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Abstract

We consider classification problems in which the la-
bel space has structure. A common example is hierar-
chical label spaces, corresponding to the case where one
label subsumes another (e.g., animal subsumes dog).
But labels can also be mutually exclusive (e.g., dog vs
cat) or unrelated (e.g., furry, carnivore). To jointly
model hierarchy and exclusion relations, the notion of a
HEX (hierarchy and exclusion) graph was introduced in
[8]. This combined a conditional random field (CRF)
with a deep neural network (DNN), resulting in state
of the art results when applied to visual object classi-
fication problems where the training labels were drawn
from different levels of the ImageNet hierarchy (e.g.,
an image might be labeled with the basic level category
”dog”, rather than the more specific label ”husky”). In
this paper, we extend the HEX model to allow for soft
or probabilistic relations between labels, which is useful
when there is uncertainty about the relationship between
two labels (e.g., an antelope is ”sort of” furry, but not
to the same degree as a grizzly bear). We call our new
model pHEX, for probabilistic HEX. We show that the
pHEX graph can be converted to an Ising model, which
allows us to use existing off-the-shelf inference methods
(in contrast to the HEX method, which needed special-
ized inference algorithms). Experimental results show
significant improvements in a number of large-scale vi-
sual object classification tasks, outperforming the pre-
vious HEX model.

1. Introduction

Classification is a fundamental problem in machine
learning and computer vision. In this paper, we con-
sider how to extend the standard approach to exploit
structure in the label space. For example, consider the
problem of classifying images of animals. The labels
may be names of animal types (e.g., dog, puppy, cat),
or attribute labels (e.g., yellow, furry, has-stripes).
Many of these labels are not semantically independent

of each other. For example, a puppy is also a dog,
which is a hierarchical or subsumption relation; an an-
imal cannot be both a dog and a cat, an exclusive re-
lation; but an animal can be yellow and furry, which is
a non-relation.

In [8], an approach called Hierarchy and EXclusion
(HEX) graphs was proposed for compactly represent-
ing such constraints between the labels. In particular,
a probabilistic graphical model with deterministic or
hard constraints between the binary label nodes was
proposed. These hard constraints cut down the fea-
sible set of labels from 2n (where n is the number of
labels) to something much smaller, allowing for efficient
exact inference. For example, if all labels are mutually
exclusive, the HEX graph is a clique, and there are
only n + 1 valid label configurations. This graphical
model can be combined with any standard discrimina-
tive classifier (such as deep neural networks), resulting
in a conditional random field (CRF) model with label
constraints.

In this paper, we extend the HEX model by allow-
ing for “soft” relationships between the labels. We
call this the pHEX model. The pHEX model has five
main advantages compared to the HEX model. First,
it is a more realistic model, since the relationship be-
tween most labels is “soft”. For example, a lion may
be mostly yellow, but it could also be another color.
Second, the pHEX model is easier to train, since the
likelihood function is smoother. Third, we show how to
perform inference in the pHEX model by converting it
to an Ising model, and then using standard off-the-shelf
tools such as belief propagation, or the emerging quan-
tum optimization technology [11]. This is in contrast to
the HEX case, which needed a specialized (and rather
complex) algorithm to perform inference. Fourth, we
show how to combine binary labels with k-ary labels,
something that wasn’t possible with the original HEX
model. Finally, we show that the pHEX model out-
performs the HEX model on a variety of visual object
classification tasks.
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2. Related work

There has been a lot of prior work on exploiting
structure in the label space; we only have space to men-
tion a few key papers here. Conditional random fields
[12, 24] and structural SVMs [23] are often used in
structured prediction problems. In addition, in trans-
fer learning [20, 19], zero-shot learning [13, 17], and
attribute-based recognition [1, 26, 21], consistency be-
tween visual predictions and semantic relations are of-
ten enforced.

