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Abstract
Quantum annealing is a heuristic quantum
algorithm which exploits quantum resources
to minimize an objective function embedded
as the energy levels of a programmable phys-
ical system. To take advantage of a poten-
tial quantum advantage, one needs to be able
to map the problem of interest to the native
hardware with reasonably low overhead. Be-
cause experimental considerations constrain
our objective function to take the form of
a low degree PUBO (polynomial uncon-
strained binary optimization), we em-
ploy non-convex loss functions which are
polynomial functions of the margin. We show
that these loss functions are robust to la-
bel noise and provide a clear advantage over
convex methods. These loss functions may
also be useful for classical approaches as they
compile to regularized risk expressions which
can be evaluated in constant time with re-
spect to the number of training examples.

1. Introduction

1.1. Quantum annealing

While it is well known that gate model quantum algo-
rithms provide an exponential speedup over the best
known classical approaches for some problems (Shor,
1997; Kitaev et al., 2002), we are still technologically
far from the ability to construct a large scale quantum
computer which can robustly implement such algo-
rithms for nontrivial problem instances. By contrast,
rapid advances in superconducting qubit technology
(Barends et al., 2014) have provided a scalable plat-
form for engineering medium-scale, controllable quan-
tum systems at finite temperature. Such devices would

be able to implement a quantum version of simulated
annealing (Kirkpatrick et al., 1983) known as quantum
annealing (Kadowaki & Nishimori, 1998; Farhi et al.,
2000; Santoro et al., 2002; Somma et al., 2008).

Because it is NP-Hard to determine the lowest en-
ergy configuration of a system of binary spins sub-
ject to controllable linear and quadratic energy terms
(Barahona, 1982), the ability to engineer and cool such
a system provides an approach to solving any opti-
mization problem in the class NP. In general, we do
not expect that any device can efficiently solve in-
stances of NP-Hard problems in the worst case. How-
ever, there is evidence that quantum resources such
as tunneling and entanglement are generic computa-
tional resources which may help to solve problem in-
stances which would be otherwise intractable for clas-
sical solvers. For instance, quantum annealing allows
disordered magnets to relax to states of higher mag-
netic susceptibility asymptotically faster than classical
annealing (Brooke et al., 1999) and can solve certain
oracular problems exponentially faster than any clas-
sical algorithm (Somma et al., 2012).

For the last few years, D-Wave Systems has been com-
mercially manufacturing quantum annealing machines
(Johnson et al., 2011). These machines are the sub-
ject of ongoing scientific investigations by several third
parties which aim to characterize the extent to which
the hardware utilizes quantum resources and whether
a scaling advantage is apparent for any class of prob-
lems (Boixo et al., 2014).

1.2. Training under non-convex loss

The problem we consider in this work is the training
of a linear binary classifier using noisy data (Bishop,
2006). We assume that the training data is provided
as a matrix x̂ ∈ Rm×n with the m rows corresponding
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Non-convex polynomial loss functions for quantum annealing

to unique descriptor vectors containing n features. We
are also provided with a vector of labels, y ∈ {−1, 1}m,
which associate a binary classification with each fea-
ture vector. The training problem is to determine an
optimal classifier w ∈ Rn which predicts the data by
classifying example i as sign

(
w>xi

)
.

The classifier may be viewed as a hyperplane in feature
space which divides data points into negative and pos-
itive classifications. In this space, the distance that
example i falls from the classification hyperplane w
is referred to as the margin γi ≡ yi x

>
i w. Whereas a

negative margin represents a classification opposite the
training label, a positive margin represents a classifica-
tion consistent with the training label. To cast train-
ing as an optimization problem we use the concept of a
loss function which penalizes the classification of each
example according to its margin (Bishop, 2006). Per-
haps the simplest loss function is the 0-1 loss function
which provides a correct classification with penalty 0
and an incorrect classification with penalty 1,

L01 (γi) ≡
1− sign (γi)

2
. (1)

The training objective (known in machine learning as
total empirical risk) is given as the mean loss over all
examples in the training set. For instance, the 0-1
empirical risk function is

f01 (w) ≡ 1

m

m−1∑
i=0

L01 (γi) . (2)

Unfortunately, minimization of the 0-1 empirical risk
function is known to be NP-Hard (Feldman et al.,
2012). For this reason, most contemporary research
focuses on convex loss functions which are provably
efficient to optimize. However, in data with high la-
bel noise, this is an unacceptable compromise as the
efficiency gained by convex minimization allows only
for the efficient computation of a poor classifier (Man-
wani & Sastry, 2013). By contrast, training under
non-convex loss functions is known to provide robust
classifiers even when nearly half of the examples are
mislabeled (Long & Servedio, 2010).

