
ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS
– FROM HMM TO LSTM-RNN

Heiga Zen

Google

ABSTRACT

Statistical parametric speech synthesis (SPSS) combines an acous-
tic model and a vocoder to render speech given a text. Typically
decision tree-clustered context-dependent hidden Markov models
(HMMs) are employed as the acoustic model, which represent a
relationship between linguistic and acoustic features. Recently, ar-
tificial neural network-based acoustic models, such as deep neural
networks, mixture density networks, and long short-term memory
recurrent neural networks (LSTM-RNNs), showed significant im-
provements over the HMM-based approach. This paper reviews
the progress of acoustic modeling in SPSS from the HMM to the
LSTM-RNN.

Index Terms— Statistical parametric speech synthesis; artificial
neural networks; hidden Markov models; long short-term memory;

1. INTRODUCTION

The goal of text-to-speech (TTS) synthesis is to render a naturally
sounding speech waveform given a text to be synthesized. Figure 1
outlines a human speech production process. A text (or concept)
is first translated into movements of articulators and organs. Using
air-flow from a lung, vocal source excitation signals containing pe-
riodic (by vocal cord vibration) and aperiodic (by turbulent noise)
components are generated. By filtering the source signals by time-
varying vocal tract transfer functions controlled by the articulators,
their frequency characteristics are modulated. Finally, the filtered
source signals are emitted. The aim of TTS is to mimic this process
by computers in some way.

Text-to-speech can be viewed as a sequence-to-sequence map-
ping problem; from a sequence of discrete symbols (text) to a real-
valued time series (waveform). Typical TTS systems consist of text
analysis and speech synthesis parts. The text analysis part includes
a number of natural language processing (NLP) steps, such as word
segmentation, text normalization, part-of-speech (POS) tagging, and
grapheme-to-phoneme (G2P) conversion. This part performs a map-
ping from a sequence of discrete symbols to another sequence of
discrete symbols (e.g., sequence of characters to sequence of words).
The speech synthesis part performs mapping from a sequence of dis-
crete symbols to real-valued time series. It includes prosody predic-
tion and speech waveform generation. The former and latter parts
are often called “front-end” and “back-end” in TTS, respectively.
Although both of them are important to achieve high-quality TTS
systems, this paper focuses on the latter one.

Statistical parametric speech synthesis (SPSS) [1] is one of the
major approaches in the back-end part. This approach uses an acous-
tic model to represent the relationship between linguistic and acous-
tic features and a vocoder to render a speech waveform given acous-
tic features. This approach offers various advantages over concate-
native speech synthesis [2], which is another major approach in the
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Fig. 1. Outline of speech production process.

back-end part of TTS systems, such as small footprint [3,4] and flex-
ibility to change its voice characteristics [5–8]. However, the natu-
ralness of the synthesized speech from SPSS is not as good as that
of the best samples from concatenative speech synthesizers. Zen et
al. reported three major factors that can degrade the naturalness [1];
quality of vocoder, accuracy of acoustic model, and effect of over-
smoothing. This paper addresses the accuracy of acoustic model.

Although there have been many attempts to develop a more ac-
curate acoustic model for SPSS [9–19], the hidden Markov model
(HMM) [20] is the most popular one. Statistical parametric speech
synthesis with HMMs is known as HMM-based speech synthesis [9].

Inspired from the success in machine learning and automatic
speech recognition, 5 different types of artificial neural network-
based acoustic models were proposed in 2013 [21–25]. Zen et al.
proposed an approach which uses a multi-layer artificial neural net-
work to represent a mapping function from linguistic features to
acoustic features [21]. It had significant impact to the research com-
munity and opened a research direction. Although this approach is
relatively new, it has already exploded in popularity, e.g., [21, 25–
39]. Here, an artificial neural network is trained to learn a map-
ping function from linguistic features (input) to acoustic features
(output) [21]. Artificial neural network-based acoustic models of-
fer an efficient and distributed representation [40] of complex de-
pendencies between linguistic and acoustic features [41] and have
shown the potential to produce natural sounding synthesized speech
[21, 26]. It was further extended to predict full conditional multi-
modal probability distribution of acoustic features rather than pre-
dicting only conditional single expected values [29]. Another signif-
icant extension is the use of recurrent neural networks (RNNs) [42],
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Fig. 2. Flowchart of a typical SPSS system.

especially long short-term memory RNNs (LSTM-RNNs) [43], to
model the sequential nature of speech, which have correlations be-
tween consecutive frames. The state-of-the-art LSTM-RNN-based
SPSS achieved significantly better subjective mean opinion scores
(MOSs) than the HMM and feed-forward deep neural network-based
approaches [38, 44].

