
Learning with Deep Cascades

Giulia DeSalvo1, Mehryar Mohri1,2, and Umar Syed2

1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012
2 Google Research, 111 8th Avenue, New York, NY 10011

Abstract. We introduce a broad learning model formed by cascades of predic-
tors, Deep Cascades, that is structured as general decision trees in which leaf pre-
dictors or node questions may be members of rich function families. We present
new data-dependent theoretical guarantees for learning with Deep Cascades with
complex leaf predictors and node questions in terms of the Rademacher com-
plexities of the sub-families composing these sets of predictors and the fraction
of sample points reaching each leaf that are correctly classified. These guaran-
tees can guide the design of a variety of different algorithms for deep cascade
models and we give a detailed description of two such algorithms. Our second
algorithm uses as node and leaf classifiers SVM predictors and we report the re-
sults of experiments comparing its performance with that of SVM combined with
polynomial kernels.

Keywords: decision trees, learning theory, supervised learning.

1 Introduction

Decision trees are learning models commonly used in classification, regression, and
clustering applications [6, 23]. They can be defined as binary trees augmented with in-
dicator functions at each internal node and assignment functions at each leaf. A sample
point is processed by a decision tree by answering questions at each node of a tree until
a leaf is reached. The label assignment at that leaf then determines the value returned
by the tree for that point.

In standard decision trees, the node questions are selected from a fixed family of
functions and similarly for the leaf predictors [6,23]. The complexity of a decision tree
directly depends on these two families of functions and the depth of the tree. Thus,
in practice, to limit the risk of overfitting, relatively simple families of functions are
used: node questions are typically selected to be threshold functions based on the input
features, leaf predictors often chosen to be constant functions.

This paper considers a significantly broader learning model formed by cascades of
predictors, Deep Cascades, structured as a decision tree. In this model, the leaf predic-
tors can be chosen out of a complex hypothesis set H and, similarly, the node questions
from a family Q. For some difficult learning tasks, the flexibility of allowing leaf pre-
dictors to be selected from a more complex set H (or node questions from Q) may be
needed to achieve a high performance. However, cascades with leaf predictors freely
selected from H are likely to be prone to overfitting, even with a relatively large num-
ber of training samples. Can we preserve the flexibility of using complex leaf predictors
(or node questions) and yet avoid overfitting?

2

SupposeH can be decomposed as the union of p distinct hypothesis setsH1, . . . ,Hp

with increasing complexity. For example,Hk could be the family of threshold functions
based on feature monomials of degree k, or polynomial functions of degree k, or Hk

could be the family of linear classifiers based on polynomial kernels of degree k. The
simpler form of our theoretical analysis shows that, remarkably, it is possible to choose
a leaf predictor function fromHk with a relatively large k while benefitting from strong
learning guarantees, so long as the fraction of training sample points reaching that leaf
is small compared to the complexity of Hk. Our full analysis provides finer guarantees
that we will describe in detail.

We present data-dependent theoretical guarantees for learning with Deep Cascades
with leaf predictors chosen from the hypothesis sets Hk and node question functions
selected from different hypothesis sets Qj . Our learning bounds are expressed in terms
of the Rademacher complexities of the families of leaf predictors Hk and the families
of node questions Qj . These general guarantees can guide the design of a variety of
different algorithms for deep cascade models. We describe in depth two such algorithms
for learning deep cascades. Our second algorithm uses as node and leaf classifiers SVM
predictors and we report the results of experiments comparing its performance with that
of SVM combined with polynomial kernels.

Our theory and algorithm have many connections with the wide literature on deci-
sion trees and some more recent publications on cascades of classifiers. They are also
related to classification with reject option and to a series of articles about combining
decision trees with the SVM algorithm. We briefly discuss some of these connections
and highlight our contributions here. A more detailed discussion of the previous work
is presented in the full version of the paper [11].

Several types of generalization bounds have been given in the past for decision trees.
Mansour and McAllester [19] provided non-trivial generalization bounds for decision
trees where the node questions are selected from a single hypothesis set and where
the leaves are simply labeled with zero or one. These are special cases of the deep
cascades we are considering. As in our analysis, their bounds depend on the actual
training sample and the tree structure, but the complexity term of their bound is the size
of the tree, while ours are expressed in terms of the empirical Rademacher complexities
of the hypothesis sets used. A similar approach was adopted by Nobel [21] who further
proved the consistency of pruned trees under certain assumptions. Golea et al. [13]
gave generalization bounds in terms of the VC-dimension of the node functions and the
number of leaves but the trees analyzed are much less general than the deep cascades.
Lastly, Scott and Nowak [26] presented an analysis of a specific family of decision
trees, Dyadic Decision Trees (DDT).

Cascades have been extensively used in object detection starting with the work of
Viola and Jones [29] who introduced attentional cascades and combined complex clas-
sifiers in a linear structure to create a highly accurate face detector. Their work inspired
a number of variants of their training procedures [8,16,22,25,27]. Most of these papers
focus on finding the best trade-off between computational cost and classification accu-
racy, which differs from our main objective here. Additionally, the deep cascades we
consider admit a more general structure than those considered by this previous work.

3

Since one of our deep cascade algorithms uses SVMs, we also review the related
previous work on combining SVMs with decision trees. Bennett and Blue [5] used
SVMs as node questions in decision trees. They did not present a theoretical analy-
sis of these models and did not address the issue of overfitting, but they proposed an
optimization problem for which they gave a heuristic solution and presented prelimi-
nary empirical results. Some of the papers in this area focus on multi-class classifica-
tion [12, 18, 28]. However, they partition the feature space in a different way from our
cascade models. Other articles attempted to increase SVM’s computational speeds by
using decision trees [1, 2, 7, 15, 24], but both the splitting criteria and class assignments
are very different from ours.

