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Abstract

Massively multitask neural architectures provide
a learning framework for drug discovery that
synthesizes information from many distinct bi-
ological sources. To train these architectures at
scale, we gather large amounts of data from pub-
lic sources to create a dataset of nearly 40 mil-
lion measurements across more than 200 bio-
logical targets. We investigate several aspects
of the multitask framework by performing a se-
ries of empirical studies and obtain some in-
teresting results: (1) massively multitask net-
works obtain predictive accuracies significantly
better than single-task methods, (2) the pre-
dictive power of multitask networks improves
as additional tasks and data are added, (3) the
total amount of data and the total number of
tasks both contribute significantly to multitask
improvement, and (4) multitask networks afford
limited transferability to tasks not in the training
set. Our results underscore the need for greater
data sharing and further algorithmic innovation
to accelerate the drug discovery process.

1. Introduction
Discovering new treatments for human diseases is an im-
mensely complicated challenge. Prospective drugs must
attack the source of an illness, but must do so while sat-
isfying restrictive metabolic and toxicity constraints. Tra-
ditionally, drug discovery is an extended process that takes
years to move from start to finish, with high rates of failure
along the way.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Copyright 2015 by the author(s).

After a suitable target has been identified, the first step in
the drug discovery process is “hit finding.” Given some
druggable target, pharmaceutical companies will screen
millions of drug-like compounds in an effort to find a
few attractive molecules for further optimization. These
screens are often automated via robots, but are expensive
to perform. Virtual screening attempts to replace or aug-
ment the high-throughput screening process by the use of
computational methods (Shoichet, 2004). Machine learn-
ing methods have frequently been applied to virtual screen-
ing by training supervised classifiers to predict interactions
between targets and small molecules.

There are a variety of challenges that must be overcome
to achieve effective virtual screening. Low hit rates in
experimental screens (often only 1–2% of screened com-
pounds are active against a given target) result in im-
balanced datasets that require special handling for effec-
tive learning. For instance, care must be taken to guard
against unrealistic divisions between active and inactive
compounds (“artificial enrichment”) and against informa-
tion leakage due to strong similarity between active com-
pounds (“analog bias”) (Rohrer & Baumann, 2009). Fur-
thermore, the paucity of experimental data means that over-
fitting is a perennial thorn.

The overall complexity of the virtual screening problem
has limited the impact of machine learning in drug dis-
covery. To achieve greater predictive power, learning al-
gorithms must combine disparate sources of experimental
data across multiple targets. Deep learning provides a flex-
ible paradigm for synthesizing large amounts of data into
predictive models. In particular, multitask networks facil-
itate information sharing across different experiments and
compensate for the limited data associated with any partic-
ular experiment.

In this work, we investigate several aspects of the multi-
task learning paradigm as applied to virtual screening. We
gather a large collection of datasets containing nearly 40
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million experimental measurements for over 200 targets.
We demonstrate that multitask networks trained on this col-
lection achieve significant improvements over baseline ma-
chine learning methods. We show that adding more tasks
and more data yields better performance. This effect di-
minishes as more data and tasks are added, but does not
appear to plateau within our collection. Interestingly, we
find that the total amount of data and the total number of
tasks both have significant roles in this improvement. Fur-
thermore, the features extracted by the multitask networks
demonstrate some transferability to tasks not contained in
the training set. Finally, we find that the presence of shared
active compounds is moderately correlated with multitask
improvement, but the biological class of the target is not.

2. Related Works
Machine learning has a rich history in drug discovery.
Early work combined creative featurizations of molecules
with off-the-shelf learning algorithms to predict drug ac-
tivity (Varnek & Baskin, 2012). The state of the art has
moved to more refined models, such as the influence rele-
vance voting method that combines low-complexity neural
networks and k-nearest neighbors (Swamidass et al., 2009),
and Bayesian belief networks that repurpose textual infor-
mation retrieval methods for virtual screening (Abdo et al.,
2010). Other related work uses deep recursive neural net-
works to predict aqueous solubility by extracting features
from the connectivity graphs of small molecules (Lusci
et al., 2013).

