard word-error-rate (WER) metric, we
also employ the numeric error rate (NER) metric introduced in
[1]. This metric helps narrow in on the portion of the errors we
are interested in fixing, as well as giving a more accurate pic-
ture than WER which is insensitive to some types of formatting
mistakes.

4.2. Baseline system

Our speech recognition system is based on a long short-term
memory neural network acoustic model [15, 16] with a vocab-
ulary of approximately 4 million words. The baseline language
model is a Katz [17] smoothed 5-gram model pruned to 100M
n-grams, trained using Bayesian interpolation to balance mul-
tiple sources [18]. The OOV rate of this recognizer is 0.26%.
Our second-pass rescoring LM is a distributed model trained on
the same data fully concatenated using Katz backoff and pruned
to 15 billion n-grams [19]. The system’s lexicon transducer in-
corporates the pronunciations derived from the verbalizer trans-
ducer presented in [2].
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Figure 2: Training set size vs bracket F1 and average numeric
error rate across both test sets for model C (Online + Phrase
Clusters).

4.3. Results

NER WER
Brkt Test set Test set

Model F1 NUM VS NUM VS
Baseline - 25.0 30.7 16.2 11.0
Batch (A) 92.5 19.7 28.9 14.7 10.9
Batch+Phr (B) 92.3 19.6 28.1 14.6 10.9
Onl (G) 92.5 19.5 29.0 14.5 10.9
Onl+Phr (C) 92.3 19.3 27.6 14.5 10.9
Onl+Neg (E) 90.6 19.3 27.8 14.5 10.9
Onl+Phr+Neg (F) 91.0 19.1 28.3 14.5 10.9

Table 3: NER and WER with varying tagger models (Phr -
the Phrase Cluster models, Neg - the Negative examples in-
troduced via augmented loss, Onl - Online training). Each
tagger model was trained with 20,000 sentences. NUM
refers to the NUMERIC entities test set and VS refers to the
VOICE-SEARCH test set.

We evaluated the CRF tagger model and resulting ASR with
different configurations of features and different training meth-
ods (batch performed using an LBFGS optimizer and online us-
ing a variant of the MIRA algorithm), and compared these with
a non-class-based baseline system. All language models had the
same vocabulary size and were pruned to the same number of
n-grams.

In Figure 2 we see the effect of different CRF training set
sizes on numeric error rate and Bracket F1. Bracket F1 perfor-
mance consistently improves from 85-86% at 1K training ex-
amples, to 92% at 20K training examples. Most of the gain in
NER is achieved by about 4K to 5K examples of training data,
but there are improvements even out to 20K.

In Figure 3 we see the effect of CRF training set size on
the real-time factor vs NER. Larger CRF training sets gener-
ally perform better, and the class-based system outperforms the
baseline at most real-time factor values. In addition, the class-
based system continues to improve in quality at higher real-time
factors (up to 1.5), which provides more flexibility to select an
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Figure 3: Numeric error rate on the NUMERIC test set vs. real-
time factor for two tagger training set sizes: 1K and 20k (model
C, Online + Phrase Clusters).

operating point that meets the needs of the run-time environ-
ment.

Table 3 also shows that all class-based systems outperform
the baseline in numeric error rate (NER) and in WER on the
NUMERIC test set, with 23% relative improvement on NER for
the best models (C, E, and F). All models produce the same
WER on the VOICE-SEARCH test set, which indicates that
NER reductions are not coming at the expense of non-numeric
utterances.

As expected, phrase clusters (models B and C) improve
NER performance over the basic feature set (models A and G)
for both batch and online training. The augmented loss dataset
(model E) also improves performance over the basic feature set
(G, augmented loss is only available for online training). How-
ever, combining phrase clusters and augmented loss improves
NER on the NUMERIC test set, but hurts the VOICE-SEARCH
test set. Results like this usually imply an excessive bias to-
wards the classes in the language model, which causes over-
prediction of numeric entities. More investigation is needed to
confirm and address this problem with model F.

5. Conclusions
We presented a method for training context-dependent class-
based language models to improve recognition of non-lexical
vocabulary items. Using a contextual sequence labeling model
to identify class instances in training data mitigates the com-
mon problem of context-independent class labeling. We showed
various features and methods for training the sequence labeling
model and compared performance of different models. We con-
clude that our context-dependent class-based language models
reduce numeric error rate by 23% over the baseline system.
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