The layout of the paper is as follows. We introduce the notation adopted throughout
the paper and give a formal definition of the family of deep cascades in Section 2. Next,
in Section 3, we present data-dependent learning bounds for deep cascades, first in the
case of leaf functions taking values in {−1,+1}, and later in the more general case
where they take values in the interval [−1,+1]. In Section 4, we describe two binary
classification algorithms whose design is guided by these bounds and which benefit
from these learning guarantees. We report the results of several experiments using one
of these algorithms in Section 5.

2 Preliminaries

Let X denote the input space. We consider the standard supervised learning scenario
where the training and test points are drawn i.i.d. according to some distributionD over
X × {−1,+1} and denote by S = ((x1, y1), . . . , (xm, ym)) a training sample of size
m drawn according to Dm.

Let l ≥ 1. For any k ∈ [1, l], let Sk denote a family of functions mapping X to
{0, 1} and let H denote a family of p hypothesis sets of functions mapping X to [0, 1].
A deep cascade with l ≥ 1 leaves is a tree of classifiers which, in the most generic view,
can be defined by a triplet (H, s,h) where

– H = (H1, . . . ,Hl) is an element of Hl which determines, for all k, the hypothesis
set Hk used at leaf k;

– s : X × [1, l] → {0, 1} is a leaf selector, that is s(x, k) = 1 if x is assigned to leaf
k, s(x, k) = 0 otherwise; for each k, function s(·, k) is an element of Sk;

– h = (h1, . . . , hl), with hk : X → [−1,+1] the leaf classifier for leaf k, which is
an element of the family of functions Hk.

We denote by Hk = {x 7→ s(x, k)hk(x) : s(·, k) ∈ Sk, hk ∈ Hk} the family composed
of products of a k-leaf selector and a k-leaf classifier.

We will later assume, as in standard decision trees, that the leaf selector s can be
decomposed into node questions (or their complements): for any x ∈ X and k ∈ [1, p],
s(x, k) =

∏dk
j=1 qj(x), where dk is the depth of node k and where each function

qj : X → {0, 1} is an element of a family Qj .3 Yet much of our analysis holds without
this assumption.

3 Each qj is either a node question q or its complement q̄ defined by q̄(x) = 1 iff q(x) = 0. The
family Qj is assumed symmetric: it contains q̄ when it contains q.

4

Each triplet (H, s,h) defines a deep cascade function f : X → [−1,+1] as follows:

∀x ∈ X , f(x) =

l∑
k=1

s(x, k)hk(x). (1)

We denote by Tl the family of all deep cascade functions f with l leaves thereby de-
fined. We also denote byR(f) = E(x,y)∼D[1yf(x)≤0] the binary classification error of a
function f ∈ Tl, by R̂S(f) = E(x,y)∼S [1yf(x)≤0] its empirical error and, for any ρ > 0,
by R̂S,ρ(f) = E(x,y)∼S [1yf(x)≤ρ] its empirical margin error over a labeled sample S,
where the notation (x, y)∼S means that (x, y) is drawn according to the empirical dis-
tribution defined by S. We further denote by Rm(H) the Rademacher complexity and
by R̂S(H) the empirical Rademacher complexity of a hypothesis set H [3, 14].

3 Data-dependent Learning Guarantees

In this section, we present data-dependent learning guarantees for deep cascades that de-
pend, for each leaf k, on the Rademacher complexity of the family Hk and on the frac-
tion of the points in the training sample that reach leaf k and that are correctly classified,
denoted by m+

k /m. m+
k is thus defined by m+

k = |{i : yihk(xi) > 0, s(xi, k) = 1}|.
Similarly, the number of points that reach leaf k that are incorrectly classified is denoted
by m−k and defined by m−k = |{i : yihk(xi) ≤ 0, s(xi, k) = 1}|.

We first analyse the case where the leaf classifiers hk take values in {−1,+1} (Sec-
tion 3.1), and next consider the more general case where they take values in [−1,+1]
(Section 3.2). In the full version of this paper [11], we further extend our analysis and
data-dependent learning guarantees to the setting of multi-class classification.

3.1 Leaf classifiers taking values in {−1,+1}

The main result of this section is Theorem 1, which provides a data-dependent general-
ization bound for deep cascade functions in the case where leaf classifiers take values
in {−1,+1}. The following is a simpler form of that result: with high probability, for
all f ∈ Tl,

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

4 R̂S(Hk),
m+
k

m

)
+ Õ

(
l

√
log pl

m

)
. (2)

Remarkably, this suggests that a strong learning guarantee holds even when a very com-
plex hypothesis set Hk is used in a deep cascade model, so long as m+

k /m, the fraction
of the points in the training sample that reach leaf k and are correctly classified, is
relatively small. Observe that the result remains remarkable and non-trivial even if we
upper bound m+

k by mk, the total number of points reaching leaf k. The fraction of
the points in the training sample that reach leaf k and are correctly classified depends
on the choice of the cascade. Thus, the bound can provide a quantitative guide for the
choice of the best deep cascade. Even for p = 1, the result is striking since, while in

5

the worst case the complexity term could be inO(lR̂S(H1)), this data-dependent result
suggests that it can be substantially less for some deep cascades since we may have
m+
k /m � R̂S(H1) for many leaves. Also, note that the dependency of the bound on

the number of distinct hypothesis sets p is only logarithmic. In Section 4, we present
several algorithms exploiting this generalization bound for deep cascades.