More closely related to this paper is work that ex-
ploits hierarchical structure (e.g., [27, 14, 25, 16]), ex-
clusive relations [5], or both of them [6, 15]. Recently
[8] proposed the HEX graph approach, which subsumes
a lot of prior work by modeling hierarhical and exclu-
sive relations using graphical models. We discuss this
in more detail in Section 3, since it forms the founda-
tion for the current paper.

3. The HEX model

In a nutshell, HEX graphs are probabilistic graphi-
cal models with directed and undirected edges over a
number of binary variables. Each binary variable rep-
resents a label and takes value from {−1, 1}. Each
edge or no-edge between any two labels represents one
of three label relations: exclusion, hierarchy and non-
relation. The combination of all pairwise label rela-
tions allows the HEX graph to characterize the legal
and illegal state space of labels, as we explain below.

3.1. HEX relations

The three types of label relations in the HEX graph
are defined as follows:

Exclusion When two nodes are connected by an
undirected edge, this is called an exclusive relation. It
means that the two labels cannot be both equal to 1.
For example, an animal cannot be both a cat and a
dog. So cat and dog are mutually exclusive. The legal
state space for exclusion is:

Se , {(−1,−1), (−1, 1), (1,−1)} . (1)

Hierarchy When two nodes are connected by a di-
rected edge from y1 to y2, this is called a subsumption
(hierarchical) relation. It means that if y2 is 1 then y1
must be 1 as well. For example, a puppy is always a
dog. So dog subsumes puppy. The corresponding legal
state space for subsumption is:

Sh , {(−1,−1), (1,−1), (1, 1)} . (2)

No relation When two nodes are not connected by
any edge, we say there is no relation between them.
This means that the two labels are independent of each
other. For example, carnivore and yellow are indepen-
dent properties of animals. In this case, the legal state
space for the two variables contains all 4 possible con-
figurations:

So , {(−1,−1), (−1, 1), (1,−1), (1, 1)} . (3)

3.2. HEX graph as a graphical model

To mathematically formulate the HEX model, as-
sume we have a set of n possible labels, represented as
the bit vector y = {y1, . . . , yn}, where yi ∈ {−1,+1}.
Also, assume we have an input feature vector x =
{x1, . . . , xd}, and some discriminative model which
maps this to the score vector z = {z1, . . . , zn}, where
zi is the “local evidence” for label yi. (The mapping
from x to z is arbitrary; in this paper, we assume it is
represented by a deep neural network parameterized by
w, which we will denote by z = DNN(x;w).) Given
this, we can define the model as follows:

p(y |x) =
1

Z(x)

n∏
i=1

ψ(yi, zi)
∏

(i,j)∈G

φa(yi, yj), (4)

where ψ(yi, zi) = 1/(1 + exp(−2yizi)) is the logistic
function, and φ(yi, yj) is the (edge-specific) potential
function, defined below: (We use the notation φa to
represent an “absolute” or deterministic potential, to
distinguish it from the soft or probabilistic potentials
we use later, denoted by φp.)

• Exclusion

φea(y1, y2) =

{
1 (y1, y2) ∈ Se

0 (y1, y2) = (1, 1);
(5)

• Hierarchy

φha(y1, y2) =

{
1 (y1, y2) ∈ Sh

0 (y1, y2) = (−1, 1);
(6)

• No relation

φoa(y1, y2) = 1 ∀(y1, y2). (7)

4. Probabilistic HEX models

In this section, we introduce an extension of the
HEX model to allow for soft or probabilistic relation-
ships between labels. The basic idea is to relax the
hard constraints, by replacing the value 0 (correspond-
ing to illegal combinations) in the definitions of the



potential functions with a value 0 ≤ q ≤ 1, represent-
ing how strongly we wish to enforce the constraints.
(This is somewhat analogous to the approach used in
Markov logic networks [18], which relax the hard con-
straints used in first order logic.) In principle, q can
be estimated from data along with the parameters of
the unary potentials (discussed in Section 6), but in
this paper, we either tie the q’s across all edges, or set
them based on prior knowledge of the strength of the
relations.