Objectives such as these, for which certain instances
may require exponential time using classical heuris-
tics, are ideal candidates for quantum annealing. In
order to attempt non-convex risk minimization with
quantum annealing in the near future, one must first
efficiently compile the problem to a form compatible
with quantum hardware. Due to engineering consider-
ations, this usually means preparing the problem as an
instance of QUBO (quadratic unconstrained bi-
nary optimization). Previously, Denchev at al. in-

troduced a method for mapping non-convex loss train-
ing to QUBO (Denchev et al., 2012) for the purposes of
solving on a quantum device. However, in that work,
the number of variables required to accomplish the em-
bedding was lower-bounded by the number of training
examples. While clearly robust, this scheme seems im-
practical for medium-scale quantum annealers due to
the large qubit overhead.

Here, we develop a different embedding in which the
number of required variables is independent of the
number of training examples. This is accomplished by
deriving loss functions which are polynomial functions
of the margins. We show that such loss functions give
rise to empirical risk objectives expressible as PUBO.
Compatibility with quantum hardware comes from the
fact that any PUBO can be reduced to QUBO using
a number of boolean ancilla variables that is at most
O
(
N2 log k

)
where N is the number of logical variables

and k is the order of the PUBO (Boros & Gruber,
2012). Coincidentally, this implies that the empiri-
cal risk objective associated with any polynomial loss
function can be evaluated in an amount of time that
does not depend on the number of training examples.

In particular, we investigate the use of third-order
and sixth-order polynomial loss functions. The cubic
loss function is chosen as k = 3 is the lowest order
that gives us non-convexity. Polynomial loss has very
different characteristics depending on the parity of k
so we also investigate an even degree polynomial loss
function. We forgo quartic loss in favor of sixth-order
loss as the latter qualitatively fits 0-1 loss much bet-
ter than the former. After deriving optimal forms of
cubic loss and sixth-order loss we numerically inves-
tigate the properties of these loss functions to show
robustness to label noise. Finally, we demonstrate an
explicit mapping of any polynomial risk objective to a
tensor representing an instance of PUBO that is easily
compiled to quantum hardware.

2. Cubic loss

In this section we derive an approximate embedding of
0-1 risk under `2-norm regularization as a cubic func-
tion of the weights. We begin by considering the gen-
eral forms of the cubic loss and cubic risk functions,

L3 (γi) = α0 + α1γi + α2γ
2
i + α3γ

3
i (3)

f3 (w) =
1

m

m−1∑
i=0

L3 (γi) . (4)

Thus, the embedding problem is to choose the optimal
α ∈ R4 so that f3 (w) best approximates f01 (w). To
accomplish this we consider the `2-norm between 0-1
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risk and cubic risk,

α∗ = argmin

{∫
P (w) [f01 (w)− f3 (w)]

2
dw

}
.

(5)
Here, P (w) is the prior distribution of the weights.
If we incorporate an `2-norm regularizer, Ω2 (w), into
our ultimate training objective, E (w), i.e.

Ω2 (w) =
λ2
2
w>w (6)

E (w) = f (w) + Ω2 (w) , (7)

then we are provided with a Gaussian prior on the
weights (Rennie, 2003) taking the form,

P (wi) =

√
λ2
2π
e−λ2w

2
i /2. (8)

Immediately, we see that for the optimal solution
α2 → 0 since 0-1 loss is an odd function and the least
squares residual is weighed over a symmetric function
(the Gaussian prior). Furthermore, we can ignore α0

and the constant factor of 1
2 in L01 (γi) as these con-

stants are irrelevant for the training problem. With
this in mind, we expand the empirical risk functions
under the integral in the embedding problem as,

∫
P (w)

(
m−1∑
i=0

sign (γi)

2
+ α1γi + α3γ

3
i

)2

dw. (9)

Thus,

α∗ = argmin


m−1∑
i=0

m−1∑
j=0

∫
P (γ)Fij (γ) dγ

 (10)

where

Fij (γ) ≡ α1

2
[γisign (γj) + γjsign (γi)] (11)

+
α3

2

[
γ3i sign (γj) + γ3j sign (γi)

]
+ α2

1γiγj + α1α3

(
γ3i γj + γ3j γi

)
+ α2

3γ
3
i γ

3
j .

