
Pruning Sparse Non-negative Matrix N-gram Language Models

Joris Pelemans1,2, Noam Shazeer1, Ciprian Chelba1

1Google, Inc., 1600 Amphitheatre Parkway
Mountain View, CA 94043, USA

2Dept. ESAT, KU Leuven, Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

{noam,jpeleman,ciprianchelba}@google.com
joris.pelemans@esat.kuleuven.be

Abstract
In this paper we present a pruning algorithm and experimental
results for our recently proposed Sparse Non-negative Matrix
(SNM) family of language models (LMs). We show that when
trained with only n-gram features SNMLM pruning based on
a mutual information criterion yields the best known pruned
model on the One Billion Word Language Model Benchmark,
reducing perplexity with 18% and 57% over Katz and Kneser-
Ney LMs, respectively.1 We also present a method for convert-
ing an SNMLM to ARPA back-off format which can be readily
used in a single-pass decoder for Automatic Speech Recogni-
tion.
Index Terms: sparse non-negative matrix, language modeling,
n-grams, pruning

1. Introduction
Recently, neural network (NN) smoothing [1], [2], [3], and
in particular recurrent neural networks (RNNs) [4], [5] have
shown excellent performance in language modeling [6]. Al-
though these models are currently the state of the art, they are
too computationally expensive to be applied directly in an Au-
tomatic Speech Recognition (ASR) decoder. Instead, decoding
is necessarily done using a multi-pass approach: in a first pass
a less advanced, but efficient n-gram model is used to gener-
ate the most likely hypotheses which are then rescored using
the NN-based model. In practical applications where there are
memory and latency constraints, even this is insufficient and
single-pass approaches using heavily pruned n-grams are a ne-
cessity [7]. Unfortunately, it turns out that pruning severely re-
duces the predictive power of the state-of-the-art Kneser-Ney
(KN) family of n-gram smoothing techniques [8] and we have
to resort to suboptimal techniques such as Katz smoothing [9].

We have recently proposed a novel LM paradigm based
on Sparse Non-negative Matrix (SNM) estimation [10]. When
trained with n-gram features, the SNMLMs perform almost as
well as KN ones, whereas the addition of skip-gram features
resulted in perplexity (PPL) results on par with RNNLMs. In
fact, linear interpolation of RNN and SNM LMs yielded the
best known result on the One Billion Word Language Modeling
Benchmark [6], with a PPL approximately equal to the inter-
polation of several other models. Moreover, the computational
advantages of SNM over both Maximum Entropy and RNNLM
estimation promise an approach that has the same flexibility in

1We have uncovered a bug in the experimental setup for SNM prun-
ing; see Errata section for correct results.

combining arbitrary features effectively and yet should scale to
very large amounts of data as gracefully as n-gram LMs do.

In this work we show that n-gram SNM models do not de-
grade with pruning as fast as KN, or Katz. We also show that
they can be converted to ARPA [11] back-off LMs, which al-
lows them to be applied in the first pass of an ASR decoder.

In the remainder of this paper we discuss pruning related
work (Section 2), describe our new SNMLM paradigm (Sec-
tion 3), compare pruning performances of Katz, Kneser-Ney
and SNMLM (Section 5) and describe how an SNMLM can
be converted to a back-off LM (Section 7). We end with con-
clusions and future work.

2. Related Work
The simplest and still widely used way of pruning n-gram LMs
is to specify a count cut-off threshold below which n-grams are
not added to the model. Though intuitive, this has the disadvan-
tage that it does not give good control over the size of the model
and that it is not self-contained i.e. to prune an existing LM one
also needs to have access to the original counts. Moreover, it
has been shown to be inferior to most if not all other pruning
criteria.

One of the first alternatives was proposed by [12] in the
form of a variable context length LM. Instead of enlarging the
context length globally for all contexts the author proposed to
do this only selectively, based on an approximate entropy cri-
terion. This idea was further developed by [13] into a sim-
ple, self-contained thresholding algorithm for n-gram pruning
which is still very popular today. The author also pointed out
that the earlier work of [14], who proposed a pruning based on
the weighted difference between lower and higher-order n-gram
probabilities, is in fact a very good practical approximation of
his relative entropy criterion. The only problem is that when an
application requires pruning the LM aggressively, e.g. to less
than 10% of its unpruned size (a case frequently encountered
in ASR), entropy pruning turns out to be poorly suited for the
family of KN smoothing techniques, as was pointed out by [15]
and [7].