For clarity, we will sometimes use the shorthand rk = R̂S(Hk) for any k ∈ [1, l].
We will assume without loss of generality that the leaves are numbered in order of
increasing depth and will denote by K the set of leaves k whose fraction of correctly

classified sample points is greater than 4rk: K = {k ∈ [1, l] :
m+
k

m > 4rk}.
Theorem 1. Fix ρ > 0. Assume that for all k ∈ [1, l], the functions in Hk take values
in {−1,+1}. Then, for any δ > 0, with probability at least 1 − δ over the choice of a
sample S of size m ≥ 1, the following holds for all l ≥ 1 and all cascade functions
f ∈ Tl defined by (H, s,h):

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

4R̂S(Hk),
m+
k

m

)

+ min
L⊆K

|L|≥|K|− 1
ρ

∑
k∈L

[m+
k

m
− 4R̂S(Hk)

]
+ C(m, p, ρ) +

√
log 4

δ

2m
,

where C(m, p, ρ) = 2
ρ

√
log pl
m +

√
log pl
ρ2m log

[
ρ2m
log pl

]
= Õ

(
1
ρ

√
log pl
m

)
.

Proof. First, observe that the classification error of a deep cascade function f ∈ Tl only
depends on its sign sgn(f). Let ∆ denote the simplex in Rl and int(∆) its interior. For
any α ∈ int(∆), define gα by

∀x ∈ X , gα(x) =

l∑
k=1

αks(x, k)hk(x). (3)

Then, sgn(f) coincides with sgn(gα) since s(x, k) is non-zero for exactly one value of
k. We can therefore analyze R(gα) instead of R(f), for any α ∈ int(∆).

Now, since gα is a convex combination of the functions x 7→ s(x, k)hk(x), we
can apply to the set of functions gα the learning guarantees for convex ensembles with
multiple hypothesis sets given by [9]:

R(f) ≤ inf
α∈int(∆)

[
R̂S,ρ(gα) +

4

ρ

l∑
k=1

αkR̂S(Hk)

]
+ C(m, p, ρ) +

√
log 4

δ

2m
. (4)

This bound is not explicit and depends on the choice of α ∈ int(∆). The crux of our
proof now consists of removing α and deriving an explicit bound. The first term of the
right-hand side of (4) can be re-written as infα∈int(∆)A(α) with

A(α) =
1

m

l∑
k=1

∑
s(xi,k)=1

1yiαkhk(xi)<ρ +
4

ρ

l∑
k=1

αkR̂S(Hk), (5)

6

since R̂S,ρ(gα) = 1
m

∑l
k=1

∑
s(xi,k)=1 1yiαkhk(xi)<ρ. Observe that function A can be

decoupled as a sum, A(α) =
∑l
k=1Ak(αk), where

Ak(αk) =
1

m

∑
s(xi,k)=1

1yiαkhk(xi)<ρ +
4

ρ
αkrk

with rk = R̂S(Hk). For any k ∈ [1, l], Ak(αk) can be rewritten as follows in terms of

m−k and m+
k : Ak(αk) =

m−k
m +

m+
k

m 1αk<ρ + 4
ραkrk. This implies infαk>0Ak(αk) =

m−k
m +min

(
m+
k

m , 4rk

)
.However, we need to ensure the global condition

∑l
k=1 αk ≤ 1.

First, we let l′ = min(|K|, 1ρ). For any J ⊆ K with |J| ≤ l′, we choose αk = ρ for

k ∈ J, αk → 0 otherwise, which guarantees
∑l
k=1 αk = ρl′ ≤ 1 and gives the infimum

inf
α∈int(∆)

A(α) = min
J⊆K
|J|≤l′

(
4
∑
k∈J

rk +
∑

k∈K−J

m+
k

m

)
+

l∑
k=1

m−k
m

+
∑
k 6∈K

m+
k

m
.

In order to simplify the bound, observe that the following equalities hold:

min
J

(
4
∑
k∈J

rk +
∑

k∈K−J

m+
k

m

)
= min

J

(
4
∑
k∈J

rk +
∑

k∈K−J

m+
k

m
+
∑

k∈K−J

4rk −
∑

k∈K−J

4rk

)
= min

J

(
4
∑
k∈K

rk +
∑

k∈K−J

m+
k

m
− 4rk

)
= 4

∑
k∈K

rk + min
J

(∑
k∈K−J

m+
k

m
− 4rk

)
.

By definition,
∑
k∈K 4rk +

∑
k 6∈K

m+
k

m =
∑l
k=1 min

(
4rk,

m+
k

m

)
. Now, let L = K− J

and since |J| ≤ l′, |L| = |K|− |J| ≥ |K|− l′ = |K|−min(|K|, 1ρ) = max(0, |K|− 1
ρ)

thus, |L| ≥ |K| − 1
ρ . Finally, we write the bound in the following simpler form:

inf
α∈int(∆)

A(α) =

l∑
k=1

min
(

4rk,
m+
k

m

)
+ min

L⊆K
|L|≥|K|− 1

ρ

(∑
k∈L

m+
k

m
−4rk

)
+

l∑
k=1

m−k
m

.