Note that use of neural networks in speech synthesis is not a new
idea; in 1990s, there were a few papers about applications of neural
networks to speech synthesis [45, 46]. The main difference between
the current and previous generations of neural network-based TTS
systems include increase in the amount of data, having more layers,
improvements of training algorithms, and existence of various algo-
rithms used in HMM-based speech synthesis, such as high-quality
vocoders (e.g., STRAIGHT [47], Vocaine [48]) and oversmooth-
ing compensation techniques (e.g., global variance [49], modulation
spectrum [50]).

This paper aims to provide a review of the progress of acous-
tic modeling in SPSS, starting from the HMM to the recent LSTM-
RNN. The rest of this paper is organized as follows. Section 2
revisits HMM-based speech synthesis. Sections 3 and 4 summa-
rize alternative acoustic models and context dependency modeling
techniques, respectively. Section 5 describes neural network-based
acoustic models. Concluding remarks are shown in the final section.

2. HMM-BASED SPEECH SYNTHESIS

Figure 2 illustrates a typical SPSS system which consists of training
and synthesis stages. At the training stage, acoustic (real-valued) and
linguistic (discrete) feature sequences are extracted from a speech
waveform and its transcription, respectively. Then an acoustic model
is trained to model the conditional distribution of an acoustic feature
sequence given a linguistic feature sequence as

Λ̂ = arg max
Λ

p(o | l,Λ), (1)

where o is the acoustic feature sequence, l is the linguistic feature
sequence, and Λ denotes the acoustic model.

At the synthesis stage, a text to be synthesized is first con-
verted to the corresponding linguistic feature sequence. Then the
most probable acoustic feature sequence for the linguistic feature
sequence is predicted from the trained acoustic model as1

ô = arg max
o

p(o | l, Λ̂). (2)

Finally, a speech waveform is rendered from the predicted acoustic
feature sequence using a vocoder.

This section reviews acoustic modeling and acoustic feature pre-
diction in HMM-based speech synthesis.

1 Although random sampling from the trained acoustic model is also
possible, samples from current acoustic models sound noisy and unnatu-
ral [39, 51].
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Fig. 3. Graphical model for an HMM. Circles and squares denote
real-valued and discrete random variables, respectively. Likewise,
clear means hidden variables, whereas shaded means observed ones.

2.1. Modeling

The HMM [20] with single Gaussian state-output distributions uses
an acoustic model of the form

p(o | l,Λ) =
∑
∀q

p(o | q,Λ)P (q | l,Λ) (3)

=
∑
∀q

T∏
t=1

p(ot | qt,Λ)P (qt | qt−1, l,Λ) (4)

=
∑
∀q

T∏
t=1

N (ot;µqt ,Σqt)aqtqt−1 (5)

where ot is an acoustic feature vector at frame t, T is the num-
ber of frames, q = {qt, . . . , qT } is a sequence of hidden discrete
states, qt is a hidden state at frame t, µqt and Σqt correspond to the
mean vector and covariance matrix associated with the state-output
distribution at qt, aij is the transition probability from state i to j,
aq1q0 is the initial state probability of state q1, l = {l1, . . . , lP } is
a sequence of linguistic features associated with o, lp is a linguis-
tic feature vector associated with p-th phoneme, and Λ denotes a set
of context-dependent phoneme HMMs. The parameters of HMMs
can be estimated based on the maximum likelihood (ML) criterion
by the expectation-maximization (EM) algorithm [20]. A graphical
model [52] for the HMM is shown in Fig. 3. It can be seen from the
figure that ot depends only on qt; statistics remain unchanged if the
associated discrete state is the same.