Deep learning has made inroads into drug discovery in
recent years, most notably in 2012 with the Merck Kag-
gle competition (Dahl, November 1, 2012). Teams were
given pre-computed molecular descriptors for compounds
with experimentally measured activity against 15 targets
and were asked to predict the activity of molecules in a
held-out test set. The winning team used ensemble models
including multitask deep neural networks, Gaussian pro-
cess regression, and dropout to improve the baseline test
set R2 by nearly 17%. The winners of this contest later
released a technical report that discusses the use of mul-
titask networks for virtual screening (Dahl et al., 2014).
Additional work at Merck analyzed the choice of hyper-
parameters when training single- and multitask networks
and showed improvement over random forest models (Ma
et al., 2015). The Merck Kaggle result has been received
with skepticism by some in the cheminformatics and drug
discovery communities (Lowe, December 11, 2012, and as-
sociated comments). Two major concerns raised were that
the sample size was too small (a good result across 15 sys-
tems may well have occurred by chance) and that any gains
in predictive accuracy were too small to justify the increase
in complexity.

While we were preparing this work, a workshop paper was
released that also used massively multitask networks for
virtual screening (Unterthiner et al.). That work curated
a dataset of 1,280 biological targets with 2 million asso-
ciated data points and trained a multitask network. Their
network has more tasks than ours (1,280 vs. 259) but far
fewer data points (2 million vs. nearly 40 million). The
emphasis of our work is considerably different; while their
report highlights the performance gains due to multitask
networks, ours is focused on disentangling the underly-
ing causes of these improvements. Another closely related
work proposed the use of collaborative filtering for vir-
tual screening and employed both multitask networks and
kernel-based methods (Erhan et al., 2006). Their multitask
networks, however, did not consistently outperform single-
task models.

Within the greater context of deep learning, we draw
upon various strands of recent thought. Prior work has
used multitask deep networks in the contexts of language
understanding (Collobert & Weston, 2008) and multi-
language speech recognition (Deng et al., 2013). Our
best-performing networks draw upon design patterns intro-
duced by GoogLeNet (Szegedy et al., 2014), the winner of
ILSVRC 2014.

3. Methods
3.1. Dataset Construction and Design

Models were trained on 259 datasets gathered from pub-
licly available data. These datasets were divided into
four groups: PCBA, MUV, DUD-E, and Tox21. The
PCBA group contained 128 experiments in the PubChem
BioAssay database (Wang et al., 2012). The MUV group
contained 17 challenging datasets specifically designed to
avoid common pitfalls in virtual screening (Rohrer & Bau-
mann, 2009). The DUD-E group contained 102 datasets
that were designed for the evaluation of methods to pre-
dict interactions between proteins and small molecules
(Mysinger et al., 2012). The Tox21 datasets were used
in the recent Tox21 Data Challenge (https://tripod.
nih.gov/tox21/challenge/) and contained exper-
imental data for 12 targets relevant to drug toxicity predic-
tion. We used only the training data from this challenge
because the test set had not been released when we con-
structed our collection. In total, our 259 datasets contained
37.8M experimental data points for 1.6M compounds. De-
tails for the dataset groups are given in Table 1. See the
Appendix for details on individual datasets and their bio-
logical target categorization.

It should be noted that we did not perform any prepro-
cessing of our datasets, such as removing potential ex-
perimental artifacts. Such artifacts may be due by com-

https://tripod.nih.gov/tox21/challenge/
https://tripod.nih.gov/tox21/challenge/
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Table 1. Details for dataset groups. Values for the number of data
points per dataset and the percentage of active compounds are
reported as means, with standard deviations in parenthesis.

Group Datasets Data Points / ea. % Active

PCBA 128 282K (122K) 1.8 (3.8)
DUD-E 102 14K (11K) 1.6 (0.2)
MUV 17 15K (1) 0.2 (0)
Tox21 12 6K (500) 7.8 (4.7)

pounds whose physical properties cause interference with
experimental measurements or allow for promiscuous in-
teractions with many targets. A notable exception is the
MUV group, which has been processed with consideration
of these pathologies (Rohrer & Baumann, 2009).