Since R̂S(f) =
∑l
k=1

m−k
m , this coincides with the bound of the theorem. ut

These learning bounds are not straightforward and cannot be derived from standard
Rademacher complexity bounds. A finer analysis is used in the proof to relate deep
cascades to convex ensembles with multiple hypothesis sets [9].

We already commented on the simpler form (2) of this generalization bound. Our
comments apply a fortiori to this finer version of the bound. Let us add that the theorem
also provides new learning guarantees in the special case of decision trees. The result
may seem surprising since it suggests that the complexity term depends on m+

k /m
when this ratio is sufficiently small; however, for such nodes, typically the fraction of
points mk/m would also be small, where mk denotes the number of points at leaf k.

7

At a deeper level, these guarantees suggest that for cascades, the complexity of the
hypothesis sets may not be the most critical measure, but rather a balance of those
complexities and the fractions of points.

The bound of the theorem can be generalized to hold uniformly for all ρ > 0 at the

price of an additional term in O
(

log log2
1
ρ

m

)
. For |K| ≤ 1

ρ , choosing L = ∅ yields:

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

4 R̂S(Hk),
m+
k

m

)
+ C(m, p, ρ) +

√
log 4

δ

2m
. (6)

As mentioned above, these learning bounds can be generalized to hold uniformly over
all ρ > 0: thus, we can choose ρ = 1

|K| at the price of an additional term in the bound

varying only in O
(

log log2 |K|
m

)
≤ O

(
log log2 l

m

)
. This gives the simpler form (2) of the

bound of Theorem 1, using C(m, p, ρ) = C(m, p, 1
|K|) ≤ C(m, p, 1l).

The learning bounds just presented are given in terms of the empirical Rademacher
complexities R̂S(Hk). To derive more explicit guarantees, we must bound each of these
quantities in terms of R̂S(Hk) and R̂S(Sk). The following lemma helps us achieve that.

Lemma 1. Let G1 be a family of functions mapping X to {0, 1} and let G2 be a family
of functions mapping X to {−1,+1}. Let G = {g1g2 : g1 ∈ G1, g2 ∈ G2}. Then, the
empirical Rademacher complexity of G for any sample S of size m can be bounded as
follows:

R̂S(G) ≤ R̂S(G1) + R̂S(G2).

Proof. Observe that for g1 ∈ G1 and g2 ∈ G2, g1g2 = |g1 + g2| − 1. Since x 7→
|x| − 1 is 1-Lipschitz over [−1, 2], by Talagrand’s lemma in [20], the following holds:
R̂S(G) ≤ R̂S(G1 +G2) ≤ R̂S(G1) + R̂S(G2). ut

Thus, in view of the lemma, for any k ∈ [1, p], we can use the upper bound
R̂S(Hk) ≤ R̂S(Hk) + R̂S(Sk).

We now assume, as previously discussed, that leaf selectors are defined via node
questions qj : X → {0, 1}, with qj ∈ Qj . Thus, to derive more explicit guarantees in
that case, we need to bound R̂S(Sk) in terms of the Rademacher complexities R̂S(Qj).

Lemma 2. Let H1 and H2 be two families of functions mapping X to {0, 1} and let
H = {h1h2 : h1 ∈ H1, h2 ∈ H2}. Then, the empirical Rademacher complexity of H
for any sample S of size m can be bounded as follows:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can write h1h2 = (h1 +
h2 − 1)1h1+h2−1≥0 = (h1 + h2 − 1)+. Since x 7→ (x − 1)+ is 1-Lipschitz over
[0, 2], by Talagrand’s lemma in [20], the following holds: R̂S(H) ≤ R̂S(H1 +H2) ≤
R̂S(H1) + R̂S(H2). ut

8

In view of Lemmas 2 and 1, the Rademacher complexities of the hypothesis sets Hk

can be explicitly bounded as follows for any k ∈ [1, l]: R̂S(Hk) ≤ ∑dk
j=1 R̂S(Qj) +

R̂S(Hk). Clearly, if the same hypothesis set is used for all node questions, that is Qj =

Q for all j for some Q, then the bound admits the following simpler form: R̂S(Hk) ≤
dkR̂S(Q) + R̂S(Hk). The Rademacher complexity of the hypothesis sets Hk can also
be bounded in terms of the growth function of Hk and of Qj (see full paper [11]).

To the best of our knowledge, Lemmas 2 and 1 are both novel and can be used as
general tools for the analysis of the Rademacher complexity of other families. In the
full version of this paper [11], we also provide a lower bound for the Rademacher com-
plexity of the product of two hypothesis sets as a linear combination of the Rademacher
complexity of the two sets. This shows that the upper bounds given by Lemma 2 cannot
be significantly improved in general.

3.2 Leaf classifiers taking values in [−1,+1]

A similar but somewhat more complex analysis can be given in the case where the leaf
classifiers take values in [−1,+1]. Define ρk = min{yihk(xi) : yihk(xi) > 0, s(xi, k) =
1} as the smallest confidence value over the correctly classified sample points at leaf
k. If there are no correctly classified points, then define ρk = 0. Let K̃ =

{
k ∈

[1, l] :
m+
k

m > 4rk
ρk

}
and denote its weighted cardinality as |K̃|w̃ =

∑l
k=1

1
ρk

. Then, it

can be shown that for any δ > 0, for |K̃|w̃ ≤ 1
ρ , the following holds with probability at

least 1− δ:

R(f) ≤ R̂S(f) +

l∑
k=1

min

(
4R̂S(Hk)

ρk
,
m+
k

m

)
+ Õ

(
l

√
log pl

m

)
, (7)

which is the analogue of the learning bound (2) obtained in the case of leaf classifiers
taking values in {−1,+1}. The full proof of this result, as well as that of more refined
results, is given in the full version of this paper in [11]. As in the discrete case, to derive
an explicit bound, we need to upper bound for all k ∈ [1, l] the Rademacher complexity
R̂S(Hk) in terms of those of Hk and Qj . To do so, we will need a new tool provided
by the following lemma.