Without loss of generality, we may assume that P (γ)
is a multinormal distribution centered at zero with a
covariance matrix,

Σ̂ =
1

λ2

(
x̂>x̂

)
�
(
y y>

)
(12)

where � implies element-wise matrix multiplication
(i.e. the Hadamard product). The multinormal dis-
tribution occurs because the margins arise as the re-
sult of the training examples being projected by classi-
fiers drawn from the prior distribution given by P (w).

Since each weight is normally distributed with zero
mean and variance λ−22 in the prior, the distribution
of margins associated with training example i will be
a Gaussian with zero mean and variance,

σ2
i =

1

n

n−1∑
j=0

(
xij
λ2

)2

. (13)

Because each linear combination of the elements of the
margin vector is also normally distributed, we have a
multinormal distribution. This is true regardless of
the number of features or any particular qualities of
the training data.

Accordingly, if we wished to scale w to a range which
contains w∗ with a likelihood in the rth standard
deviation of the prior then we should make w ∈[
− r√

λ2m
, r√

λ2m

]n
. However, making r too large would

be problematic because this could allow the cubic term
to dominate the quadratic regularizer. This necessi-
tates a cutoff on the maximum weight value to ensure
that unbounded cubic losses associated with large neg-
ative margins do not overcome the regularizer. In prac-
tice, r would need to be selected as a hyperparameter.

Since the integrand has only two point correlation
functions, we can integrate over the marginal distri-
bution of γi and γj which is a binormal distribution
with covariance,

Σ̂ij =
1

λ2

(
x>i xi yiyjx

>
i xj

yjyix
>
jxi x>jxj

)
(14)

=

(
σ2
i ρij σiσj

ρij σjσi σ2
j

)
. (15)

We can analytically evaluate the double integral,

α∗ = argmin


m−1∑
i=0

m−1∑
j=0

Iij

 (16)

Iij =

∫ ∞
−∞

∫ ∞
−∞

Pij (γ)Fij (γ) dγidγj (17)

=
ρij (σi + σj)√

2π︸ ︷︷ ︸
t0

α1 +
ρij
(
3− ρ2ij

) (
σ3
i + σ3

j

)
√

2π︸ ︷︷ ︸
t1

α3

+ 3 ρijσiσj
(
σ2
i + σ2

j

)︸ ︷︷ ︸
t2

α1α3 + ρijσiσj︸ ︷︷ ︸
t3

α2
1

+ 3 ρij
(
3 + 2ρ2ij

)
σ3
i σ

3
j︸ ︷︷ ︸

t4

α2
3

= t0α1 + t1α3 + t2α1α3 + t3α
2
1 + t4α

2
3

With the integral in closed form, we obtain the argmin
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using simple algebra by solving,

∇

m−1∑
i=0

m−1∑
j=0

Iij

 = 0. (18)

The analytical coefficients for a single set of training
examples are,

α∗1 =
2 t0t4 − t1t2
t22 − 4 t3t4

α∗3 =
2 t1t3 − t0t2
t22 − 4 t3t4

. (19)

Thus, for the full training set we must sum together
the t values from each set of (i, j) before plugging val-
ues into the expression for α1 and α3. We note that
the computation required to obtain these coefficients
is O

(
m2
)
. Figure 1 shows several cubic loss function

fits associated with various real data sets from the UCI
Machine Learning Repository.

The coefficients above are analytic and optimal for em-
bedding 0-1 risk. However, it is instructive to explain
what would happen if we had chosen to fit the loss
function instead of the objective function. This would
have produced a far simpler embedding problem1,

α? = argmin

{∫ ∞
−∞

P ? (γ) [L01 (γ)− L3 (γ)]
2

dγ

}
(20)

where

P ? (γ) ≡ 1

σ
√

2π
e−γ

2/2σ2

, σ2 =
1

λ2m
tr
[
x̂>x̂

]
. (21)

This time the integral is trivial to evaluate,

I? =

∫ ∞
−∞

G? (γ, ) [L01 (γ)− L3 (γ)]
2

dγ (22)

=

√
2

π
σα1 + σ2α2

1 + 2

√
2

π
σ3α3

+ 6σ4α1α3 + 15σ6α2
3.