3.2. Small Molecule Featurization

We used extended connectivity fingerprints (ECFP4)
(Rogers & Hahn, 2010) generated by RDKit (Landrum)
to featurize each molecule. The molecule is decomposed
into a set of fragments—each centered at a non-hydrogen
atom—where each fragment extends radially along bonds
to neighboring atoms. Each fragment is assigned a unique
identifier, and the collection of identifiers for a molecule is
hashed into a fixed-length bit vector to construct the molec-
ular “fingerprint”. ECFP4 and other fingerprints are com-
monly used in cheminformatics applications, especially
to measure similarity between compounds (Willett et al.,
1998). A number of molecules (especially in the Tox21
group) failed the featurization process and were not used in
training our networks. See the Appendix for details.

3.3. Validation Scheme and Metrics

The traditional approach for model evaluation is to have
fixed training, validation, and test sets. However, the im-
balance present in our datasets means that performance
varies widely depending on the particular training/test split.
To compensate for this variability, we used stratified K-
fold cross-validation; that is, each fold maintains the ac-
tive/inactive proportion present in the unsplit data. For the
remainder of the paper, we use K = 5.

Note that we did not choose an explicit validation set. Sev-
eral datasets in our collection have very few actives (∼ 30
each for the MUV group), and we feared that selecting a
specific validation set would skew our results. As a conse-
quence, we suspect that our choice of hyperparameters may
be affected by information leakage across folds. However,
our networks do not appear to be highly sensitive to hyper-
parameter choice (see Section 4.1), so we do not consider
leakage to be a serious issue.

Following recommendations from the cheminformatics

community (Jain & Nicholls, 2008), we used metrics de-
rived from the receiver operating characteristic (ROC)
curve to evaluate model performance. Recall that the ROC
curve for a binary classifier is the plot of true positive rate
(TPR) vs. false positive rate (FPR) as the discrimination
threshold is varied. For individual datasets, we are inter-
ested in the area under the ROC curve (AUC), which is
a global measure of classification performance (note that
AUC must lie in the range [0, 1]). More generally, for a
collection of N datasets, we consider the mean and median
K-fold-average AUC:

Mean /Median

{
1

K

K∑
k=1

AUCk(Dn)

∣∣∣∣∣ n = 1, . . . , N

}
,

where AUCk(Dn) is defined as the AUC of a classifier
trained on folds {1, . . . ,K}\k of datasetDn and tested on
fold k. For completeness, we include in the Appendix an
alternative metric called “enrichment” that is widely used
in the cheminformatics literature (Jain & Nicholls, 2008).
We note that many other performance metrics exist in the
literature; the lack of standard metrics makes it difficult to
do direct comparisons with previous work.

3.4. Multitask Networks

A neural network is a nonlinear classifier that performs re-
peated linear and nonlinear transformations on its input.
Let xi represent the input to the i-th layer of the network
(where x0 is simply the feature vector). The transformation
performed is

xi+1 = σ(Wixi + bi)

where Wi and bi are respectively the weight matrix and
bias for the i-th layer, and σ is a nonlinearity (in our work,
the rectified linear unit (Nair & Hinton, 2010)). After L
such transformations, the final layer of the network xL is
then fed to a simple linear classifier, such as the softmax,
which predicts the probability that the input x0 has label j:

P (y = j|x0) =
e(w

j)TxL∑M
m=1 e

(wm)TxL

,

where M is the number of possible labels (here M = 2)
and w1, · · · ,wM are weight vectors. Wi, bi, and wm are
learned during training by the backpropagation algorithm
(Rumelhart et al., 1988). A multitask network attaches N
softmax classifiers, one for each task, to the final layer xL.
(A “task” corresponds to the classifier associated with a
particular dataset in our collection, although we often use
“task” and “dataset” interchangeably. See Figure 1.)

4. Experimental Section
In this section, we seek to answer a number of questions
about the performance, capabilities, and limitations of mas-
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Input Layer
1024 binary nodes

Hidden layers
1-4 layers with 50-3000 nodes

Fully connected to layer below, rectified linear activation

Softmax nodes, one per dataset

Figure 1. Multitask neural network.

sively multitask neural networks:

1. Do massively multitask networks provide a perfor-
mance boost over simple machine learning methods?
If so, what is the optimal architecture for massively
multitask networks?