It is well known that the acoustic features of a particular phone
in human speech are not only determined by the individual phonetic
content but also affected by various background events associated
with the phone. The background events which can affect the acous-
tic realization of a phone are referred to as its contexts. There are
normally around 50 different types of contexts used in SPSS [53].
The standard approach to handling contexts in HMM-based acoustic
modeling is to use a distinct HMM for each individual combination
of contexts, referred to as a context-dependent HMM. The amount of
available training data is normally not sufficient for robustly estimat-
ing all context-dependent HMMs since there is rarely sufficient data
to cover all of the context combinations required. To address these
problems, top-down decision tree based context clustering [54] is
widely used. Figure 4 illustrates this approach. The state-output dis-
tributions of the context-dependent HMMs are grouped into “clus-
ters” and the distribution parameters within each cluster are shared.
The assignment of HMMs to clusters is performed by examining the
context combination of each HMM through a binary decision tree,
where one context-related binary question is associated with each
non-terminal node. The decision tree is constructed by sequentially
selecting the questions which yield the largest log likelihood gain
of the training data. With the use of context-related questions and
state parameter sharing, the unseen contexts and data sparsity prob-
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Fig. 4. Top-down decision tree-based clustering of HMM states.

lems are effectively addressed. As the approach has been success-
fully used in speech recognition, HMM-based statistical parametric
speech synthesis naturally employs a similar approach to model very
rich contexts.

2.2. Synthesis

The synthesis stage aims to find the most probable acoustic feature
sequence ô given a linguistic feature sequence l and a set of trained
context-dependent HMMs Λ̂. Equation 2 can be approximated as

ô = arg max
o

p(o | l, Λ̂) (6)

= arg max
o

∑
∀q

p(o, q | l, Λ̂) (7)

≈ arg max
o,q

p(o, q | l, Λ̂) (8)

= arg max
o,q

p(o | q, l, Λ̂)P (q | l, Λ̂) (9)

≈ arg max
o

p(o | q̂, Λ̂) (10)

where q̂ = arg maxq P (q | l, Λ̂).2 If each HMM has the left-
to-right topology and single Gaussian state-output distributions, the
solution of Eq. (10) becomes as follows

ô = arg max
o

T∏
t=1

p(ot | q̂t, Λ̂) (11)

= arg max
o

T∏
t=1

N (ot;µq̂t ,Σq̂t) (12)

= arg max
o
N (o;µq̂,Σq̂) (13)

= µq̂ (14)

where µq̂t and Σq̂t are the mean vector and covariance ma-
trix associated with q̂t, and µq̂ = [µ>q̂1 , . . . ,µ

>
q̂T

]> and Σq̂ =
diag[Σq̂1 , . . . ,Σq̂T ] are the mean vector and the covariance matrix
over the entire utterance given q. Figure 5 illustrates statistics of
a series of left-to-right HMMs with single Gaussian state-output
distributions given a state sequence. It can be seen from the figure
that µq̂ becomes a step-wise sequence due to the use of discrete
states and conditional independence assumptions. It is known that
speech reconstructed from µq̂ has audible discontinuity at state
boundaries [55].

2 q̂ is typically determined by a set of state duration models.
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Fig. 5. Illustration of statistics of a series of left-to-right HMMs with
single Gaussian state-output distribution given a state sequence.
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Fig. 6. Illustration of statistics of static and dynamic features of a
series of left-to-right HMMs with single Gaussian state-output dis-
tribution given a state sequence.

To address this problem, Tokuda et al. introduced dynamic fea-
tures [56,57] as constraints and proposed the speech parameter gen-
eration algorithm [58]. Typically an observation vector ot consists
of static acoustic features ct (e.g., cepstrum) and dynamic acoustic
features ∆ct (e.g., delta cepstrum). The dynamic acoustic features
are often computed as a linear combination of its neighbouring static
acoustic features as

ot = [c>t ,∆c
>
t ]>, (15)

∆ct =

L∑
τ=−L

wτct, (16)

where L is a window length and wτ is a window coefficient. In
this case, the relationship between observation vector sequence
o = [o>1 , . . . ,o

>
T ]> and static acoustic feature vector sequence

c = [c>1 , . . . , c
>
T ]> can be expressed in a matrix form as

o = Wc, (17)

where W is a sparse window coefficient matrix that appends dy-
namic acoustic features to c. The speech parameter generation algo-
rithm introduces Eq. (17) as a constraint of Eq. (10) as