4.1. Probabilistic HEX relations

For clarity, we now explicitly specify the form of
the two new factors we introduce. We use the generic
parameter q to represent the strength of this relation,
although this could easily be made edge/ label depen-
dent.

Probabilistic exclusion The potential function of
the two variables y1, y2 under probabilistic exclusion is
defined as:

φep(y1, y2; q) =

{
1 (y1, y2) ∈ Se

q (y1, y2) = (1, 1),
(8)

where 0 ≤ q ≤ 1. When q = 1, Equation (8) reduces to
the non-relation in Equation (7), where yi and yj are
independent. When q = 0, Equation (8) reduces to the
hard exclusion relation Equation (5), where (y1, y2) =
(1, 1) is strictly prohibited.

Probabilistic hierarchy For hierarchy (subsump-
tion), we define

φhp(y1, y2; q) =

{
1 (y1, y2) ∈ Sh

q (y1, y2) = (−1, 1),
(9)

where 0 ≤ q ≤ 1. This reduces to the unconstrained
relation when q = 1; and reduces to the hard subsump-
tion relation when q = 0.

Probabilistic exclusions and subsumptions can be
seen as a probabilistic mixture of absolute exclusions,
subsumptions, and non-relations, where

φep(y1, y2; q) = qφoa(y1, y2) + (1− q)φea(y1, y2),

φhp(y1, y2; q) = qφoa(y1, y2) + (1− q)φha(y1, y2).

Therefore, the combination of probabilistic label re-
lations generalizes the absolute label relations in the
HEX graph.

4.2. Converting pHEX models to Ising models

The main disadvantage of this relaxation is that we
lose the ability to perform tractable exact inference.
However, we now show that we can formulate pHEX
models as Ising models, which opens up the door to us-
ing standard tractable approximate inference methods.

y1 y2

q

(a) Probabilistic exclusive relation

y1 y2

u

(b) The equivalent Ising model

u u

Figure 1. (a) Probabilistic exclusive relations in a pHEX
graph with φ(1, 1) = q; (b) the coefficients on the nodes and
the edge of the equivalent Ising model, where q = exp(−4u).

y1 y2

q

(a) Probabilistic subsumption relation

y1 y2

-u

(b) The equivalent Ising model

-u u

Figure 2. (a) Probabilistic subsumption relations in a pHEX
graph with φ(−1, 1) = q; (b) the coefficients of the equiva-
lent Ising model, where q = exp(−4u).

The Ising model was first proposed in statistical me-
chanics to study ferromagnetism [3]. Mathematically,
it is essentially an undirected graphical model which
defines the joint distribution of configurations of n bi-
nary random variables y in graph G by a Boltzmann
distribution,

pβ(y) =
1

Zβ
exp(−βE(y)), (10)

where Zβ is the normalization constant, and β is a tem-
perature variable that will be omitted later by fixing it
to 1. E(y) is the energy function of the configuration
y, which takes into account local energy potentials hiyi
as well as pairwise energy potential Jijyiyj ,

E(y) =
∑

(i,j)∈G

Jijyiyj +

n∑
i=1

hiyi. (11)

To convert a pHEX graph to an Ising model, we first
show how to convert the factor functions φp(y1, y2) for
the pairwise probabilistic relations to the equivalent
pairwise energy functions E(y1, y2) of an Ising model.

Consider an Ising model of two variables in Figure
1(b), where u ≥ 0 are the weights on the local poten-
tials and the pairwise potential. The resulting pairwise



energy function of this Ising model is,

Eep(y1, y2;u) = uy1y2 + uy1 + uy2

=

{
−u (y1, y2) ∈ Se

3u (y1, y2) = (1, 1).
(12)

Clearly, Equation (12) looks very similar to Equa-
tion (8). In fact, by letting q = exp(−4u) and
φep(y1, y2; q) ∝ exp(−Eep(y1, y2;u)), we can show they
are equivalent up to a constant factor. To see this, let
(y1, y2) be a legal label pair, and (y′1, y

′
2) be an illegal

pair. We have

φp(y1, y2)/φp(y
′
1, y
′
2) = 1/q = e4u,

exp(−E(y1, y2) + E(y′1, y
′
2)) = eu+3u = e4u.