2. How does the performance of a multitask network de-
pend on the number of tasks? How does the perfor-
mance depend on the total amount of data?

3. Do massively multitask networks extract generaliz-
able information about chemical space?

4. When do datasets benefit from multitask training?

The following subsections detail a series of experiments
that seek to answer these questions.

4.1. Experimental Exploration of Massively Multitask
Networks

We investigate the performance of multitask networks with
various hyperparameters and compare to several standard
machine learning approaches. Table 2 shows some of the
highlights of our experiments. Our best multitask archi-
tecture (pyramidal multitask networks) significantly out-
performed simpler models, including a hypothetical model
whose performance on each dataset matches that of the best
single-task model (Max{LR, RF, STNN, PSTNN}).

Every model we trained performed extremely well on the
DUD-E datasets (all models in Table 2 had median 5-
fold-average AUCs ≥ 0.99), making comparisons between
models on DUD-E uninformative. For that reason, we
exclude DUD-E from our subsequent statistical analysis.
However, we did not remove DUD-E from the training alto-
gether because doing so adversely affected performance on
the other datasets (data not shown); we theorize that DUD-
E helped to regularize the classifier and avoid overfitting.

During our first explorations, we had consistent problems

with the networks overfitting the data. As discussed in Sec-
tion 3.1, our datasets had a very small fraction of positive
examples. For the single hidden layer multitask network
in Table 2, each dataset had 1200 associated parameters.
With a total number of positives in the tens or hundreds,
overfitting this number of parameters is a major issue in
the absence of strong regularization.

Reducing the number of parameters specific to each dataset
is the motivation for the pyramidal architecture. In our
pyramidal networks, the first hidden layer is very wide
(2000 nodes) with a second narrow hidden layer (100
nodes). This dimensionality reduction is similar in moti-
vation and implementation to the 1x1 convolutions in the
GoogLeNet architecture (Szegedy et al., 2014). The wide
lower layer allows for complex, expressive features to be
learned while the narrow layer limits the parameters spe-
cific to each task. Adding dropout of 0.25 to our pyramidal
networks improved performance. We also trained single-
task versions of our best pyramidal network to understand
whether this design pattern works well with less data. Ta-
ble 2 indicates that these models outperform vanilla single-
task networks but do not substitute for multitask training.
Results for a variety of alternate models are presented in
the Appendix.

We investigated the sensitivity of our results to the sizes
of the pyramidal layers by running networks with all com-
binations of hidden layer sizes: (1000, 2000, 3000) and
(50, 100, 150). Across the architectures, means and medi-
ans shifted by ≤ .01 AUC with only MUV showing larger
changes with a range of .038. We note that performance is
sensitive to the choice of learning rate and the number of
training steps. See the Appendix for details and data.

4.2. Relationship between performance and number of
tasks

The previous section demonstrated that massively multi-
task networks improve performance over single-task mod-
els. In this section, we seek to understand how multitask
performance is affected by increasing the number of tasks.
A priori, there are three reasonable “growth curves” (visu-
ally represented in Figure 2):

Over the hill: performance initially improves, hits a max-
imum, then falls.

Plateau: performance initially improves, then plateaus.

Still climbing: performance improves throughout, but
with a diminishing rate of return.

We constructed and trained a series of multitask networks
on datasets containing 10, 20, 40, 80, 160, and 249 tasks.
These datasets all contain a fixed set of ten “held-in” tasks,
which consists of a randomly sampled collection of five
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Table 2. Median 5-fold-average AUCs for various models. For each model, the sign test in the last column estimates the fraction of
datasets (excluding the DUD-E group, for reasons discussed in the text) for which that model is superior to the PMTNN (bottom row).
We use the Wilson score interval to derive a 95% confidence interval for this fraction. Non-neural network methods were trained using
scikit-learn (Pedregosa et al., 2011) implementations and basic hyperparameter optimization. We also include results for a hypothetical
“best” single-task model (Max{LR, RF, STNN, PSTNN}) to provide a stronger baseline. Details for our cross-validation and training
procedures are given in the Appendix.