As before, convexity guarantees that ∇I will have ex-
actly one real root which we find analytically,

α?1 = − 3

2
√

2πσ
α?3 =

1

6
√

2πσ3
. (23)

These result seems much simpler than when we em-
bed the entire risk function but they are obviously
less useful. However, if we make the assumption that
σi = σj = σ then, α?1 = α∗1 and α?3 = α∗3.

In Figure 2 we study the performance of our embedded
loss function by exactly enumerating the solution space
produced by small synthetic data sets. These data sets

1Note the difference between α? and α∗.
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Figure 1:
Cubic loss fits for a variety of real data sets. Due to the
different properties of their correlation matrices each
set is associated with unique cubic loss coefficients.

were produced by randomly generating classifiers with
weights drawn from a normal distribution and then
using that classifier to label feature vectors with fea-
tures drawn from a uniform distribution. Symmetric
label errors are then manually injected at random. A
maximum weight cutoff is imposed at the second stan-
dard deviation of the weight prior. Further numerical
analysis of cubic loss on synthetic data sets is included
in the Appendix.

While the cubic loss embedding is somewhat noisy in
the sense that it does not perfectly approximate 0-1
loss, it is clearly robust in the sense that test error
does not depend strongly on label error for up to 45%
label noise. This remains true whether we consider
the best fifty states embedded in cubic loss or only
the absolute ground state. These results indicate that
cubic loss has an advantage over convex methods when
data is known to contain substantial label noise.

3. Sixth-order loss

One potentially unattractive feature of the cubic loss
function is that it is necessary to fix the scale of the
weights as a hyperparameter. Since we intend to en-
code our objective function as QUBO for quantum an-
nealing, we will need to choose a maximum weight.
While one can prove that the optimal classifier will

have weights in the interval
[
− 1√

λ2
, 1√

λ2

]
, such a large

range is potentially problematic for regularized cubic
risk as the loss associated with large negative margins
tends towards negative infinity faster than the `2 reg-
ularizer can penalize the large weights which would
produce such margins.
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Figure 2: Performance of cubic loss on synthetic data sets with 104 examples, 9 features and a bit depth of 2.
We exactly enumerate all fixed bit depth classifiers and evaluate the empirical risk under various loss functions.
Error bars are obtained by repeating the experiment on fifty data sets. The upper left plot shows the error in
the lowest objective state and the upper right plot shows the error in the best state of the lowest fifty. The
lower left plot shows mean position of the global minima in the eigenspectra of the various objective functions.
The lower right plot shows the probability of the global minima being in the first fifty states. As we can see,
the global minima remains very near the bottom of the eigenspectra for cubic loss, regardless of label noise.

Alternatively, one might consider using a polynomial
loss function of even degree as such loss functions will
not diverge to negative infinity for large negative mar-
gins. In order to do this, we must fix the highest order
term in the loss function as a hyperparameter. This is
because 0-1 loss is an odd function so if we attempt to
embed 0-1 risk in an even degree polynomial, the even
terms will vanish. Accordingly, we turn our attention
to the sixth-order loss and empirical risk functions,

L6 (γi) ≡ ωγ6i +

5∑
k=1

βkγ
k
i (24)

f6 (w) ≡ 1

m

m−1∑
i=0

L3 (γi) . (25)

Here, ω is taken to be a hyperparameter. We will
solve for the values of β. In the case of the cubic
loss function, we used the weight prior imposed by `2-
norm regularization and data set covariance to derive a
margin prior which was used for embedding. However,
this is unnecessary for the sixth-order loss function as
ω provides a very simple prior on the margins,

P (γ) =
ω1/6

2 Γ (7/6)
e−ωγ

6

(26)

where Γ is the standard gamma function. With this
definition, the embedding problem becomes

β∗ = argmin

{∫
P (γ) [L01 (γ)− L6 (γ)]

2
dγ

}
. (27)
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Figure 3: The sixth-order loss function
at various values of the fixed sixth-order coefficient,
ω. This coefficient is taken to be a hyperparameter.