A larger u means a stronger exclusion between the two
labels. When u → +∞, Equation (12) reduces to the
hard exclusive relation; conversely when u = 0, Equa-
tion (12) reduces to the non-relation.

Similarly, the equivalent Ising model of the proba-
bilistic subsumption is shown in Figure 2(b), where,

Ehp (y1, y2;u) = −uy1y2 − uy1 + uy2

=

{
−u (y1, y2) ∈ Sh

3u (y1, y2) = (−1, 1).
(13)

We set φhp(y1, y2; q) ∝ exp(−Ehp (y1, y2;u)) and q =
exp(−4u).

The product of the pairwise factor functions
φp(yi, yj ; qij) can now be written in terms of the sum
of pairwise energy functions E(yi, yj ;uij):

∏
(i,j)∈G

φp(yi, yj , qij) ∝ exp

− ∑
(i,j)∈G

Jijyiyj −
n∑
i=1

hiyi

 ,

where

Jij =

{
uij , (i, j) ∈ ex.
−uij , (i, j) ∨ (j, i) ∈ sub.

(14)

hi =
∑

{j|(i,j)∈ex.}

uij −
∑

{k|(k,i)∈sub.}

uki +
∑

{l|(i,l)∈sub.}

uil.

(15)

Here ex. denotes the set containing all exclusive rela-
tions and sub. the set containing all subsumption rela-
tions. Note that all the pairs (i, j) ∈ ex. satisfy i < j,
and pairs (i, j) ∈ sub. means i subsumes j.

To incorporate local evidence into the model, we can

rewrite Equation (4) as follows:

p(y | z) ∝ exp

 n∑
i=1

logψ(yi, zi)−
∑

(i,j)∈G

E(yi, yj ;uij)


= exp(−

∑
(i,j)∈G

Jijyiyj −
n∑
i=1

(hi − zi)yi),

where Jij and hi are from Equation (14) and Equation
(15). Note that we omitted a constant from the logψ
term, because it will be canceled out by the normal-
ization constant Z. By defining h′i = hi − zi, we can
“absorb” the local evidence into the Ising model, and
use standard inference methods.

4.3. Inference in pHEX models

At test time, we need to compute the marginal dis-
tribution per label, p(yi| z). In multi-label classifica-
tion problems, a label yi is predicted to be true if
p(yi| z) ≥ 0.5. In multi-class classification problems,
the label

y∗ =
n

argmax
i=1

p(yi| z)

is predicted to be the true label. At training time, we
need p(yi| z) as well as the term p(yi|yj = 1, z), where
some of the true observed labels (e.g . for node j) are
set to their desired target states.

Exact inference in pHEX models is usually in-
tractable, when the graphs are loopy, and the le-
gal states are not sparse. Since p(y | z) is an
Ising model, we can apply any off-the-shelf inference
method, including mean-field inference (MF), loopy
belief propagation (LBP), and Markov Chain Monte
Carlo (MCMC) methods [4]. In practice, we find that
the standard LBP algorithm works consistently well,
so we use it as our main inference algorithm in our
experiments. We give the details below.

We define the belief on each label yi to be bi(−1)
and bi(1), and the message from yi to its neighbour
yj to be mi→j(−1) and mi→j(1). Then the algorithm
iterates through all beliefs and messages with updates,

bi(1) ∝ exp(−h′i)
∏

j∈N(i)

mj→i(1),

bi(−1) ∝ exp(h′i)
∏

j∈N(i)

mj→i(−1),

where N(i) denotes the neighbours of i, and

mj→i(1) ∝ exp(−Jij)
bi(1)

mi→j(1)
+ exp(Jij)

bi(−1)

mi→j(−1)
,

mj→i(−1) ∝ exp(−Jij)
bi(−1)

mi→j(−1)
+ exp(Jij)

bi(1)

mi→j(1)
.