Model PCBA
(n = 128)

MUV
(n = 17)

Tox21
(n = 12)

Sign Test
CI

Logistic Regression (LR) .801 .752 .738 [.04, .13]
Random Forest (RF) .800 .774 .790 [.06, .16]
Single-Task Neural Net (STNN) .795 .732 .714 [.04, .12]
Pyramidal (2000, 100) STNN (PSTNN) .809 .745 .740 [.06, .16]
Max{LR, RF, STNN, PSTNN} .824 .781 .790 [.12, .24]
1-Hidden (1200) Layer Multitask Neural Net (MTNN) .842 .797 .785 [.08, .18]
Pyramidal (2000, 100) Multitask Neural Net (PMTNN) .873 .841 .818

Figure 2. Potential multitask growth curves

PCBA, three MUV, and two Tox21 datasets. These datasets
correspond to unique targets that do not have any obvious
analogs in the remaining collection. (We also excluded a
similarly chosen set of ten “held-out” tasks for use in Sec-
tion 4.4). Each training collection is a superset of the pre-
ceding collection, with tasks added randomly. For each net-
work in the series, we computed the mean 5-fold-average-
AUC for the tasks in the held-in collection. We repeated
this experiment ten times with different choices of random
seed.

Figure 3 plots the results of our experiments. The shaded
region emphasizes the average growth curve, while black
dots indicate average results for different experimental
runs. The figure also displays lines associated with each
held-in dataset. Note that several datasets show initial dips
in performance. However, all datasets show subsequent im-
provement, and all but one achieves performance superior
to the single-task baseline. Within the limits of our current
dataset collection, the distribution in Figure 3 agrees with
either plateau or still climbing. The mean performance on
the held-in set is still increasing at 249 tasks, so we hypoth-
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Figure 3. Held-in growth curves. The y-axis shows the change
in AUC compared to a single-task neural network with the same
architecture (PSTNN). Each colored curve is the multitask im-
provement for a given held-in dataset. Black dots represent means
across the 10 held-in datasets for each experimental run, where
additional tasks were randomly selected. The shaded curve is the
mean across the 100 combinations of datasets and experimental
runs.

esize that performance is still climbing. It is possible that
our collection is too small and that an alternate pattern may
eventually emerge.

4.3. More tasks or more data?

In the previous section we studied the effects of adding
more tasks, but here we investigate the relative importance
of the total amount of data vs. the total number of tasks.
Namely, is it better to have many tasks with a small amount
of associated data, or a small number of tasks with a large
amount of associated data?
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We constructed a series of multitask networks with
10, 15, 20, 30, 50 and 82 tasks. As in the previous section,
the tasks are randomly associated with the networks in a
cumulative manner (i.e., the 82-task network contained all
tasks present in the 50-task network, and so on). All net-
works contained the ten held-in tasks described in the pre-
vious section. The 82 tasks chosen were associated with
the largest datasets in our collection, each containing 300K-
500K data points. Note that all of these tasks belonged to
the PCBA group.

We then trained this series of networks multiple times with
1.6M, 3.3M, 6.5M, 13M, and 23M data points sampled
from the non-held-in tasks. We perform the sampling such
that for a given task, all data points present in the first
stage (1.6M) appeared in the second (3.3M), all data points
present in the second stage appeared in the third (6.5M),
and so on. We decided to use larger datasets so we could
sample meaningfully across this entire range. Some com-
binations of tasks and data points were not realized; for
instance, we did not have enough data to train a 20-task
network with 23M additional data points. We repeated this
experiment ten times using different random seeds.

Figure 4 shows the results of our experiments. The x-axis
tracks the number of additional tasks, while the y-axis dis-
plays the improvement in performance for the held-in set
relative to a multitask network trained only on the held-in
data. When the total amount of data is fixed, having more
tasks consistently yields improvement. Similarly, when the
number of tasks is fixed, adding additional data consis-
tently improves performance. Our results suggest that the
total amount of data and the total number of tasks both con-
tribute significantly to the multitask effect.