Whereas we chose α for cubic loss by fitting the empir-
ical risk function, we choose β for sixth-order loss by
fitting the loss function directly. Since the sixth-order
loss function is already parameterized in terms of a
hyperparameter, there is nothing to gain by devising a
more elaborate fit based on empirical risk. After eval-
uating I6, the integral in Eq. 27, we can obtain β∗ by
solving, ∇I6 = 0. The optimal values of β are included
in the Appendix. Figure 3 shows the sixth-order loss
function for various values of ω.

Figure 4 (on the next page) shows the performance of
the sixth-order loss function on selected data sets from
the UCI Machine Learning Repository. To stand-in for
a quantum annealer, we optimized the sixth-order ob-
jective function using a simulated annealing routine
which was run for over one hundred thousand CPU
hours. In addition to standard convex methods, we
compare to 0-1 loss optimized using the same simu-
lated annealing code run with the same number of
restarts and variable updates as were used to opti-
mize sixth-order loss. We also include the “q-loss” re-
sults from (Denchev et al., 2012) which were obtained
for that work using another metaheuristic algorithm
(Tabu search). Details regarding the 10-fold cross val-
idation procedure are reported in the Appendix.

We find that for all real data sets, the sixth-order loss
function outperforms all tested convex loss functions
and performs similarly to the non-convex methods.
The first two data sets shown in Figure 4 are syn-
thetic sets designed to break convex loss functions de-
vised by Long and Servedio (Long & Servedio, 2010)
and Mease and Wyner (Mease & Wyner, 2008). The
sixth-order loss performs poorly on the Long-Servedio
set because the data set is designed so that the op-

timal solution has only extremely large margins and
extremely small margins. The large margins dominate
the risk minimization due to the steep walls of the
sixth-order function and this forces all of the smaller
margins very near zero where the sixth-order function
is almost linear. We believe that the particular patho-
logical behavior which leads to the poor performance
of sixth-order loss on the Long-Servedio set is unlikely
to occur in real data.

Figure 4 shows that the sixth-order loss function out-
performs even the other non-convex methods on three
of the four real data sets. However, we attribute the
suboptimal q-loss and 0-1 loss results to a failure of
the selected optimization routines rather than to a de-
ficiency of the actual training objectives. One rea-
son this seems likely is because sixth-order loss out-
performs the other non-convex functions most signif-
icantly on web8 (the real data set with the greatest
number of features) but losses to q-loss and 0-1 loss on
covertype (the real data set with the fewest number of
features). A comprehensive summary of the data sets
is included in the Appendix. While non-convex, the
sixth-order loss objective appears to be somewhat eas-
ier to optimize as a consequence of being significantly
smoother than either the 0-1 loss or q-loss objective.

4. Explicit tensor construction

In this section we show how to represent any regular-
ized risk objective using a polynomial loss function as
PUBO. We first introduce a fixed bit-depth approxi-
mation. More substantially, we represent variables us-
ing a fixed-point representation as floating-point rep-
resentations require a non-polynomial function of the
bits. Using d bits per feature, our encoding will re-
quire a total of N = nd bits. The binary state vector
q ∈ BN encodes the weight vector w,

w[i] ≡ ζq[id]− ζ
d−1∑
j=1

(
1

2

)j
q[id+ j] (28)

where ζ ∈ R determines the weight scale so that w ∈
(−ζ, ζ]

n
. Furthermore, we define a binary coefficient

matrix, k̂ ∈ Rn×N ,

k̂ ≡ In×n ⊗
〈
ζ,−ζ

2
,−ζ

4
, . . . ,

ζ

21−d

〉
(29)

where In×n⊗ indicates a Kronecker product by an
n × n identity matrix. This “tiles” the binary weight
sequence into a stair-step pattern down the diagonal;
e.g. if n = 3, d = 2 and ζ = 1,