Lemma 3. Let H1 and H2 be two families of functions mapping X to [0,+1] and let
F1 and F2 be two families of functions mapping X to [−1,+1]. Let H = {h1h2 : h1 ∈
H1, h2 ∈ H2} and letF = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the empirical Rademacher
complexities of H and F for any sample S of size m are bounded as follows:

R̂S(H) ≤ 3

2

(
R̂S(H1) + R̂S(H2)

)
R̂S(F) ≤ 2

(
R̂S(F1) + R̂S(F2)

)
.

Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can write h1h2 = 1
4 [(h1 +

h2)2 − (h1 − h2)2]. For bounding the term (h1 + h2)2, note that the function x 7→
1
4x

2 is 1-Lipschitz over [0, 2]. For the term (h1 − h2)2, observe that the function x 7→

9

q1(x)

h1(x)

µ1

µ2

1 � µ3

1 � µ2

1 � µ1

Node 1:

Leaf 1:

µ3

Fig. 1. Tree Topology of deep cascades for DEEPCASCADE and DEEPCASCADESVM Algo-
rithm. The node question at node 1 is denoted by q1(x) and the leaf classifier at leaf 1 denoted by
h1(x). A µk fraction of the points at node k is sent to the right child, and the remaining (1−µk)
fraction of points to the left child. For DEEPCASCADE, all µks are set to be equal: µk = µ for
all k.

1
4x

2 is 1/2-Lipschitz over [−1, 1]. Thus, by Talagrand’s lemma (see [20]), R̂S(H) ≤
R̂S(H1 + H2) + 1

2R̂S(H1 − H2) ≤ 3
2

(
R̂S(H1) + R̂S(H2)

)
. Similarly, the same

equation holds for the product f1f2 with f1 ∈ F1 and f2 ∈ F2, but now the function
x 7→ 1

4x
2 is 1-Lipschitz over [−2, 2]. Thus, by Talagrand’s lemma [20], the following

holds: R̂S(F) ≤ R̂S(F1 + F2) + R̂S(F1 − F2) ≤ 2
(
R̂S(F1) + R̂S(F2)

)
, which

completes the proof. ut

Lemma 2 and Lemma 3 yield the following explicit bound for R̂(Hk) for any k ∈ [1, l]:
R̂S(Hk) ≤ 2

∑dk
j=1 R̂S(Qj) + 2R̂S(Hk). When the same hypothesis set is used for

all node questions, that is Qj = Q for all j for some Q, then the bound admits the
following simpler form: R̂S(Hk) ≤ 2dkR̂S(Q) + 2R̂S(Hk).

4 Algorithms

There are several algorithms that could be derived from the learning guarantees pre-
sented in the previous section. Here, we will describe two algorithms based on the
simplest bound (2) of Section 3.1, which we further bound more explicitly by using the
results from the previous section:

R(f) ≤ R̂S(f)+

l∑
k=1

min

(
4

[dk∑
j=1

R̂S(Qj)+R̂S(Hk)

]
,
m+
k

m

)
+Õ

(
l

√
log pl

m

)
. (8)

For both of our algorithms, we fix the topology of the deep cascade to be binary trees
where every left child is a leaf as shown by Figure 2. Other more general tree topologies
can be considered, which could further improve our results.

4.1 DEEPCASCADE

In this section, we describe a generic algorithm for deep cascades, named DEEP-
CASCADE. The algorithm first generates several deep cascades and then chooses the
best among them by minimizing the generalization bound (8).

10

Algorithm 1 DEEPCASCADE(L,M)
S1 ← S
for l ∈ [1, . . . , L], µ ∈M, (Hk)1≤k≤l ⊆ H, (Qk)1≤k≤l ⊆ Q do

for k = 1 to l do
qk ← argq∈Qk{|q

−1(1) ∩ Sk| = µ|Sk|}
Sk+1 ← q−1

k (1) ∩ Sk

hk ← argminh∈Hk{R̂S̄k+1
(h) : S̄k+1 = q−1

k (0) ∩ Sk}
end for
f ←

∑l−1
k=1(

∏k−1
j=1 qj)qkhk + (

∏l
j=1 qj)hl

F ← F ∪ {f}
end for
f∗ ← argminf∈F RS(f) +

∑l
k=1 min

(
4
(∑dk

j=1 R̂S(Qf,j) + R̂S(Hf,k)
)
,
m+
k

m

)
return f∗

LetH be a set of p hypothesis sets from which the hypothesis sets Hk are selected.
Here, we similarly allow each hypothesis setQk to be chosen out of a family of hypoth-
esis sets Q of cardinality p – it is not hard to see that this affects our learning bound
only by the log(pl) factors being changed into l log(p) and leaves the main terms we
are minimizing unchanged; moreover, since we will be considering cascades with a
relatively small depth, say l ≤ 4, the effect will be essentially insignificant.