ô = arg max
o
N (o;µq̂,Σq̂) s.t. o = Wc. (18)

This is equivalent to maximize w.r.t. c rather than o as

ĉ = arg max
c
N (Wc;µq̂,Σq̂) (19)

= arg max
o

logN (Wc;µq̂,Σq̂). (20)

The partial derivative of the log output probability part in Eq.(20)
w.r.t. c yields

∂ logN (Wc;µq̂,Σq̂)

∂c
∝ ∂

∂c
(Wc− µq̂)>Σ−1

q̂ (Wc− µq̂)

= W>Σ−1
q̂ Wc−W>Σ−1

q̂ µq̂ (21)



By equating Eq. (21) to 0, a set of linear equations to determine ĉ is
derived as

W>Σ−1
q̂ Wc = W>Σ−1

q̂ µq̂. (22)

Although the dimensionality of Eq. (22) can be tens of thousands,
it can be solved efficiently with O(LT ) operations by utilizing
Cholesky decomposition and the sparse structure inW and Σq [58].

Figure 6 plots statistics of static and dynamic acoustic features
and the most probable static acoustic features c. It can be seen from
the figure that ĉ becomes smooth and satisfies the statistics of both
static and dynamic acoustic features. The determined static acoustic
features are used with a vocoder to reconstruct a speech waveform
given a text.

2.3. Characteristics of HMM-based acoustic modeling

The HMM has the following characteristics;

• Inconsistent; dynamic feature constraints are not used at the
training stage, i.e., Eq. (1) is used, whereas they are used at
the synthesis stage [51], i.e., Eq. (18) rather than Eq. (2) is
used.

• Efficient clustering; efficient algorithm for decision tree-
based clustering exists.

• Tractable training; efficient algorithm to marginalize over
hidden variables exists thus training by the EM algorithm is
possible.

• High latency; latency isO(T ) as finding ĉ1 requires statistics
at all frames in a utterance. With the time-recursive version
of the speech parameter generation algorithm [59, 60], it re-
duces to O(D) where D is the number of frame lookahead
(typically 5 for vocal tract acoustic features and 20 for vocal
source acoustic features).

• Fast synthesis; computational cost to synthesize entire speech
is relatively low.

• Hard to debug; In general, it is hard to find causes of prob-
lematic synthesis by SPSS. With the HMM-based acoustic
model, first a problematic leaf node needs to be figured out,
then statistics and data associated with the leaf node needs to
be checked. On the other hand, concatenative TTS is easier
to debug as it uses natural segments rather than statistics.

The code to test HMM-based SPSS is available online [61].

3. ALTERNATIVE ACOUSTIC MODELS

There have been a number of attempts to replace the HMM by
an alternative acoustic model, such as trended HMMs [10], buried
Markov models [11], trajectory HMMs [12], polynomial segment
models [13], linear dynamical models (LDMs) [14, 18], product
of experts (PoEs) [16], autoregressive HMMs (ARHMM) [15],
Gaussian process regression [17], and hidden trajectory model [19].
Some of them can produce smoothly varying acoustic features with-
out using dynamic feature constraints. Here a few of them are
picked up and their details including definition, graphical models,
and characteristics are described.
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Fig. 7. Graphical model for a first-order ARHMM.
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Fig. 8. Graphical model for a LDM.
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Fig. 9. Graphical model for a trajectory HMM with dynamic features
computed from the current and ±1 frames [16].

3.1. Autoregressive HMM

The autoregressive HMM [15] uses an acoustic model of the form

p(c | l,Λ) =
∑
∀q

p(c | q,Λ)P (q | l,Λ) (23)

=
∑
∀q

T∏
t=1

p(ct | ct−1:t−K , qt,Λ)P (qt | qt−1, l,Λ)

(24)

=
∑
∀q

T∏
t=1

N

(
ct;

K∑
k=1

A(k)
qt ct−k + bqt ,Σqt

)
aqtqt−1

(25)

whereA(k)
qt and bqt are the k-th order autoregressive coefficient ma-

trix and a bias vector associated with qt, respectively. A graphical
model for the caseK = 1 is shown in Fig. 7. It can be seen from the
figure that although the ARHMM uses the discrete hidden states like
the HMM it has additional dependency between adjacent frames.
This dependency gives the ability to generating a smoothly varying
acoustic feature sequence. The ARHMM has the following charac-
teristics;

• Consistent; dynamic features are not used at both training and
synthesis stages [51].