4.4. Do massively multitask networks extract
generalizable features?

The features extracted by the top layer of the network rep-
resent information useful to many tasks. Consequently, we
sought to determine the transferability of these features to
tasks not in the training set. We held out ten data sets from
the growth curves calculated in Section 4.2 and used the
learned weights from points along the growth curves to ini-
tialize single-task networks for the held-out datasets, which
we then fine-tuned.

The results of training these networks (with 5-fold strat-
ified cross-validation) are shown in Figure 5. First, note
that many of the datasets performed worse than the baseline
when initialized from the 10-held-in-task networks. Fur-
ther, some datasets never exhibited any positive effect due
to multitask initialization. Transfer learning can be nega-
tive.

Second, note that the transfer learning effect became

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.01

0.02

0.03

5 10 20 40 72
# Additional Tasks

∆M
ea

n 
A

U
C

# Additional
Input Examples

23M

13M

6.5M

3.3M

1.6M

Figure 4. Multitask benefit from increasing tasks and data inde-
pendently. As in Figure 2, we added randomly selected tasks (x-
axis) to a fixed held-in set. A stratified random sampling scheme
was applied to the additional tasks in order to achieve fixed total
numbers of additional input examples (color, line type). White
points indicate the mean over 10 experimental runs of ∆ mean-
AUC over the initial network trained on the 10 held-in datasets.
Color-filled areas and error bars describe the smoothed 95% con-
fidence intervals.

stronger as multitask networks were trained on more data.
Large multitask networks exhibited better transferability,
but the average effect even with 249 datasets was only
∼ .01 AUC. We hypothesize that the extent of this gen-
eralizability is determined by the presence or absence of
relevant data in the multitask training set.

4.5. When do datasets benefit from multitask training?

The results in Sections 4.2 and 4.4 indicate that some
datasets benefit more from multitask training than others.
In an effort to explain these differences, we consider three
specific questions:

1. Do shared active compounds explain multitask im-
provement?

2. Do some biological target classes realize greater mul-
titask improvement than others?

3. Do tasks associated with duplicated targets have arti-
ficially high multitask performance?

4.5.1. SHARED ACTIVE COMPOUNDS

The biological context of our datasets implies that active
compounds contain more information than inactive com-
pounds; while an inactive compound may be inactive for
many reasons, active compounds often rely on similar
physical mechanisms. Hence, shared active compounds
should be a good measure of dataset similarity.
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Figure 5. Held-out growth curves. The y-axis shows the change
in AUC compared to a single-task neural network with the same
architecture (PSTNN). Each colored curve is the result of initializ-
ing a single-task neural network from the weights of the networks
from Section 4.2 and computing the mean across the 10 experi-
mental runs. These datasets were not included in the training of
the original networks. The shaded curve is the mean across the
100 combinations of datasets and experimental runs, and black
dots represent means across the 10 held-out datasets for each ex-
perimental run, where additional tasks were randomly selected.

Figure 6 plots multitask improvement against a measure of
dataset similarity we call “active occurrence rate” (AOR).
For each active compound α in dataset Di, AORi,α is de-
fined as the number of additional datasets in which this
compound is also active:

AORi,α =
∑
d6=i

1(α ∈ Actives (Dd)).

Each point in Figure 6 corresponds to a single dataset Di.
The x-coordinate is

AORi = Mean
α∈Actives(Di)

(AORi,α) ,

and the y-coordinate (∆ log-odds-mean-AUC) is

logit

(
1

K

K∑
k=1

AUC(M)
k (Di)

)
−logit

(
1

K

K∑
k=1

AUC(S)
k (Di)

)
,

where AUC(M)
k (Di) and AUC(S)

k (Di) are respectively the
AUC values for the k-th fold of dataset i in the multitask
and single-task models, and logit (p) = log (p/(1− p)).
The use of log-odds reduces the effect of outliers and em-
phasizes changes in AUC when the baseline is high. Note
that for reasons discussed in Section 4.1, DUD-E was ex-
cluded from this analysis.

There is a moderate correlation between AOR and ∆ log-
odds-mean-AUC (r2 = .33); we note that this correlation is
not present when we use ∆ mean-AUC as the y-coordinate
(r2 = .09). We hypothesize that some portion of the multi-
task effect is determined by shared active compounds. That
is, a dataset is most likely to benefit from multitask training
when it shares many active compounds with other datasets
in the collection.