k̂ =

1 − 1
2 0 0 0 0

0 0 1 − 1
2 0 0

0 0 0 0 1 − 1
2

 . (30)
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Figure 4: Test error versus label noise for 7 methods on 2 synthetic data sets (Long-Servedio and
Mease-Wyner) and 4 real data sets from the UCI repository. Error bars are obtained from 10-fold cross-validation
with the hyperparameters recorded in the Appendix. As a stand-in for quantum annealing, a classical simulated
annealing routine was used to optimize the sixth-order objective function and the 0-1 objective function. For
each training cut at each selection of hyperparameters, we kept 50 classifiers having the lowest objective values
of all states encountered. We computed validation error as the lowest of validation error produced by these
50 classifiers. This procedure is used for both 0-1 loss and sixth-order loss. Test error was obtained using
the classifier of lowest validation error. This strategy is realistic as we expect that a quantum annealer will
sample the lowest energy states as opposed to giving us only the global minima. q-loss was optimized using
Tabu search in (Denchev et al., 2012). We see that sixth-order loss outperforms the convex methods on every
data set except for Long-Servedio and performs similarly to other non-convex methods on the other five sets.
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We do this because later on, it will be useful to think
of w as a linear mapping of q given as w = k̂q. In
general, any PUBO of degree k can be expressed as,

E (q) = v>q⊗k (31)

where v ∈ RNk

is a k-fold tensor and q⊗k represents
the kth tensor power of q. We now show how to obtain
this embedding for a cubic loss function but do so in
a way that is trivially extended to orders less than or
greater than cubic. In terms of continuous weights the
empirical risk objective may be expressed as,

f (w) =
1

m

m−1∑
i=0

α1yix
>
i w + α2

(
x>i w

)2
+ α3

(
yix
>
i w
)3

=

(
α1

m

m−1∑
i=0

yix
>
i

)
︸ ︷︷ ︸

ϕ>
1

w +

(
α2

m

m−1∑
i=0

(
x⊗2i

)>)
︸ ︷︷ ︸

ϕ>
2

w⊗2

+

(
α3

m

m−1∑
i=0

(
yix
⊗3
i

)>)
︸ ︷︷ ︸

ϕ>
3

w⊗3 =

3∑
j=1

ϕ>j w
⊗j (32)

where

ϕj =
αj
m

m−1∑
i=0

(yixi)
⊗j
. (33)

Using tensor notation, `2-norm regularization is

Ω2 (w) =
λ2
2

(
1n

2
)>
w⊗2, (34)

where 1n
2

denotes a vector of all ones with length n2.
We now use k̂ to expand the binary variable tensor,

E (q) = f (w) + Ω2 (w) (35)

=
λ2
2

(
1n

2
)>(

k̂q
)⊗2

+

3∑
j=1

ϕ>j

(
k̂q
)⊗j

.

This expression implies the form of v,

v =
λ2
2

1n
2

⊗ k̂⊗2 +

3∑
j=1

ϕj ⊗ k̂⊗j . (36)

We slightly abuse notation in our definition of v by
“adding” together tensors of different rank. To accom-
plish this the tensor of lower rank should be placed in
a tensor having the same rank as the larger tensor by
setting additional tensor indices equal to a lower tensor
index. For instance, the element corresponding to (i, j)
in a tensor of rank two could be placed in a tensor of
rank three at (i, j, i) or (i, j, j). We note that it is nec-
essary to first convert to binary and then combine the

three terms; doing things the other way would intro-
duce complications due to the fact that wri 6= wi ∀i, r
whereas qri = qi ∀i, r. Finally, we note that construct-

ing ϕ>3 ⊗ k̂⊗3 is the most computationally expensive
part of this entire procedure taking O

(
n3d3m

)
time.

This 3-fold tensor can be reduced to a QUBO ma-
trix using ancillae. The optimal reduction is trivial
using the tools developed in (Babbush et al., 2013).
In Appendix B of that paper, it shown that the num-
ber of ancillae which are required to collapse a fully

connected cubic to 2-local is upper bounded by N2

4 .
Again, the general bound for the quadratization of a
PUBO of degree k is O

(
N2 log k

)
(Boros & Gruber,

2012). This bound suggests that unlike prior encod-
ings, the number of ancillae required is entirely inde-
pendent of the number of training examples. We point
out that the tensor form of this problem may be eval-
uated in a time that does not depend on the number
of training examples.

5. Conclusion

We have introduced two unusual loss functions: the
cubic loss function and the sixth-order loss function.
Both losses are non-convex and show clear evidence
of robustness to label noise. While superior to clas-
sically tractable convex training methods, both loss
functions are highly parameterized and represent less
than perfect approximations to 0-1 loss. Prima facie,
this suggests that more popular non-convex loss func-
tions, e.g. sigmoid loss, may be more reliable (or at
least more straightforward) in some respects.