To maintain numerical stability, we normalize bi and
mj→i throughout inference, and we perform updates in
the log domain. After all beliefs have converged or a
maximum number of iterations has been reached, we
estimate the marginal probabilities by p(yi = 1| z) =
bi(1).

The inference of p(yi|yj = 1, z) is almost the same as
above except we set bj(1) = 1 and bj(−1) = 0 to rep-
resent the fact that node j is clamped to state 1. (We
can easily extend this procedure if we have multiple
clamped nodes.)

5. Mutually exclusive and collectively ex-
haustive relations

In addition to allowing soft relations, our pHEX
framework offers another advantage over HEX graphs:
it is easy to enforce a new type of constraint,
namely Mutually Exclusive and Collectively Exhaus-
tive (MECE) relations, used in the multi-class softmax
model. In HEX graphs, there is no way to express
the notion of “collectively exhaustive”, i.e., one of the
mutually exclusive classes must be true. HEX graph
thus has to maintain an additional “none of the above”
state.

In the pHEX graph, we handle the MECE relation of
k nodes using a single multinomial variable with k pos-
sible states. Although an undirected graphical model
with multinomial nodes is strictly speaking not an Ising
model, a slight variant on the standard LBP algorithm
can still be applied for efficient approximate inference.

For simplicity, we only illustrate the inference al-
gorithm for pHEX graphs with one multinomial la-
bel node, since this will be used in later experiments.
Further generalization to pHEX graphs with multiple
multinomial nodes is straightforward and follows simi-
lar procedures.

Let us denote the multinomial node by c =
{c1, . . . , ck}. The node and message updates for the
standard binary nodes are the same as before. The
belief of the multinomial node c is updated as,

bc(i) ∝ exp(−h′i)
∏

j∈N(c)

mj→c(i)

for state i ∈ {1, . . . , k} in which yci = 1. Here N(c) =
∪ki=1N(ci) is the neighbour set of the multinomial node.
The message from a standard node j to the multinomial

node c is,

mj→c(i) ∝ exp(

k∑
s=1

Jjcs − 2Jjci)
bj(1)

mc→j(1)

+ exp(−
k∑
s=1

Jjcs + 2Jjci)
bj(−1)

mc→j(−1)

for state i. The message from the multinomial node to
a standard node j is,

mc→j(1) ∝
k∑
i=1

exp(

k∑
s=1

Jjcs − 2Jjci)
bc(i)

mj→c(i)
,

mc→j(−1) ∝
k∑
i=1

exp(−
k∑
s=1

Jjcs + 2Jjci)
bc(i)

mj→c(i)
.

As in the standard LBP algorithm, we normalize bc,
mj→c and mc→j and update them in the log domain.
After the algorithm converges, the marginal probability
of a node ck in clique c is p(yck = 1| z) = bc(k).

6. Learning

An important property of the (p)HEX model is that
not all the target labels need to be specified during
training. For example, consider a data set of images.
It is more common for a user to use basic level category
names, such as “dog”, than very specific names such
as “husky” or “beagle”. Furthermore, a user may not
label everything in an image. So the absence of a label
is not evidence of its absence.

To model this, we allow some of the labels to be
unobserved or hidden during training. For example,
if we clamp the “husky” label to true, and leave all
other label nodes unclamped, the hard constraints will
force the “dog” label to turn on, indicating that this
instance is an example of both the husky class and
the dog class. However, if we clamp the “dog” label
to true, we will not turn on “husky” or “beagle”, since
the relation is asymmetric. We can also clamp labels to
the off state, if we know that the corresponding class
is definitely absent. For example, turning on “dog”
will turn off “cat” if they are mutually exclusive. (In
the pHEX case, the “illegal” states are down weighted,
rather than given zero probability.)