Pruning can also be achieved by clustering words into
classes which can then be used to build a class-based n-gram
model, as first proposed by [16]. Moreover, the idea of clus-
tering can be combined with the above-mentioned techniques
which is illustrated in [17] who report size reductions by a fac-
tor three at the same perplexity.

Finally, another interesting way of pruning based on statis-
tical significance was recently proposed by [18] and shows that

pruning can actually lead to better models. It would be inter-
esting to know though whether this idea extends to aggressive
pruning of KN models.

3. Sparse Non-negative Matrix Language
Modeling

3.1. Model definition

In the Sparse Non-negative Matrix (SNM) paradigm, we rep-
resent the training data as a sequence of events E = e1, e2, ...
where each event e ∈ E consists of a sparse non-negative fea-
ture vector f and a sparse non-negative target word vector t.
Both vectors are binary-valued, indicating the presence or ab-
sence of a feature or target word, respectively. Although SNM
does not enforce it, for the purpose of language modeling, an
event typically has multiple features, but only a single target
word which effectively makes t a one-hot encoding of size |V|
with V the vocabulary. The training data hence consists of
|E||Pos(f)||V| training examples, where Pos(f) denotes the
set of positive elements in the vector f . Of these, |E||Pos(f)|
are positive (presence of target word) and |E||Pos(f)|(|V|−1)
are negative (absence of target word),

A language model is represented by a non-negative matrix
M that, when applied to a given feature vector f , produces a
dense prediction vector y:

y = Mf ≈ t (1)

Upon evaluation, we normalize y such that we end up with a
conditional probability distribution PM(t|f) for a model M.
For each word w ∈ V that corresponds to index j in t, and
its history that corresponds to feature vector f , the conditional
probability PM(tj |f) then becomes:

PM(tj |f) =
yj∑|V|

u=1 yu

=

∑
i∈Pos(f)Mij∑

i∈Pos(f)

∑|V|
u=1Miu

(2)

For convenience, we will write P (tj |f) instead of PM(tj |f) in
the rest of the paper.

As required by the denominator in Eq. (2), this computa-
tion involves summing over all of the present features for the
entire vocabulary. However, if we precompute the row sums∑|V|

u=1Miu and store them together with the model, the evalu-
ation can be done very efficiently in only |Pos(f)| time. Note
also that the row sum precomputation involves only few terms
due to the sparsity of M.

3.2. Adjustment function and metafeatures

We let the entries of M be a slightly modified version of the
relative frequencies:

Mij = eA(i,j)Cij

Ci∗
(3)

where A(i, j) is a real-valued function, dubbed adjustment
function, and C is a feature-target count matrix, computed over
the entire training corpus. Cij denotes the co-occurrence fre-
quency of feature fi and target tj , whereasCi∗ denotes the total
occurrence frequency of feature fi, summed over all targets.

For each feature-target pair (fi, tj), the adjustment function
computes a sum of weights θk(i, j) corresponding to k new fea-
tures, called metafeatures:

A(i, j) =
∑
k

θk(i, j) (4)

From the given input features, such as regular n-grams and skip-
grams, we construct the metafeatures as conjunctions of any or
all of the following elementary metafeatures:

• feature identity, e.g. [the quick brown]
• feature type, e.g. 4-gram
• feature count Ci∗
• target identity, e.g. fox
• feature-target count Cij

Note that the seemingly absent feature-target identity is repre-
sented by the conjunction of the feature identity and the target
identity. Since the metafeatures may involve the feature count
and feature-target count, in the rest of the paper we will write
A(i, j, Ci∗, Cij) when necessary. This will become important
in Section 3.5 where we discuss leave-one-out training.

Each elementary metafeature is joined with the others to
form more complex metafeatures which in turn are joined with
all the other elementary and complex metafeatures, ultimately
ending up with all 25−1 possible combinations of metafeatures.