• Efficient clustering; efficient algorithm for decision tree-
based clustering exists [62].

• Tractable training; efficient algorithm to marginalize over
hidden states exists thus training by the EM algorithm is
possible.

• Low latency; latency isO(1) as finding ĉ1 requires the statis-
tics at the first frame only [15].



• Fast synthesis; computational cost to synthesize entire speech
is lower than the HMM.

• Similar naturalness; subjective score was similar to the HMM
[15].

• Hard to debug; In general, it is hard to find causes of problem-
atic synthesis by SPSS. First a problematic leaf node needs to
be figured out, then statistics of the ARHMM and data asso-
ciated with the leaf node needs to be checked.

The code to test ARHMM-based SPSS is available online [63].

3.2. Linear Dynamical Model

The linear dynamical model [14, 18], which is also known as linear-
Gaussian state-space model, uses an acoustic model of the form

p(c | l,Λ) =

∫
x

p(c | x,Λ)p(x | l,Λ)dx (26)

=

∫
x

T∏
t=1

p(ct | xt,Λ)p(xt | xt−1, l,Λ)dx (27)

=

∫
x

T∏
t=1

N (ct;Bxt,Q)N (xt;Cxt−1,R)dx (28)

where xt is a continuous hidden state vector,B andC are observa-
tion and evolution matrices, respectively, andR andQ are diagonal
covariance matrices for xt and ct, respectively. A graphical model
is shown in Fig. 8. Unlike the HMM and ARHMM, it uses contin-
uous hidden states rather than discrete ones. The use of continuous
states gives the ability to generate smoothly varying acoustic fea-
tures to the LDM. To have context-dependent modeling capability
and finer time resolution, Tsiaras trained a LDM at each HMM state;
state-level forced alignment was first performed with a set of trained
HMMs then a LDM is trained at each HMM state given alignments.3

The LDM has the following characteristics;

• Consistent; dynamic features are not used at both training and
synthesis stages.

• Clustering; although an algorithm for decision tree-based
clustering exists, it requires running the EM algorithm at
each split to evaluate the log likelihood [65].

• Tractable training; efficient algorithm to marginalize over
hidden states exists thus training by the EM algorithm is
possible [66].4

• Low latency; latency isO(1) as finding ĉ1 requires the statis-
tics at the first frame only [18].

• Fast synthesis; computational cost to synthesize entire speech
is lower than the HMM.

• Similar naturalness; subjective score was similar to the HMM
[65].

• Hard to debug; In general, it is hard to find causes of problem-
atic synthesis by SPSS. First a problematic leaf node needs to
be figured out, then statistics of the LDM and data associated
with the leaf node needs to be checked.

3 This can be viewed as a special case of the switching linear dynamical
system [64] where state boundaries are known and fixed.

4 Marginalizing over hidden variables becomes intractable once state
boundaries are also treated as hidden variables [64].

3.3. Trajectory HMM

The trajectory HMM [12] was derived from the HMM by imposing
explicit relationships between static and dynamic features. It uses an
acoustic model of the form

p(c | l,Λ) =
∑
∀q

p(c | q,Λ)P (q | l,Λ) (29)

=
∑
∀q

N (c; c̄q,Pq)

T∏
t=1

aqtqt−1 (30)

=
∑
∀q

1

Zq

T∏
t=1

N (ot;µqt ,Σqt)aqtqt−1 (31)

where c̄q and Pq are the mean vector and the covariance matrix for
q, respectively. They are given as

c̄q =
(
W>Σ−1

q W
)−1

W>Σ−1
q µq, (32)

Pq =
(
W>Σ−1

q W
)−1

. (33)

Note that c̄q is equivalent to ĉ determined by solving Eq. (22), and
the inverse of Pq is the same as the coefficient matrix of Eq. (22).
A graphical model is shown in Fig. 9. Unlike the HMM, ARHMM,
and LDM, the trajectory HMM is represented as a undirected graph-
ical model. The HMM, ARHMM, and LDM are locally normal-
ized model, i.e., the overall distribution p(c | q, λ) is the product
of the individual factors for each time t, each of which is normal-
ized to be a valid probability distribution. On the other hand, the
trajectory HMM is a globally normalized model, i.e., first take the
product of the unnormalized individual factors for each time t, then
normalize [51]. Zen et al. also showed that the trajectory HMM
could be formulated as a Gaussian Markov random field (GMRF)
and a PoE [16] for sequences. The trajectory HMM has the follow-
ing characteristics;

• Consistent; dynamic features are used at both the training and
synthesis stages.