Let the input scores for the b’th training instance
be zb, and let the subset of target labels be tb =
(tb1, . . . , t

b
m), where we have assumed that m labels are

observed in every instance for notational simplicity. A
natural loss function is the negative log likelihood of
the observed labels given the inputs:

L = −
N∑
b=1

m∑
j=1

log p(ybtj = 1| zb).



To fit the local classifiers (unary potentials), we first
need to derive the gradient of the loss wrt the input
scores zi. The derivative of log p(ytj = 1| z) over some
zi is,

∂ log p(ytj = 1| z)

∂zi
= Ep(yi|ytj=1,z)[yi]− Ep(yi| z)[yi].

Therefore, we need to compute the conditional dis-
tributions p(yi|ytj = 1, z) and marginal distributions
p(yi| z) for all i. These correspond to the well-known
“clamped” and “unclamped” phases of MRF / CRF
learning. We can then backpropagate the gradient into
the parameters of the local classifiers themselves.

We can use a similar gradient-based training scheme
to estimate the CRF edge parameters. However, in this
paper, we simply combine prior edge weights from data
with a one-dimensional grid search of rescaling factor.

7. Experiments

In [8], the HEX graphs shows significant improve-
ment over standard softmax and (multi-label) logistic
regression models, so in this paper, we will just com-
pare pHEX to HEX. We conduct three experiments.

The first experiment is the standard ImageNet im-
age classification problem [7]. We add hierarchical rela-
tions between the labels based on the publicly available
WordNet hierarchy. Since WordNet does not have ex-
clusive relations, we assume that any two labels are ex-
clusive if they are not in subsumption relation. Figure
3 Left is an example of the subgraph of ”fish”. As in
[8], we assume that the training labels are drawn from
different levels of the hierarchy. In this paper, we show
that pHEX with (constant) soft relations improves on
HEX, especially when leaf labels are rarely present in
the training set.

           Fish

Food Fish Bony Fish

  Salmon   Shard Teleost Cartilaginous

M
EC

E

lean

MECE

FURRY

 LEAN

 SWIM

GROUP

ANIMALS

ATTRIBUTES

Polar Bear

       Rabbit

        Zebra

 Dolphin

Figure 3. Left: An illustration of the (p)HEX graph based
on the WordNet hierarchy in the ImageNet experiments.
Right: An illustration of the (p)HEX graph in the Ani-
mal with Attributes experiments. The blue directed edges
denote the subsumption relations; and the red undirected
edges denote the exclusive relations. An MECE relation
(multinomial node) is placed in the final pHEX graph.

The second experiment is a zero-shot learning task,
in which we must predict unseen classes at test time,
leveraging known relations between the class labels and
attributes of the class. We use the Animals with At-
tributes dataset [13]. Following [8], we first assume that
all object classes are mutually exclusive. We then add
subsumption relations from a predicate (or attribute)
to an object if the binary predicate of the object is 1,
and add exclusive relations between predicate and ob-
jects if the binary predicate of the object is 0. See the
illustration in Figure 3 Right. In this paper, we relax
the hard constraints and show that pHEX can work
significantly better than HEX. Finally, the third ex-
periment is another zero-shot learning task, this time
on the PASCAL VOC/ Yahoo images with attributes
dataset [10]. Again, we show that pHEX can signifi-
cantly outperform HEX.

7.1. Experimental setup

Table 1. The Ising coefficients u as well as the corresponding
strengths of the label relations q used in pHEX graphs in
the experiments, where q = exp(−4u).

u 0 0.1 0.3 0.5 0.7 1.0 1.5
q 1 0.67 0.30 0.14 0.06 0.02 0.002

In our experiments, we used two types of pHEX
graphs. For the ImageNet experiments, we use the
same constant edge strength for all edges; we vary this
edge paramter u across the ranges shown in Table 1,
and plot results for each value. For the zero-shot ex-
periments, we consider constant edge weights, but we
also consider variable edge weights, which we derive by
scaling the prior edge weight (derived from the data)
by a global scale factor u, which we again vary across
a range.