However, training under non-convex loss is formally
NP-Hard and in order to obtain satisfactory solutions
to such optimization problems, heuristic algorithms
must query the objective function many times. Often,
the quality of the eventual solution depends on the
number of queries the heuristic is allowed. The fact
that the polynomial loss functions may be compiled
so that each query to the objective is independent of
the number of training examples suggests that these
loss functions may be more compatible with heuris-
tic optimization routines. This same property ensures
that these loss functions can be compiled to a Hamil-
tonian suitable for quantum annealing using a rea-
sonable number of qubits (estimates of resources re-
quirements for various example problems are included
in the Appendix). This efficient embedding in quan-
tum hardware makes binary classification under non-
convex polynomial loss a promising target problem to
accelerate using a quantum annealing machine.
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6. Appendix

6.1. `0-norm regularization

While `0 programming is well known to be NP-Hard, we believe that quantum annealing may allow us to
obtain satisfactory minima in many instances. `0-norm regularization is often used to train classifiers that are
particularly efficient in terms of the number of features required for classification. For the situation in which we
would like to train a classifier with binary weights, the regularization function is trivial,

Ω0 (q) = λ0

n−1∑
i=0

qi. (37)

For multiple bit depth weights, `0-norm regularization will require a modest number of ancilla qubits (one for
each feature). Using our notation, the regularizer is

Ω0 (q) =

n−1∑
j=0

(
λ0 q[N + j] + φ (1− q[N + j])

d−1∑
k=0

q[jd+ k]

)
. (38)

Minimizing Ω (q) causes the ancillae q[N + j] to act as indicator bits, each of which is 1 if and only if wj 6= 0 and
is 0 otherwise. This is achieved by summing the binary variables that take part in a weight variable. Correctness
comes from the that the binary representation of wj = 0 is when all bits corresponding to that weight are 0.
Thus, if even a single bit from weight wi is on, the objective will either incur a penalty of φ or will set the ancilla
to 0 so as to obtain a penalty of λ0 instead. Thus, as long as φ is sufficiently larger than λ0, this function enforces
`0-norm regularization with weight of λ0. This regularizer may be combined with the empirical risk function
described previously.

6.2. Sixth-order loss coefficients
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1
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6.3. Convergence of cubic loss function
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Figure 5: Correlations between the total empirical risk of 104 randomly selected states using
various loss functions over 104 training examples from the adult9 data set. The empirical risk values of each
state have been uniformly shifted and rescaled to be in between 0 and 1. As we can see, the correlations between
the convex loss functions and 0-1 loss are strictly worse than the correlation between cubic loss and 0-1 loss.
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Figure 6: These plots quantify the convergence of the empirical risk embedding error as a function of
the number of training examples. The upper-left plot is made by fitting the cubic loss function and evaluating
the resultant embedding error on adult9 using a variable number of training examples. Here, the error is the
standard deviation of the energy landscapes defined by the limited number of training examples. At each point,
104 states are sampled at random to evaluate the error. We also show the error in only the lowest 50 of these
states to give an indication of the rate at which the low energy subspace is converging. On the upper-right, is a
log plot of the same data indicating that embedding appears to converge as roughly O

(
m−1/3

)
. The remaining

plots show correlations between the total empirical risk of the 104 randomly selected states using 0-1 loss and
the total empirical risk on those states using cubic loss. These four plots were obtained by fitting the cubic
loss function to the adult9 data set using: 10 training examples, 100 training examples, 1,000 training examples
and 10,000 training examples. The error in these embeddings are 0.107, 0.0818, 0.062 and 0.055, respectively.
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6.4. Estimated qubit requirements

Table 1: Upper-bounds on qubit requirements for selected problems

Loss function degree #Features Bit-depth #Qubits

cubic 100 1 2,550
cubic 100 4 40,200
cubic 500 1 62,750
cubic 500 4 1,001,000
cubic 2,500 1 1,563,750
cubic 2,500 4 25,005,000

6.5. Data summary

Table 2: Data summary

Name Dims #Examples Density (%) Baseline error (%)