• Intractable clustering; no efficient decision tree-based cluster-
ing algorithm exists. Decision trees built for HMMs are often
employed.

• Intractable training; no efficient algorithm to marginalize over
hidden variables. A single state sequence [67] or Monte Carlo
[68] approximation is typically used.

• High latency; latency isO(T ) as finding the first frame of c̄q
requires statistics at all frames in a utterance.

• Fast synthesis; computational cost to synthesize entire speech
is the same as the HMM.

• Better naturalness; better naturalness than the HMM and
ARHMM [15].

• Hard to debug; In general, it is hard to find causes of problem-
atic synthesis by SPSS. First a problematic leaf node needs to
be figured out, then statistics of the trajectory HMM and data
associated with the leaf node needs to be checked.

Note that minimum generation error (MGE) training of HMMs with
squared loss [69] is equivalent to minimum mean squared error train-
ing of trajectory HMM.
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Fig. 10. Illustration of intersection three cluster-dependent decision
trees [76, 78]. Here 36 distinct distributions can be composed from
10 leaf nodes.

4. ADVANCED CONTEXT DEPENDENCY MODELING

The acoustic models described above utilize top-down decision trees
to capture context dependency. Although many different types of
acoustic models are used, they are actually better interpreted as large
regression trees which map a linguistic feature vector to the statistics
(e.g., mean and variance) of acoustic features [70].

As decision trees are the main regression model in these SPSS
approaches, improving the performance of decision trees themselves
is also important. There have also been attempts to improve the de-
cision trees themselves, such as cross validation [71, 72], outlier de-
tection [73], boosting [74], and tree intersection [75–79].

One example of tree intersection is cluster adaptive training
(CAT) [80] with cluster-dependent decision trees [76, 78]. Unlike
the standard CAT setup, where all clusters are assumed to share the
same decision trees, this approach allows cluster-dependent decision
trees. The mean vector of a single Gaussian state-output distribution
associated with state i of a context-dependent HMM is represented
an interpolation among its bases as

µi =

P∑
p=1

λpξc(i,p) (34)

where P is the number of clusters, λp is a CAT interpolation weight
for cluster p, c(i, p) is a function returns the leaf node of a deci-
sion tree given cluster p and state i, and ξj is a cluster mean vec-
tor associated with leaf node j. Figure 10 illustrates intersection of
three cluster-dependent decision trees. This framework allows the
model to have the large number of distinct distributions from the
small number of leaf nodes. This approach is computationally much
more expensive than the standard approach due to the introduction
of dependencies among trees. Iterative [75,78] and joint [76,79] tree
building algorithms have been proposed.

5. ARTIFICIAL NEURAL NETWORK-BASED SPEECH
SYNTHESIS

As mentioned in the previous section, the decision tree-clustered
context-dependent acoustic models can be interpreted as large re-
gression trees that map linguistic features to statistics of acoustic

h 1t

h 2t

h3t

ot

l t

Fig. 11. A 3-layer DNN-based acoustic model. hij denotes activa-
tion at i-th layer at j-th frame.

features. Zen et al. proposed an alternative scheme [21] that is based
on a deep architecture [81]; the regression tree is replaced by a multi-
layer artificial neural network.

The properties of the artificial neural network are contrasted
with those of the decision tree as follows;

• Decision trees are inefficient to express complicated functions
of input features, such as XOR, d-bit parity function, or mul-
tiplex problems [82]. To represent such cases, decision trees
will be prohibitively large. On the other hand, they can be
compactly represented by an artificial neural network [81].