At any node k, the question qk is selected so that a µ fraction of the points is sent
to the right child. We assume for simplicity that for any node k and any choice µ, there
exists a unique node question qk with that property. For the topology of Figure 2, it

is not hard to see that for any k, m
+
k

m is at most µk−1. The parameter µ controls the
fraction of points that proceed deeper into the tree and is introduced in order to find
the best trade-off between the complexity term and fraction of points at each node. The
subsample of the points reaching the internal node k is denoted by Sk and the subsample
of those reaching leaf k is denoted by S̄k+1, with |S̄k+1| = mk. The leaf classifier hk is
chosen to be the minimizer of the empirical error over S̄k+1 since, in this way, it further
minimizes bound (8).

Algorithm 1 gives the pseudocode of DEEPCASCADE. The algorithm takes as input
the maximum depth L for all the deep cascades generated and the setM of different
fraction values for the parameter µ. For any depth l ∈ [1, . . . , L], any µ ∈ M, and
any sequence of leaf hypothesis sets (Hk)1≤k≤l ⊆ H and sequence of node question
hypothesis sets (Qk)1≤k≤l ⊆ Q, the algorithm defines a new deep cascade function f .
At each node k, the question qk ∈ Qk is selected with the µ-property already discussed
and the leaf hypothesis hk ∈ Hk is selected to minimize the error over the leaf sample.
For each f , we denote by Qf,k the question hypothesis set at node k that served to
define f and similarly Hf,k the hypothesis set at leaf k that was used to define f . The
algorithm returns the deep cascade function f∗ among these cascade functions f that
minimizes the bound (8).

The empirical risk minimization (ERM) method used to determine the leaf clas-
sifiers hk is intractable for some hypothesis sets. In the next section, we present an

11

µ1 fraction of
points

h1

Hyperplane

q1 = 1

q1 = 0

Node
Question

Fig. 2. Illustration of the first step of DEEPCASCADESVM. The hyperplane h1 is learned using
the SVM algorithm over sample points S1. The node question q1 equals one in the green area and
zero otherwise. The green area contains a µ1 fraction of the data points that will proceed to the
next node.

alternative algorithm using SVMs which can be viewed as an efficient instantiation of
this generic algorithm.

4.2 DEEPCASCADESVM

In this section, we describe an algorithm for learning deep cascades that makes use
of SVMs and that we named DEEPCASCADESVM. In short, as with DEEPCASCADE,
DEEPCASCADESVM first generates different deep cascade functions, but it uses the
SVM algorithm at each node of the cascade and chooses the best among them by mini-
mizing an upper bound of the generalization bound (8).

The deep cascade functions generated by the algorithm are based on repeatedly
using SVMs combined with polynomial kernels of different degree. The leaf hypothesis
sets Hk are decision surfaces defined by polynomial kernels. The hypothesis hk ∈ Hk

is learned via the SVM algorithm with a polynomial kernel degree δk on subsample
Sk. Note that in the pseudocode of Algorithm 2, we denote this step by SVM(δk, Sk).
The node question hypothesis set Qk is defined to be the set of indicator functions of
dist(hk, x) ≤ c, where dist(hk, x) is the Euclidian distance of point x to hyperplane hk
in the feature space. The node question qk ∈ Qk is chosen to be the indicator function
of dist(hk, x) ≤ ck where ck is such that |qk(1)−1 ∩ Sk| = µk|Sk|, meaning the
number of points in Sk that are within a distance ck to hyperplane hk equals µk|Sk|.
In other words, after learning the hyperplane via the SVM algorithm on subsample Sk,
the algorithm

1. extracts a µk fraction of points closest to the hyperplane;
2. on the next node in the cascade, retrains on this extracted subsample using the SVM

algorithm with a polynomial kernel of another degree.

We extract the fraction of points closest to the hyperplane because these points can be
harder to classify correctly. Hence, these points will proceed deeper into the cascade
in hope to find a better trade-off between the complexity and the fraction of correctly
classified points.

12

Algorithm 2 DEEPCASCADESVM(L,M, γ)
for l ∈ [1, . . . , L], (µk)1≤k≤l ⊆M, (δk)1≤k≤l ⊆ G do
S1 ← S
for k = 1 to l do
hk ← SVM(δk, Sk)
qk ← argq∈Qk{|q

−1(1) ∩ Sk| = µk|Sk|}
Sk+1 ← q−1

k (1) ∩ Sk

end for
f(·) =

∑l−1
k=1(

∏k−1
j=1 qj)qkhk + (

∏l
j=1 qj)hlhk(·)

F ← F ∪ {f}
end for

f∗ ← argmin
f∈F

R̂S(f) +

l∑
k=1

min

(
4γ

[
dk∑
j=1

√
df,j log

(
em
df,j

)
m

+

√
df,k log

(
em
df,k

)
m

]
,
m+

k

m

)
return f∗

The algorithm generates several cascades functions with a given depth l ∈ [1, . . . , L].
For any depth l ∈ [1, . . . , L], any sequence of fraction values (µk)1≤k≤l ⊆ M and se-
quence of degree values (δk)1≤k≤l ⊆ G, the algorithm defines a new deep cascade
function f . At each node k, the question qk ∈ Qk and leaf hypothesis hk ∈ Hk are
selected as already discussed. Similarly, as before, for each f , we denote by Qf,k the
question hypothesis set at node k that served to define f and similarly Hf,k the hypoth-
esis set at leaf k that was used to define f . The best cascade f∗ is chosen by minimizing
an upper bound of the generalization bound (8). More precisely, we first bound the
Rademacher complexity in terms of the VC-dimension of the hypothesis set:

dk∑
j=1

R̂S(Qf,j) + R̂S(Hf,k) ≤
dk∑
j=1

√
df,j log(emdf,j)

m
+

√
df,k log(emdf,k)

m
,

where df,k is the VC-dimension ofHf,k and where we used the fact that VCdim(Qf,j) ≤
Pdim(Hf,j) = VCdim(Hf,j) = df,j . Then, we rescale the complexity term by a pa-
rameter γ, which we will determine by cross-validation. Thus, for a given γ, we chose
the deep cascade with the smallest value of the generalization bound :

