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ABSTRACT
This paper further investigates previous findings that coefficients of acoustic responses can be modelled as
random polynomials with certain constraints applied. In the case of room impulse responses, the median
value of their clustered roots has been shown to be directly related to the reverberation time of the room.
In this paper we examine the frequency dependency of reverberation time and we also demonstrate the
method’s robustness to truncation of impulse responses.

1. INTRODUCTION
The complexity of the surfaces in real world acoustic

environments and the overwhelming likelihood of dif-
fuse reflections occurring over simple specular reflec-
tions, only lends further evidence to the understanding
of why the samples of room impulse responses (RIRs)
appear as if drawn from random distributions. Phras-
ing this from the point of view of simple image source
modelling [1], the non-flat surfaces soon wash out all but
the lowest order images. In his 1979 paper “About this
Reverberation Business” Moorer [2] famously described
the responses recorded in some of the most renowned
concert halls in the world

“While digitising the impulse responses from concert
halls around the world, we kept noticing that the re-
sponses in the finest concert halls sounded remarkably
similar to white noise”.

In [3] it was shown that despite exhibiting features such
as exponential decay and onset delays, RIRs’ root distri-
butions essentially behave in the same way as those of
random polynomials. Furthermore the relationship be-
tween the positioning of these annular clusters of roots
in terms of magnitude and the reverberation time (RT60)
of room impulse responses was presented.

In this paper we investigate this method further by esti-
mating reverberation time in different frequency bands
and study its robustness to truncation of impulse re-
sponses.

2. RELATING REVERBERATION TIME TO
ROOT CLUSTER RADIUS
Consider the following model of a room impulse re-

sponse. Let p[n] be a random signal vector of length N
whose entries correspond to the coefficients of a random
polynomial. We can multiply this signal with a decaying
exponential window w[n] = e−βn also of length N. The
room impulse response can thus be modeled as

h[n] = p[n]⊗w[n] (1)

where ⊗ is the Hadamard product for vectors.

The reverberation time RT60 is the 60 dB decay time for
an RIR [4]. In the case of our model signal this can
be easily derived from the envelope w[n] and can be ob-
tained by solving

20log10 (e−βRT60) =−60 (dB) (2)

to get

RT60 =
1
β

ln(103). (3)

We know from Hughes and Nikeghbali [5], that the roots
of a polynomial whose coefficients are the samples of the
signal p[n] cluster uniformly about the unit circle. That
is to say their magnitudes have an expected value of one.
Also by the properties of the z-transform

H(z) = P(eβ z) =
N

∏
n=1

(z + zn) (4)
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and so the magnitudes of the roots of P(z) are scaled by
a factor of eβ to become the roots of H(z) where zn, n ∈
[1, . . . ,N] are the roots of H(z) in (4). Or equivalently

H(z) = P
(

e
ln(103)
RT60 z

)
. (5)

Thus if we estimate the constant β from the mean of the
root magnitudes as

β =− ln

(
1
N

N

∑
n=1
|zn|
)

(6)

where zn, n ∈ [1, . . . ,N] are the roots of h[n], the rever-
beration time can be written as

RT60 =
ln
(
103
)

ln∑
N
n=1 |zn|− ln(N)

(7)

which depends solely upon the magnitudes of the roots
of a given response.

2.1. Outlying Roots
Naturally this formulation of the reverberation time is

perturbed by anything which perturbs the mean magni-
tude of the roots. As was seen in [3], acoustic impulse
responses with any form of approximate delay will nat-
urally have a ring of roots located well outside the unit
circle. The presence and location of these roots are in
no way related to the phenomenon of decay in the corre-
sponding response. However their presence bears heav-
ily upon the mean magnitude of the roots of an acous-
tic impulse response. Figure 1 shows a short room im-
pulse response along with its root constellation to the
right. The outlier roots, lying far from the unit circle
(or far from the mean magnitude just inside the unit cir-
cle) skew the mean magnitude of the roots. The ring of
roots outside the unit circle which are present due to the
approximate onset delay also skew the mean, in this case
the skew is positive.