As count metafeatures of the same order of magnitude carry
similar information, we group them so they can share the same
weight. We do this by bucketing the count metafeatures accord-
ing to their (floored) log2 value.

3.3. Model estimation

Estimating a model M corresponds to finding optimal weights
θk for all the metafeatures for all events in such a way that the
average loss over all events between the target vector t and the
prediction vector y is minimized, according to some loss func-
tion L.

In our previous work [10] we suggested a loss function
based on the Poisson distribution: we consider each tj in t to be
Poisson distributed with parameter yj . The conditional proba-
bility of PPoisson(t|f) then is:

PPoisson(t|f) =
∏
j∈t

y
tj
j e
−yj

tj !
(5)

and the corresponding Poisson loss function is:

LPoisson(y, t) = −log(PPoisson(t|f))

= −
∑
j∈t

[tj log(yj)− yj − log(tj !)]

=
∑
j∈t

yj −
∑
j∈t

tj log(yj) (6)

where we dropped the last term, since tj is binary-valued. Al-
though this choice is not obvious in the context of language
modeling, it is well suited to gradient-based optimization and,
as we will see, the experimental results are in fact excellent.
Moreover, the Poisson loss also lends itself nicely for multiple
target prediction which might be useful in e.g. subword model-
ing.

The adjustment function is learned by applying stochastic
gradient descent on the loss function. That is, for each feature-
target pair (fi, tj) in each event we need to update the weights

of the metafeatures by calculating the gradient with respect to
the adjustment function which works out to:

∂(LPoisson(Mf , t))

∂(A(i, j))
= fiMij(1−

tj
yj

) (7)

For the complete derivation, we refer the reader to [10].
We then use the Adagrad [19] adaptive learning rate pro-

cedure to update the metafeature weights. Rather than using
a single fixed learning rate, Adagrad uses a separate adaptive
learning rate ηk,N (i, j) for each weight θk(i, j) at the N th oc-
currence of (fi, tj):

ηk,N (i, j) =
γ√

∆0 +
∑N

n=1 ∂n(ij)2
(8)

where γ is a constant scaling factor for all learning rates, ∆0

is an initial accumulator constant and ∂n(ij) is a short-hand
notation for the N th gradient of the loss with respect to A(i, j).

3.4. Optimization

If we were to apply the gradient in Eq. (7) to each (positive and
negative) training example, it would be computationally too ex-
pensive, because even though the second term is zero for all the
negative training examples, the first term needs to be computed
for all |E||Pos(f)||V| training examples.

However, since the first term does not depend on yj , we are
able to distribute the updates for the negative examples over the
positive ones by adding in gradients for a fraction of the events
where fi = 1, but tj = 0. In particular, instead of adding the
term fiMij , we add fitj Ci∗

Cij
Mij which lets us update the gradi-

ent only on positive examples. This is based on the observation
that, over the entire training set, it amounts to the same thing:∑

e=(fi,tj)∈E

fiMij = Ci∗fiMij

= CijfiMij + (Ci∗ − Cij)fiMij

= CijfiMij(1 +
Ci∗ − Cij

Cij
)

=
∑

e=(fi,tj)∈E

fitjMij(1 +
Ci∗ − Cij

Cij
)

(9)

We note that this update is only strictly correct for batch train-
ing, and not for online training since Mij changes after each
update. Nonetheless, we found this to yield good results as well
as seriously reducing the computational cost. The online gradi-
ent applied to each training example then becomes:

∂(LPoisson(Mf , t))

∂(A(i, j))
= fitj

Ci∗ − Cij

Cij
Mij+fitj(1−

1

yj
)Mij

(10)
which is non-zero only for positive training examples, hence
speeding up computation by a factor of |V|.