Note that, since all three tasks are evaluated on test
labels in a multi-class setting, we add a MECE relation
into the pHEX graphs In particular, for the ImageNet
dataset, we add a multinomial node on the 1000 leaf
labels; in the Animal with Attributes dataset, we add
a multinomial node on the 50 animal classes; and in
the VOC/Yahoo dataset, we add a multinomial node
on the 32 object classes. After adding MECE relations,
we remove the replicated soft exclusive relations from
the pHEX graph.

7.2. ImageNet classification experiments

In this section, we use the ILSVRC2012 dataset [7],
which consists of 1.2M training images from 1000 ob-
ject classes. These 1000 classes are mutually exclusive
leaf nodes of a semantic hierarchy based on WordNet
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Figure 4. Top-1 (top) and Top-5 accuracies (bottom) vs relation strength u for the ImageNet classification experiment. The
results of the pHEX graphs are in the red solid curves, and the results of the HEX graphs are in the blue dashed horizontal
lines. From left to right: relabeling 50%, 90%, 95%, 99%.

that has 860 internal nodes. As in [8], we evaluate the
recognition performance in the multiclass classification
at the leaf level, but allow the training examples to be
labeled at different semantic levels. Since ILSVRC2012
has no training examples at internal nodes, we cre-
ate training examples for internal nodes by relabelling
{50%, 90%, 95%, 99%} of the leaf examples to their
immediate parents based on the WordNet Hierarchy.
Since the ground truth for test set is not released for
ILSVRC2012, we use 10% of the released validation set
as our validation set and the other 90% as our test set.

The underlying feed-forward network that we use
is based on a deep convolutional neural network
GoogLeNet [22]. Since GoogLeNet is such a large
model, we adopt the following staged training proce-
dure. First we pre-train a CNN with a HEX graph as
the top layer until convergence. Then we fine tune the
entire model with pHEX graph layers of different co-
efficients u on top. This can be thought of as a form
of curriculum learning [2] by training with a simpler
model (HEX graph) with exact inference first.

Figure 4 shows the Top-1 (top row) and Top-5 (bot-
tom row) accuracies across classes as a function of u, for
the relabeling experiments. For comparison, the Top-1
(top row) and Top-5 (bottom row) accuracies without
relabeling (i.e., the standard ImageNet setup) is 70.1%
and 90.0% respectively. Not surprisingly, relabeling
(i.e., only providing some labels at the leaves, and us-
ing coarser grained categories for the rest) hurts perfor-
mance (as estimated by leaf-level accuracy). However,
in this regime (which occurs commonly in practice),
pHEX generally outperforms HEX, especially for 90%,
95% and 99% relabeling, where the accuracies improve
by 2%, 3% and 8% respectively. (Note that a 1% dif-
ference in performance is considered statistically sig-

nificant on this problem due to the large size of this
dataset.)

At first, it might seem odd that relaxing the hard
constraints imposed by the hierarchy can help, since
the hierarchy provided by WordNet is supposed to be
correct. However, [8] observed that too few training ex-
amples labeled at leaf nodes (especially at 99% relabel-
ing) may confuse the leaf models, especially at the be-
ginning of the training. As the algorithm runs longer,
it becomes harder to recover from a bad local mini-
mum because the constraints in the HEX graph are
hard constraints. By contrast, in the pHEX graph, the
weaker relations between internal nodes and leaf nodes
make the resulting posterior distribution smoother, so
it is easier to overcome bad local minima for the pHEX
graph in later iterations.

It is also interesting to see that the optimal value
of u appears to depend on the relabeling percentage.
When a larger portion of training examples are rela-
beled, e.g. 99% relabeling, the optimal relation coef-
ficient becomes weaker (u = 0.1). This indicates that
weaker label relations are preferred when there is more
uncertainty in the leaf labels.