• Decision trees rely on a partition of the input space and using
a separate set of parameters for each region associated with
a terminal node (a.k.a. local representation). This results in
reduction of the amount of the data per region and poor gener-
alization. Artificial neural networks offers distributed repre-
sentation [40], which is more efficient than local one to model
data with componential structure and provides better general-
ization as weights are trained from all training data. They also
offer incorporation of high-dimensional, disparate features as
inputs.

• The human speech production system is believed to have lay-
ered hierarchical structures in transforming the information
from the linguistic level to the acoustic level [83]. The lay-
ered hierarchical structure in an artificial neural network will
offer a better representation than models based on the shallow
architectures (e.g., regression trees).

5.1. DNN

Figure 11 illustrates feed-forward, multi-layer artificial deep neu-
ral network (DNN)-based acoustic modeling for SPSS [21], that di-
rectly converts an input linguistic feature vector to an output acous-
tic feature vector. In this approach, frame-level input linguistic fea-
tures lt rather than phoneme-level ones are used. They include bi-
nary answers to questions about linguistic contexts (e.g., is-current-
phoneme-vowel?), phoneme-level numeric values (e.g., the number
of words in the phrase, duration of the current phoneme), and frame-
level features (e.g., the relative position of the current frame in the
current phoneme). The target acoustic feature vector ot includes
vocal tract and source parameters and their dynamic features. The
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Fig. 12. Dependency graph of a 3-layer DNN.

weights of the DNN are trained using pairs of input and target fea-
tures at each frame by back propagation. A dependency graph5 of
3-layer DNN is shown in Fig. 12. It can be seen from the figure that
there is no dependency between adjacent frames. Lack of the depen-
dency results in discontinuity between adjacent frames. To address
this problem, Zen et al. added dynamic acoustic features to outputs
then used the speech parameter generation algorithm to generate the
final smoothly varying static acoustic features [21]. Like the acoustic
models in the previous section, the DNN has the following charac-
teristics;

• Inconsistent; dynamic features are not used at the training
stage but used at the synthesis stages.6

• No clustering; Mapping from a linguistic feature vector to an
acoustic feature vector is embedded to network weights rather
than a tree.

• Efficient training; can be trained by back propagation and
stochastic gradient descent (SGD). Like the LDM and trajec-
tory HMM, phoneme- or state-level boundaries are provided
by a set of HMMs. These alignments are fixed while training
the DNN.

• High latency; latency isO(T ) as it uses the speech parameter
generation algorithm like HMM-based approach.

• Slow synthesis; synthesizing entire utterance is computation-
ally much more expensive than the HMM. With the HMM,
finding statistics of acoustic features is done by traversing
decision trees, whereas the DNN requires forward propaga-
tion, which includes matrix multiplication operations. Fur-
thermore, this process needs to run at every frame, while it is
required at every state with the HMM.

• Better naturalness; subjective score was better than the nor-
mal HMM [21].

• Weights in a DNN are harder to interpret than decision trees.
However, visualizing the data and weights will be helpful.

The feed-forward DNN-based acoustic model was further ex-
tended to predict full conditional multimodal distribution of acoustic
features rather than predicting only conditional single expected val-
ues using a mixture density output layer [29].
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Fig. 13. Overview of a memory block in a LSTM-RNN.

5.2. RNN

One limitation of the feed-forward DNN-based acoustic modeling is
that the sequential nature of speech is ignored. Although certainly
there are correlations between consecutive frames in speech data,
the DNN-based approach assumes that each frame is independent.
It is desirable to incorporate the sequential nature of speech data to
the acoustic model itself. Recurrent neural networks [42] provide
an elegant way to model speech-like sequential data that embodies
correlations between neighboring frames. It can use all the available
input features to predict output features at each frame [85]. Tuerk
and Robinson [45] and Karaani et al. [46] applied simple RNNs
to speech synthesis, whereas LSTM-RNN [43], which can capture
long-term dependencies, were recently applied to acoustic modeling
for SPSS [38, 44, 86].

The LSTM-RNN architecture is designed to model temporal se-
quences and their long-term dependencies [43]. It has special units
called memory blocks. Figure 13 illustrates a memory block in a
LSTM-RNN. A memory block contains a memory cell with self-
connections storing the temporal state of the network in addition to
3 special multiplicative units called gates to control the flow of infor-
mation. These gates act as a differentiable random access memory
(RAM); accessing memory cell is guarded by “input”, “output”, and
“forget” gates. This architecture allows LSTM-RNNs to keep infor-
mation in their memory cells much longer than the simple RNNs.