In order to see how these outlying roots effect the esti-
mated mean, a trimmed mean is calculated whereby the
k% of roots furthest from the mean are discarded in order
to calculate an updated mean. Naturally as k is increased
the trimmed mean tends toward the median value of a
response’s roots magnitudes. Figure 2 shows the mean,
median, and trimmed mean magnitudes of the roots of
a set of RIRs across a variety of percentage trimmings
(from 0% to 99.99%). The sharp dip at around 2-5% trim

in each panel is likely due to the initial removal on the ex-
treme outliers with magnitudes several times greater than
the mean. As can be seen in most cases, after just re-
moving a very small percentage of outliers, the trimmed
mean quickly converges to the median value. This in-
dicates that in most places the use of a median value to
estimate β in (3) is likely near optimal. However looking
at panels 2 and 6 (Office and Carolina), the convergence
toward the median is very slow and from opposite direc-
tions in each case. Looking at the root constellations in
each case it can be seen that the reason appears to be due
to the roots behaving in different ways at different points
around the unit circle. That is the reverberation times
seem to be frequency dependent to a greater degree. This
is explored in Section 3.2.

3. BENEFITS OF ESTIMATION FROM ROOTS
By estimating the decay rate from the root locations and
not from the time domain or frequency domain responses
h[n] and H(z) one does not base the reverberation time
estimation on one exponential fit but instead on N/2 in-
direct exponential fits through the proxy of each root’s
location relative to the unit circle where N is the number
of roots. The figure N/2 arises as for a real sequence
such as a measured RIR roots appear as conjugate pairs.
This thus amounts to an accurate estimation of the true
reverberation time/decay rate via the law of large num-
bers.

3.1. Robustness to Truncation
A second, more important benefit of the method out-

lined is that provided the responses under analysis are
of high enough order to ensure that if there were no de-
cay present, the roots would form tight clusters, then
the method should still perform well even with heav-
ily truncated responses. Results presented in [3] sup-
port this showing that under ideal circumstances rever-
beration time can be estimated with as low as 2% error,
even when responses were truncated to just 8000 sam-
ples, which for the largest room corresponded to 22.7%
of the RT60. To further demonstrate this benefit a long
random sequence with a normally distributed set of co-
efficients was created so that it was 18000 samples in
length (0.408 s at a sampling rate of 44.1 kHz). This
response was subsequently scaled via a Hadamard mul-
tiplication with a decaying exponential envelope which
had an RT60 of 0.783 s (or 34539 samples at the same
sampling rate). This essentially meant that the response
was truncated to 51% the actual RT60. This response was
then further truncated to just 6000 samples, 17% of the
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Fig. 1: A short RIR along with its root constellation (shown to the right). Outlying roots are clearly present.

RT60. Figure 3 shows these responses along with the de-
cay curve applied. In each case the RT60 is shown as
estimated by the proposed algorithm, hereby referred to
as the root method. Table 1 shows the estimated RT60
values along with those calculated via the standard RT60
estimation method ISO 3382 [7]. As can be seen the
method continues to perform well even after aggressive
truncation of the input sequence. Furthermore the RT60
result is more accurate overall.

Actual RT60: 0.783 s

Method 18000 point 6000 point
RT60 [s] Error % RT60 [s] error %

Root 0.769 1.8 0.741 5.3
ISO 3382 0.702 10.3 0.261 66.6

Table 1: RT60 values calculated via the root method and
the standard ISO 3382 method [7] from the truncated re-
sponses shown in Figure 3.

3.2. Frequency Bands
Looking at the RIRs in a roots only manner allows an es-
timation of the reverberation time in any set of frequency
bands of any constant or varying width, with great ease.
All that must be done is to modify (7) accordingly. Only
the roots with argument between ω1 and ω2 radians cor-
responding to f1 = Fs

ω1
2π

to f2 = Fs
ω2
2π

Hz, where Fs Hz is
the sampling frequency, should be included. This can be
formulated as

RTω1,ω2
60 =

ln
(
103
)

∑arg(zn)∈[ω1,ω2] ln |zn|− ln(#{zn : ω1 ≤ argzn ≤ ω2})
(8)

Methods such as ISO 3382 traditionally calculate RT60
across different frequency bands by pre-filtering with,
for example, octave band filters. Generally such imple-
mentations use IIR filters [8]. However, such filters can
never be perfectly flat in the magnitude spectrum nor can
they ever be such that they do not at least slightly perturb
the decay time of the frequencies being examined. The
root method performs no filtering in order to make rever-
beration time estimates across different frequency bands.
Figure 4 shows the reverberation times calculated across
nine octave frequency bands, centred between 31.25Hz
and 8kHz.