On the other hand, when u is large, the label rela-
tions become quite certain and the the pHEX graph be-
comes closer to the HEX graph. In the case of u = 1.5
(q ' 0.002), the performance of pHEX graph can be-
come worse than HEX graph, probably due to the in-
ability to perform exact inference in the pHEX graph.

7.3. Zero shot learning experiments

We use two datasets to illustrate zero shot learn-
ing. The first is the Animals with Attributes dataset
[13], which includes images from 50 animal classes. For
each animal class, it provides both binary and continu-
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Figure 5. Mean accuracy per class vs relation strength u for the Zero-shot Learning Experiments. Left: animals with
attributes. The results of the pHEX with variable edge weights are in the dotted green, and the ones with constant edge
weights are in solid red. The results of the HEX graphs are in the blue dashed horizontal lines. Right: VOC/Yahoo images
with attributes.

ous predicates for 85 attributes. We convert the binary
predicates to constant (soft) relations, and the contin-
uous predicates to variable soft relations by a mono-
tonic mapping function. The details of the mapping are
provided in the supplementary material. We evaluate
the zero-shot setting where training is performed using
only examples from 40 animal classes (with 24295 im-
ages) and testing is on classifying the 10 unseen classes
(with 6180 images). Our experimental results are based
on 5-fold cross validation. The underlying network is
a single-layer network whose inputs come from the re-
cently released DECAF features [9].

The second dataset is the aPascal-aYahoo dataset
[10], which consists of a 12695 image subset of the PAS-
CAL VOC 2008 dataset and 2644 images that were col-
lected using the Yahoo image search engine. The PAS-
CAL part serves as training data and has 20 object
classes. The Yahoo part serves as test data and con-
tains 12 different object classes. Each image has been
annotated with 64 binary attributes that characterize
shape, material and the presence of important parts
of the visible object. We convert them to binary and
continous predicates for attributes per object by aver-
aging the image annotations for every object (details
in supplementary material). The underlying network
is again a single-layer network whose inputs come from
the features that the authors of [10] extracted from the
objects bounding boxes (as provided by the PASCAL
VOC annotation) and released as part of the dataset.
Once again we use 5-fold cross validation and compares
constant soft relations and variable soft relations with
hard relations.

Figure 5 shows the mean accuracy per class (along
with standard errors) vs u. We see that pHEX is gen-
erally significantly outperforming HEX. In particular,
when u ∈ [0.1, 1.5] for Animals with Attributes and
u ∈ [0.3, 1.0] for VOC/Yahoo, the difference is statisti-
cally significant at the 5% level according to a paired

t-test. The accuracies of the pHEX graph get closer
to the ones of the HEX graph as u becomes larger and
the pHEX graph approaches to the HEX graph. More-
over, the pHEX models with variable soft relations im-
proves over the ones with constant soft relations by 2%
for Animals with Attributes and 1% for VOC/Yahoo.
This demonstrates the value of adding additional in-
formation in the variable probabilistic label relations
in transfer learning.

7.4. Speed comparison of HEX vs pHEX

In the ImageNet experiements, the cost of HEX and
pHEX is similar, since most of the time is spent eval-
uating the underlying deep CNN. In the two zero-shot
learning experiments, the inference time of the pHEX
graph is about the same as the one of the HEX graph.
Furthermore, many other algorithms such as quantum
annealing [11] (which are faster and/or more accurate
than loopy belief propagation) have been devised for
Ising models which we could try in the future.

8. Conclusions

In this paper, we studied object classification with
probabilistic label relations. In particular, we proposed
the pHEX graph, which naturally generalizes the HEX
graph. The pHEX graph is equivalent to an undirected
Ising model, which allows for efficient approximate in-
ference methods. We embed the pHEX graph on top
of a deep neural network, and show that it outper-
forms the HEX graph on a number of classification
tasks which require exploiting label relations.

There are several possible future directions of this
work. One idea is to learn the Ising coefficients of the
pHEX graph together with the underlying neural net-
work parameters. Another is to combine the pHEX
graph into a larger framework which exploits spatial
relations between objects.
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