Long-Servedio 21 2000 100.00 50.00
Mease-Wyner 20 2000 100.00 49.80

covertype 54 581012 22.20 36.46
mushrooms 112 8124 18.75 48.20

adult9 123 48842 11.30 23.93
web8 300 59245 4.20 2.92

6.6. Hyperparameters

Table 3: values of λ
and ω offered to cross-validation

λ & ω

2.000000
0.398965
0.079583
0.015875
0.003167
0.000632
0.000126
0.000025
0.000005
0.000001

Table 4: ω values for sixth-order loss picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0.000001 0.000001 0.000001 0.000001 0.000632
Mease-Wyner 0.398965 0.000126 0.000126 0.000025 0.000005

covertype 2.000000 2.000000 0.398965 2.000000 0.000025
mushrooms 2.000000 2.000000 2.000000 0.000632 0.000005

adult9 0.000001 2.000000 0.000025 0.079583 2.000000
web8 0.000632 0.000126 0.398965 0.398965 2.000000
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Table 5: q values for q-loss picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0 -0.39 -0.24 -0.71 -0.55
Mease-Wyner 0 -2.96 -1.62 -1.36 0

covertype -0.63 -0.54 -0.38 -0.5 -0.51
mushrooms 0 -0.76 -0.47 -0.17 -0.13

adult9 -0.86 -0.53 -0.43 -0.53 -0.07
web8 -0.99 -0.46 -0.41 -0.19 0

Table 6: C values for liblinear picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0.499978 2.506486 0.499978 0.499978 0.499978
Mease-Wyner 40000.00 0.499978 315.7562 12.565498 62.99213

covertype 0.499978 2.506486 62.99213 1000000.0 12.56541
mushrooms 2.506486 12.56541 0.499978 0.499978 0.499978

adult9 0.499978 62.992126 0.499978 0.499978 0.499978
web8 315.7562 0.499978 12.56541 12.56541 0.499978

Table 7: λ values picked by cross-validation for 0% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 0.003167 0.079583 0.015875 0.015875 0.000001
Mease-Wyner 0.000001 0.000025 0.000001 0.000126 2.000000

covertype 0.000025 0.000025 0.000001 0.000025 0.000632
mushrooms 0.000001 0.000025 0.000632 0.000025 0.398965

adult9 0.000001 0.000632 0.000126 0.003167 0.015875
web8 0.000001 0.000005 0.000001 0.000632 0.015875

Table 8: λ values picked by cross-validation for 10% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 0.000005 2.000000 0.003167 0.015875 0.000001
Mease-Wyner 0.000005 0.000632 0.000005 0.000126 0.398965

covertype 0.000025 0.000632 0.000126 0.000001 0.000001
mushrooms 0.000005 0.000001 0.000005 0.003167 0.398965

adult9 0.000632 0.003167 0.000126 0.015875 0.000632
web8 0.000005 0.000126 0.000005 0.000632 0.015875
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Table 9: λ values picked by cross-validation for 20% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.000126 0.000001
Mease-Wyner 0.000025 0.000005 0.000126 0.000126 0.079583

covertype 0.000001 0.000126 0.000126 0.000001 0.000025
mushrooms 0.000126 0.000632 0.000025 0.003167 0.398965

adult9 0.079583 0.079583 0.003167 0.015875 2.000000
web8 0.000001 0.000001 0.000126 0.000632 0.015875

Table 10: λ values picked by cross-validation for 30% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.003167 0.000001
Mease-Wyner 0.000005 0.000001 0.000005 0.000126 0.000632

covertype 0.000001 0.000126 0.000025 0.000025 0.398965
mushrooms 0.000632 0.003167 0.000632 0.003167 0.079583

adult9 2.000000 0.003167 2.000000 0.003167 0.000632
web8 0.000126 0.000001 0.000126 0.000632 0.000005

Table 11: λ values picked by cross-validation for 40% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.003167 0.000632
Mease-Wyner 0.000001 0.000005 0.000025 0.000126 0.000632

covertype 0.000001 0.000001 0.000001 0.000001 0.079583
mushrooms 0.000126 0.000632 0.003167 0.003167 0.003167

adult9 0.000126 0.000126 0.079583 0.000025 0.000025
web8 0.015875 0.079583 0.000632 0.000632 0.000001
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