R(f)≤ R̂S(f)+

l∑
k=1

min

4γ
 dk∑
j=1

√
df,j log(emdf,j)

m
+

√
df,k log(emdf,k)

m

 , m+
k

m

 . (9)

DEEPCASCADESVM can be seen as a tractable version of the generic DEEPCAS-
CADE algorithm with some minor differences in the following ways. Instead of choos-
ing hk to be the minimizer of the empirical error as done in DEEPCASCADE, the DEEP-
CASCADESVM chooses the hk that minimizes a surrogate loss (hinge loss) of the em-
pirical error by using the SVM algorithm. In fact, the γ parameter is introduced because
the hinge loss used in the SVM algorithm needs to be re-scaled. Note that hk is learned
via the SVM algorithm on Sk and not on S̄k+1, namely the points that reach leaf k, as in
the DEEPCASCADE algorithm. One could retrain SVM on the points reaching the leaf

13

Table 1. Results for DEEPCASCADESVM algorithm. The table reports the average test error and
standard deviation for DEEPCASCADESVM(γ∗) and for the SVM algorithm. For each data set,
the table also indicates the sample size, the number of features, and the depth of the cascade.

Dataset Number of Number of SVM Algorithm DEEPCASCADESVM Cascade
Examples Features Depth

breastcancer 683 10 0.0426 ± 0.0117 0.0353 ± 0.00975 4
german 1,000 24 0.297 ± 0.0193 0.256 ± 0.0324 4
splice 1,000 60 0.205 ± 0.0134 0.175 ± 0.0152 3
ionosphere 351 34 0.0971 ± 0.0167 0.117 ± 0.0229 4
a1a 1,000 123 0.195 ± 0.0217 0.209± 0.0233 2

to be consistent with the first algorithm, but this typically will not change the hypothesis
hk. The generic node question qk of DEEPCASCADE are picked to be the distance to the
classification hyperplane hk for a given fraction µk of points in DEEPCASCADESVM
algorithm. Technically, in the DEEPCASCADE, the µ fractions are the same, but this
was done to simplify the exposition of the DEEPCASCADE algorithm. DEEPCASCADE
minimizes exactly bound (8), while DEEPCASCADESVM minimizes an upper bound
in terms of the VC-dimension.

5 Experiments

This section reports the results of some preliminary experiments with the DEEPCAS-
CADESVM algorithm on several UC Irvine data sets. Since DEEPCASCADESVM uses
only polynomial kernels as predictors, we similarly compared our results with those
achieved by the SVM algorithm with polynomial kernels over the set G of polynomial
degrees. Of course, a similar set of experiments can be carried out by using both Gaus-
sian kernels or other kernels, which we plan to do in the future.

For our experiments, we used five different data sets from UC Irvine’s data repos-
itory, http://archive.ics.uci.edu/ml/datasets.html: breastcancer, german (numeric),
ionosphere, splice, and a1a. Table 1 gives the sample size and the number of fea-
tures for each of these data sets. For each of them, we randomly divided the set into
five folds and ran the algorithm five times using a different assignment of folds to the
training set, validation set, and test set. For each j ∈ {0, 1, 2, 3, 4}, the sample points
from the fold j was used for testing, the fold j + 1 (mod 5) used for validation, and the
remaining sample points used for training.

The following are the parameters used for DEEPCASCADESVM: the maximum tree
depth was set to L = 4, the set of fraction values was selected to beM = { i10 : i =
1, · · · , 10} and the set of polynomial degrees G = {1, . . . , 4}. The regularization pa-
rameter Cδ ∈ {10i : i = −3, · · · , 2} of SVMs was selected via cross-validation for
each polynomial degree δ ∈ G. To avoid a grid search at each node, for cascades, the
regularization parameter Cδk for SVMs at node k was simply defined to be

√
mk
m Cδ

when using a polynomial degree δk.
For each value of the parameter γ ∈ {10i : i = −2, . . . , 0}, we generated several

deep cascades and then chose the one that minimized the bound (9). Thus, for each γ,
there was a corresponding deep cascade f∗γ . The parameter γ was chosen via cross-

14

validation. More precisely, we chose the best γ∗ by finding the deep cascade f∗γ∗ that
had the smallest validation error among the deep cascade functions f∗γ . We report the
average test error of the deep cascade f∗γ∗ in Table 1. For SVMs, we report the test errors
for the polynomial degree and regularization parameter with the smallest validation
error.

The results of Table 1 show that DEEPCASCADESVM outperforms SVMs for three
out of the five data sets: breastcancer, german, and splice. The german and
splice results are statistically significant at the 5% level using a one-sided paired
t-test while breastcancer result is not statistically significant. For the remaining two
data sets where SVMs outperforms DEEPCASCADESVM, the a1a result is statistically
significant at the 5% level while it is not statistically significant for the ionosphere

data set.
Overall, the results demonstrate the benefits of DEEPCASCADESVM in several data

sets. Note also that SVMs can be viewed as a special instance of the deep cascades with
depth one. It is conceivable of course that for some data sets such simpler cascades
would provide a better performance. There are several components in our algorithm
that could be optimized more effectively to further improve performance. This includes
optimizing over the regularization parameter C at each node of the cascade, testing
polynomial degrees higher than 4, or searching over larger sets of µ fraction values and
γ values. Yet, even with this rudimentary implementation of an algorithm that mini-
mizes the simplest form of our bound (8), it is striking that it outperforms SVMs for
several of the data sets and finds a comparable accuracy for the remaining data sets.
More extensive experiments with other variants of the algorithms would be interesting
to investigate in the future.