3.2.1. Verification
In order to verify whether evaluating the root magni-

tudes of an RIR over angular intervals relating to fre-
quency is a method capable of accurately estimating re-
verberation time over frequency bands, it is necessary to
construct a random polynomial where different frequen-
cies decay at different rates.

Let s f be a sine wave with a frequency of f Hz and let
α ∼ N (0,1) be a random variable with a Gaussian dis-
tribution, zero mean, and a standard deviation of one.
One can thus define a sequence

r =

Fs
2

∑
f =0

αs f (9)

that is the sum of the randomly scaled sinusoids, where
α is randomly chosen for each frequency. Given a great
number of such summed terms, r will in essence be a
random vector with a flat spectrum and as such will have
roots distributed like those of random polynomials. In
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Fig. 2: Shown here are the trimmed means of the mag-
nitudes of the roots of a set of RIRs (blue), The mean
magnitudes (red) and the median magnitudes (green bro-
ken) to which the trimmed means converge as more and
more outliers are removed. Panels 1, 2, 4, 5, 6, and 8 are
from RIRs recorded by [6] and panels 3 and 7 are from
RIRs recorded by the authors.

order to test the validity of Section 3.2 such a vector was
created 6000 samples in length comprising of the sum
of 10000 randomly scaled sinusoids with frequency be-
tween 1 Hz and 22 kHz. A second sequence denoted
rscale was then generated

rscale =

Fs
2

∑
f =0

α

(
s f ⊗ e−β t

)
(10)

where ⊗ denotes a Hadamard product and β is cho-
sen in order to give the decay envelope e−β t an RT60
of 0.07 s (3087 samples) for f ∈ [0, . . . ,2000] Hz, in-
creasing to an RT60 of 0.14 s (6174 samples) for f ∈[Fs

2 −2000, . . . , Fs
2

]
Hz, in a linear fashion such that there

are eleven sets of decay envelopes e−β t in total each, ap-
plied to a 2 kHz set of s f vectors (≈ 830 sinusoids in
each band in this case).

Consequently the vector rscale has frequency components
decaying at different rates. Figure 5 shows the sequence
rscale along with its coefficient distribution and root con-
stellation.

Fig. 3: Shown here are the original exponentially decay-
ing envelope (top panel) titled with its RT60, This value is
also shown with the vertical line in the plot. The middle
and lower panels show the truncated random sequences
with the exponential decay applied. Each of these panels
are titled with the RT60 calculated using the root method.

In order to verify the claims of Section 3.2 it would be
necessary to show that an application of (8) to the roots
of rscale would return a set of RT60 estimates equal to the
exact RT60s of the exponential decay envelopes applied
to the sinusoids s f before summation.

The result is shown in Figure 6. This clearly shows that
the method of RT60 estimation from root locations works
accurately when applied across frequency bands with
different decay profiles. This has been achieved with-
out the need for any filtering demonstrating the power of
this novel technique. The results in Figure 6 verify the
validity of those frequency dependent RT60 estimations
shown in Figure 4.

4. CONCLUSION
This paper has demonstrated that the method of re-

verberation time estimation based on root locations of
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Fig. 4: Shown here are the reverberation times calculated via the root method for each of the RIRs in nine octave
frequency bands, centred between 31.25Hz to 8kHz.

a measured impulse response is accurate and robust to
truncation of the measured response. It was also shown
that such a method is easily adapted to reverberation time
measurement over any set of frequency bands without the
necessity of any filtering of the response in question.
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Fig. 5: Shown here are the samples, sample distribution and roots of the sequence rscale formed as described in 10.
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