3.5. Leave-one-out training

A model with a huge amount of parameters is prone to overfit-
ting the training data. The preferred way to deal with this issue
is to use held-out data to estimate the parameters. Unfortunately
the aggregated gradients in Eq. (10) do not allow us to use ad-
ditional data to train the adjustment function, since they tie the

update computation to the relative frequencies Ci∗
Cij

in the train-
ing data. Instead, we have to resort to leave-one-out training
to prevent the model from overfitting. We do this by excluding
the event that generates the gradients from the counts used to
compute those gradients. So, for each positive example (fi, tj)
of each event e = (f , t), we compute the gradient, excluding
1 from Ci∗ and Cij . For the gradients of the negative exam-
ples on the other hand we only exclude 1 from Ci∗, because we
did not observe tj . In order to keep the aggregate computation
of the gradients for the negative examples, we distribute them
uniformly over all the positive examples with the same feature;
each of the Cij positive examples will then compute the gradi-
ent of Ci∗−Cij

Cij
negative examples.

To summarize, when we do leave-one-out training we ap-
ply the following gradient update rule on all positive training
examples:

∂(LPoisson(Mf , t))

∂(A(i, j))

= fitj
Ci∗ − Cij

Cij
eA(i,j,Ci∗−1,Cij) Cij

Ci∗ − 1

+ fitj(1−
1

y′j
)eA(i,j,Ci∗−1,Cij−1)Cij − 1

Ci∗ − 1
(11)

where y′j is the product of leaving one out for all the relevant
features:

y′j = (M′f)j

M′ij = eA(i,j,Ci∗−1,Cij−1)Cij − 1

Ci∗ − 1

4. Pruning
In our first implementation, we opted for a pruning statistic mo-
tivated by the inner term of the mutual information calculation:

MI(fi, tj) = P (fi, tj)log(
P (fi, tj)

P (fi)P (tj)
)

=
Cij

C∗∗
log(

CijC∗∗
Ci∗C∗j

) (12)

A candidate n-gram defined by the feature-target pair
(fi, tj) is kept in the final model if and only if its MI(fi, tj)
value is above a chosen pruning threshold. To choose the thresh-
old, we computeMI-based quantiles which allows control over
the size of the model.

5. Experiments
Our experimental setup used the One Billion Word Benchmark
corpus2 made available by [6].

For completeness, here is a short description of the corpus,
containing only monolingual English data:

• Total number of training tokens is about 0.8 billion
• The vocabulary provided consists of 793471 words in-

cluding sentence boundary markers <S>, </S>, and was
constructed by discarding all words with count below 3

• Words outside of the vocabulary were mapped to an
<UNK> token, also part of the vocabulary

• Sentence order was randomized

2http://www.statmt.org/lm-benchmark

Model Params PPL
KN 5-gram, unpruned 1.76B 67.6
Katz 5-gram, unpruned 1.74B 79.9
SNM 5-gram, unpruned 1.74B 70.3
KN 5-gram, pruned, entropy (Stolcke) 30M 243
Katz 5-gram, pruned, entropy (Stolcke) 30M 128
SNM 5-gram, pruned, mutual information 30M 105
SNM 5-gram, pruned, mutual information 30M 149
SNM 5-gram, pruned, count cut-off 30M 146

Table 1: Perplexity (PPL) results for pruned and unpruned
Kneser-Ney (KN), Katz and SNM 5-grams.

• The test data consisted of 159658 words (without count-
ing the sentence beginning marker <S> which is never
predicted by the language model)

• The out-of-vocabulary (OoV) rate on the test set was
0.28%.

As a baseline, we trained 5-gram models with two of the
most prevalent smoothing techniques i.e. Katz [9] and inter-
polated KN [8] and pruned the models by using Stolcke’s en-
tropy criterion [13]. The SNM models were pruned according
to Eq. (12) where the pruning thresholds were chosen such that
the sizes of the pruned models being compared had roughly the
same number of parameters. For SNM n-gram LMs that means
counting the non-zero Mi∗ parameters in the denominator of
Eq. (2), just as for a back-off n-gram LM we count the proba-
bilities and back-off weights.

Table 1 shows the perplexity results of the pruned and un-
pruned models on the One Billion Word Benchmark test data
along with model sizes.