6 Conclusion

We presented two algorithms for learning Deep Cascades, a broad family of hierarchi-
cal models which offer the flexibility of selecting node or leaf functions from unions of
complex hypothesis sets. We further reported the results of experiments demonstrating
the performance for one of our algorithms using different data sets. Our algorithms ben-
efit from data-dependent learning guarantees we derived, which are expressed in terms
of the Rademacher complexities of the sub-families composing these sets of predic-
tors and the fraction of sample points correctly classified at each leaf. Our theoretical
analysis is general and can help guide the design of many other algorithms: different
sub-families of leaf or node questions can be chosen and alternative cascade topologies
and parameters can be selected. For the design of our algorithms, we used a simpler ver-
sion of our guarantees. Finer algorithms could be devised to more closely exploit the
quantities appearing in our learning bounds, which could further improve prediction
accuracy.

Acknowledgments

We thank Vitaly Kuznetsov and Andrés Muñoz Medina for comments on an earlier draft
of this paper. This work was partly funded by the NSF award IIS-1117591 and an NSF
Graduate Research Fellowship.

15

References

1. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification using linear
SVMs. In: ICPR. (2006)

2. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification of very large
datasets. In: GfKl Conference. (2007)

3. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds and struc-
tural results. JMLR. (2002)

4. Bengio, S., Weston, J., Weston, D.: Label embedding trees for large multi-class tasks. In:
NIPS. Vancouver, Canada, (2010)

5. Bennet, K., Blue, J.: A support vector machine approach to decision trees. In: IJCNN. An-
chorage, Alaska, (1998)

6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.
Wadsworth and Brooks. Monterey, CA, (1984)

7. Chang, F., Guo, C., Lin, X., Lu, C.: Tree decomposition for large-scale SVM problems. JMLR.
(2010)

8. Chen, M., Xu, Z., Kedem, D., Chapelle, O.: Classifier cascade for minimizing feature evalu-
ation cost. In: AISTATS. La Palma, Canary Islands, (2012)

9. Cortes, C., Mohri, M., Syed, U.: Deep boosting. In: ICML, (2014)
10. Deng, J., Satheesh, S., Berg, A., Fei-Fei, L.: Fast and balanced: Efficient label tree learning

for large scale object recognition. In: NIPS. (2011)
11. DeSalvo, G., Mohri, M., Syed, U.: Learning with Deep Cascades. arXiv. (2015)
12. Dong, G., Chen, J.: Study on support vector machine based decision tree and application.

In: ICNC-FSKD. Jinan, China, (2008)
13. Golea, M., Bartlett, P., Lee, W., Mason, L.: Generalization in decision trees and DNF: Does

size matter? In: NIPS. (1997)
14. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the general-

ization error of combined classifiers. Annals of Statistics. 30, (2002)
15. Kumar, A., Gopal, M.: A hybrid SVM based decision tree. JPR. (2010)
16. Lefakis, L., Fleuret, F. Joint cascade optimization using a product of boosted classifiers. In:

NIPS. (2010)
17. Littman, M., Li, L., Walsh, T.: Knows what it knows: A framework for self-aware learning.

In: ICML. (2008)
18. Madjarov, G., Gjorgjevikj, D.: Hybrid decision tree architecture utilizing local SVMs for

multi-label classification. In: HAIS. Salamanca, Spain, (2012)
19. Mansour, Y., McAllester, D.: Generalization bounds for decision trees. In: COLT. (2000)
20. Mohri, M., Rostamizadeh, R., Talwalkar, A.: Foundations of Machine Learning. The MIT

Press. (2012)
21. Nobel, A.: Analysis of a complexity based pruning scheme for classification trees. IEEE

Trans. Inf. Theory. (2002)
22. Pujara, J., Daume, H., Getoor, L.: Using classifier cascades for scalable e-mail classification.

In: CEAS. (2011)
23. Quinlan, J.: Induction of decision trees. Machine Learning. 1(1):81–106, (1986)
24. Rodriguez-Lujan, I., Cruz, C., Huerta, R.: Hierarchical linear SVM. JPR. (2012)
25. Saberian, M., Vasconcelos, N.: Boosting classifier cascades. In: NIPS. Canada, (2010)
26. Scott, C., Nowak, R.: On adaptive properties of decision trees. In: NIPS. Canada, (2005)
27. Storcheus, D., Mohri, M., and Rostamizadeh, A. Foundations of Coupled Nonlinear Dimen-

sionality Reduction. In: arXiv, (2015).
28. Takahashi, F., Abe, S.: Decision tree based multiclass SVMs. In: ICONIP. (2002)
29. Viola, P., Jones, M.: Robust real-time face detection. IJCV. (2004)

16

30. Wang, J., Saligrama, V.: Local supervised learning through space partitioning. In: NIPS.
(2012)

31. Xu, Z., Kusner, M., Weinberger, K., Chen, M.: Cost-sensitive tree of classifiers. In: ICML.
Altanta, USA, (2013)