Typically, feedback loops at hidden layers of an RNN are unidi-
rectional; the input is processed from left to right, i.e., the flow of the
information is only forward direction. To use both past and future in-
puts for prediction, Schuster proposed the bidirectional RNN archi-
tecture [85]. It has forward and backward feedback loops that flow
the information in both directions. This architecture enables the net-
work to predict outputs using inputs of entire sequence. The bidirec-
tional LSTM-RNNs (BLSTM-RNN) were also proposed [87]. Fan
et al. and Fernandez et al. applied deep bidirectional LSTM-RNNs,
which can access input features at both past and future frames, to
acoustic modeling for SPSS and reported improved naturalness [44,
86]. Zen et al. applied the unidirectional LSTM-RNN (ULSTM-
RNN), which can access input features up to the current frame, to
achieve low-latency speech synthesis [38].

A dependency graph of 3-layer ULSTM-RNN with a recurrent
output layer is shown in Fig. 14. It can be seen from the figure that it

5 Noted that although this representation is similar to graphical models,
a graphical model represents the conditional dependencies while the neural
network representation shows the computational structure [84].

6 Incorporating dynamic feature constraints into the training stage of
DNN makes these stages consistent [35].
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Fig. 14. Dependency graph of a 3-layer unidirectional LSTM-RNN
with recurrent output layer.

has dependency between adjacent frames at both hidden and output
layer levels. Zen et al. reported that having a recurrent output layer
helped to produce more smoothly-varying acoustic features and im-
proved the naturalness. The LSTM-RNN has the following charac-
teristics;

• Consistent; dynamic features are not used at both training and
synthesis stages.

• No clustering; Mapping from a linguistic feature vector se-
quence to an acoustic feature vector sequence is embedded to
network weights rather than a tree.

• Efficient training; can be trained by back propagation through
time [88] and SGD. Phoneme-level alignments provided by
the HMM are fixed while training the LSTM-RNN.

• Low latency; an acoustic feature sequence predicted from
an LSTM-RNN varies smoothly [38, 44]. Unidirectional
LSTM-RNNs offer frame-synchronous generation without
look-ahead.

• Slow synthesis; synthesizing entire utterance is computation-
ally more expensive than the HMM but less than the DNN,
as the network size can be smaller than the DNN and the
smoothing step is not required.

• Better naturalness; subjective score was better than DNN
[38].

• Weights in a LSTM-RNN are even harder to interpret than
decision trees and a DNN. Visualizing the data and network
weights is also harder due to its dynamic nature.

Table 1 summarizes the acoustic models for SPSS discussed in
this paper. The ULSTM-RNN has several good properties as an
acoustic model for SPSS; consistency between training and synthe-
sis, compact model by distributed representation, low latency, and
better naturalness. Although it uses fixed phoneme alignments at
training, this limitation can be alleviated [89]. Some modern mobiles
devices are fast enough to run the inference with the ULSTM-RNN.
Further progress in visualization of neural networks will be helpful
to debug problematic synthesis cases. Unidirectional LSTM-RNN-
based SPSS has been used in several services from Google.

6. CONCLUSIONS

Statistical parametric speech synthesis combines vocoder and acous-
tic models to render a speech waveform given a text. Although SPSS
offers various advantages over concatenative speech synthesis, such
as flexibility to change its voice characteristics and small footprint,

the naturalness of synthesized speech from SPSS is still not as good
as the best samples from concatenative one. The accuracy of acous-
tic models is one of the factors that degrade the naturalness.

This paper reviewed the progress of acoustic models in SPSS
from the acoustic trajectory and context modeling point of views.
Although a number of different types of acoustic models have been
applied to SPSS, the HMM has been the most popular one for the last
two decades. However, recently proposed artificial neural network-
based acoustic models look promising and have started replacing
HMMs in SPSS.

One major reason why the HMM has been a dominant acoustic
model in SPSS is the existence of open-source software to build end-
to-end systems [61]. As there are a number of open-source software
for deep learning [90–93], the author expects that artificial neural
networks will be the next dominant acoustic model in the very near
future.
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