As we indicated in our earlier work, unpruned SNM n-gram
LMs are quite promising as they perform almost as well as the
well-established KN models, while still having plenty of room
for improvement. Both unpruned SNM and KN perform signif-
icantly better than Katz. Pruning the models to a size of 30 mil-
lion parameters (1.7% of the unpruned size) drastically changes
the picture: KN suffers so much from entropy pruning that its
perplexity more than triples, making it the worst pruned model
by far. Katz degrades less and does a lot better than KN, but the
mutual information-pruned version of our SNM n-gram LM is
clearly the best with a relative perplexity reduction of 18% over
Katz and as much as 57% over KN.

6. Errata to SNM Pruning Experiments
We have uncovered a bug in the SNM pruning experimental

setup: the adjustment function was estimated correctly on the
pruned model, but then applied to the full model; the latter was
used for the PPL evaluation in Table 1. The correct value is now
listed. Moreover mutual information pruning performs slightly
worse than count cut-off pruning, about 2% relative.

7. Conversion to ARPA Back-off Format
It would be attractive to represent the SNM n-gram model in the
ARPA back-off format, as we can then use it in ASR decoders
based on Finite State Transducers and apply existing imple-
mentations of the pruning techniques mentioned in Section 2.
Although we have not yet implemented such a conversion, we
show here that it is indeed possible to do this by deriving the
formulas for both the probabilities and back-off weights:

For the case of an SNMLM using only n-gram features we

can write the probability assignment as:

P (w|h) =
M(h,w) +M(h′, w) + . . .+M(·, w)

M(h, ·) +M(h′, ·) + . . .+M(·, ·)

M(h, ·) =
∑

w∈V (h)

M(h,w)

where h′ denotes the back-off context obtained by dropping the
leftmost word from h, and V (h) denotes the set of predicted
words observed in the context h in the training data. If we de-
note:

S(h,w) = M(h,w) +M(h′, w) + . . .+M(·, w)

S(h, ·) = M(h, ·) +M(h′, ·) + . . .+M(·, ·)

we have:

P (w|h) =
S(h,w)

S(h, ·)

P (w|h′) =
S(h′, w)

S(h′, ·)

This means that the back-off weight computation for n-gram
context h works out as follows:

BoW (h) =
1−

∑
w∈V (h) P (w|h)

1−
∑

w∈V (h) P (w|h′)

=
1−

∑
w∈V (h)

S(h,w)
S(h,·)

1−
∑

w∈V (h)
S(h′,w)
S(h′,·)

(13)

The numerator of Eq. (13) works out to:

1−
∑

w∈V (h)

S(h,w)

S(h, ·)

= 1−
∑

w∈V (h)

S(h′, w) +M(h,w)

S(h′, ·) +M(h, ·)

= 1−
∑

w∈V (h)

S(h′, w)

S(h′, ·) ·
S(h′, ·)

S(h′, ·) +M(h, ·)

−
∑

w∈V (h)

M(h,w)

S(h′, ·) +M(h, ·)

= 1− S(h′, ·)
S(h, ·) ·

∑
w∈V (h)

S(h′, w)

S(h′, ·) −
M(h, ·)

S(h′, ·) +M(h, ·)

= 1− M(h, ·)
S(h, ·) −

S(h′, ·)
S(h, ·) ·

∑
w∈V (h)

S(h′, w)

S(h′, ·)

=
S(h′, ·)
S(h, ·) −

S(h′, ·)
S(h, ·) ·

∑
w∈V (h)

S(h′, w)

S(h′, ·)

=
S(h′, ·)
S(h, ·) ·

1−
∑

w∈V (h)

S(h′, w)

S(h′, ·)


Substituting back in Eq. (13) we arrive at:

BoW (h) =
S(h′, ·)
S(h, ·) (14)

8. Conclusions and Future Work
We have presented an algorithm for pruning the SNMLM that
applies generally to such models whether they use only n-gram
features, or more complex features such as skip-grams.

For the case of n-gram features, the algorithm significantly
outperforms entropy pruning for the well-established Katz and
interpolated Kneser-Ney models; relative perplexity reductions
of 18% and 57%, respectively, were reported.

We have also shown that the n-gram SNMLM can be con-
verted to the standard ARPA back-off format, making it easily
usable in ASR decoders based on Finite State Transducers, or
other implementations.

Future work includes model pruning based on various other
criteria, e.g. using adjusted relative frequenciesMij in Eq. (12),
entropy pruning or significance pruning after conversion to
ARPA back-off format. In a wider scope we would also like to
explore richer features similar to [20], as well as richer metafea-
tures in the adjustment model, mixing SNM models trained on
various data sources such that they perform best on a given de-
velopment set, and estimation techniques that are more flexible
in this respect.

9. References
[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural

probabilistic language model,” Journal of Machine Learning Re-
search, vol. 3, pp. 1137–1155, 2003.

[2] A. Emami, “A neural syntactic language model,” Ph.D. disserta-
tion, Johns Hopkins University, 2006.

[3] H. Schwenk, “Continuous space language models,” Computer
Speech and Language, vol. 21, 2007.

[4] T. Mikolov, “Statistical language models based on neural net-
works,” Ph.D. dissertation, Brno University of Technology, 2012.

[5] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in Proc. Interspeech, 2012, pp.
194–197.

[6] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn,
and T. Robinson, “One billion word benchmark for measuring
progress in statistical language modeling,” in Proc. Interspeech,
2014, pp. 2635–2639.

[7] C. Chelba, T. Brants, W. Neveitt, and P. Xu, “Study on interaction
between entropy pruning and Kneser-Ney smoothing,” in Proc.
Interspeech, 2010, pp. 2242–2245.

[8] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” in Proc. ICASSP, vol. I, 1995, pp. 181–184.

[9] S. M. Katz, “Estimation of probabilities from sparse data for
the language model component of a speech recognizer,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 35,
no. 3, pp. 400–401, 1987.

[10] N. Shazeer, J. Pelemans, and C. Chelba, “Skip-gram language
modeling using sparse non-negative matrix probability estima-
tion,” CoRR, vol. abs/1412.1454, 2014. [Online]. Available:
http://arxiv.org/abs/1412.1454

[11] ARPA back-off format, SRILM - The SRI Language Modeling
Toolkit, www ed., SRI International, 2011. [Online]. Available:
http://www.speech.sri.com/projects/srilm/manpages/

[12] R. Kneser, “Statistical language modeling using a variable context
length,” in Proc. ICSLP, vol. 1, 1996, pp. 494–497.

[13] A. Stolcke, “Entropy-based pruning of backoff language models,”
in Proc. DARPA Broadcast News Transcription and Understand-
ing Workshop, 1998, pp. 270–274.

[14] K. Seymore and R. Rosenfeld, “Scalable backoff language mod-
els,” in Proc. ICSLP, vol. 1, 1996, pp. 232–235.

[15] V. Siivola, T. Hirsimäki, and S. Virpioja, “On growing and prun-
ing Kneser-Ney smoothed n-gram models,” IEEE Transactions on
Audio, Speech & Language Processing, vol. 15, no. 5, pp. 1617–
1624, 2007.

[16] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and
J. C. Lai, “Class-based n-gram models of natural language,” Com-
putational Linguistics, vol. 18, pp. 467–479, 1992.

[17] J. Goodman and J. Gao, “Language model size reduction by prun-
ing and clustering,” in Proc. ICSLP, 2000, pp. 110–113.

[18] R. C. Moore and C. Quirk, “Less is more: Significance-based
n-gram selection for smaller, better language models,” in Proc.
EMNLP. ACL, 2009, pp. 746–755.

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
Machine Learning Research, vol. 12, pp. 2121–2159, Jul. 2011.

[20] J. T. Goodman, “A bit of progress in language modeling,” Com-
puter Speech & Language, vol. 15, no. 4, pp. 403–434, 2001.

http://arxiv.org/abs/1412.1454
http://www.speech.sri.com/projects/srilm/manpages/

	 Introduction
	 Related Work
	 Sparse Non-negative Matrix Language Modeling
	 Model definition
	 Adjustment function and metafeatures
	 Model estimation
	 Optimization
	 Leave-one-out training

	 Pruning
	 Experiments
	 Errata to SNM Pruning Experiments
	 Conversion to ARPA Back-off Format
	 Conclusions and Future Work
	 References