Figure 6. Multitask improvement compared to active occurrence
rate (AOR). Each point in the figure represents a particular dataset
Di. The x-coordinate is the mean AOR across all active com-
pounds in Di, and the y-coordinate is the difference in log-odds-
mean-AUC between multitask and single-task models. The gray
bars indicate standard deviations around the AOR means. There
is a moderate correlation (r2 = .33). For reasons discussed in
Section 4.1, we excluded DUD-E from this analysis. (Including
DUD-E results in a similar correlation, r2 = .22.)

4.5.2. TARGET CLASSES

Figure 7 shows the relationship between multitask im-
provement and target classes. As before, we report mul-
titask improvement in terms of log-odds and exclude the
DUD-E datasets. Qualitatively, no target class benefited
more than any other from multitask training. Nearly ev-
ery target class realized gains, suggesting that the multitask
framework is applicable to experimental data from multiple
target classes.

4.5.3. DUPLICATE TARGETS

As mentioned in Section 3.1, there are many cases of tasks
with identical targets. We compared the multitask improve-
ment of duplicate vs. unique tasks. The distributions have
substantial overlap (see the Appendix), but the average log-
odds improvement was slightly higher for duplicated tasks
(.531 vs. .372; a one-sided t-test between the duplicate
and unique distributions gave p = .016). Since duplicated
targets are likely to share many active compounds, this im-
provement is consistent with the correlation seen in Sec-
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Figure 7. Multitask improvement across target classes. The x-
coordinate lists a series of biological target classes represented
in our dataset collection, and the y-coordinate is the difference in
log-odds-mean-AUC between multitask and single-task models.
Note that the DUD-E datasets are excluded. Classes are ordered
by total number of targets (in parenthesis), and target classes with
fewer than five members are merged into “miscellaneous.”

tion 4.5.1. However, sign tests for single-task vs. multitask
models for duplicate and unique targets gave significant
and highly overlapping confidence intervals ([0.04, 0.24]
and [0.06, 0.17], respectively; recall that the meaning of
these intervals is given in the caption for Table 2). Together,
these results suggest that there is not significant informa-
tion leakage within multitask networks. Consequently, the
results of our analysis are unlikely to be significantly af-
fected by the presence of duplicate targets in our dataset
collection.

5. Discussion and Conclusion
In this work, we investigated the use of massively multitask
networks for virtual screening. We gathered a large collec-
tion of publicly available experimental data that we used
to train massively multitask neural networks. These net-
works achieved significant improvement over simple ma-
chine learning algorithms.

We explored several aspects of the multitask framework.
First, we demonstrated that multitask performance im-
proved with the addition of more tasks; our performance
was still climbing at 259 tasks. Next, we considered the rel-
ative importance of introducing more data vs. more tasks.
We found that additional data and additional tasks both
contributed significantly to the multitask effect. We next
discovered that multitask learning afforded limited trans-
ferability to tasks not contained in the training set. This ef-
fect was not universal, and required large amounts of data
even when it did apply.

We observed that the multitask effect was stronger for
some datasets than others. Consequently, we investigated
possible explanations for this discrepancy and found that
the presence of shared active compounds was moderately
correlated with multitask improvement, but the biological
class of the target was not. It is also possible that multitask
improvement results from accurately modeling experimen-
tal artifacts rather than specific interactions between targets
and small molecules. We do not believe this to be the case,
as we demonstrated strong improvement on the thoroughly-
cleaned MUV datasets.

The efficacy of multitask learning is directly related to
the availability of relevant data. Hence, obtaining greater
amounts of data is of critical importance for improving
the state of the art. Major pharmaceutical companies pos-
sess vast private stores of experimental measurements; our
work provides a strong argument that increased data shar-
ing could result in benefits for all.

More data will maximize the benefits achievable using cur-
rent architectures, but in order for algorithmic progress to
occur, it must be possible to judge the performance of pro-
posed models against previous work. It is disappointing to
note that all published applications of deep learning to vir-
tual screening (that we are aware of) use distinct datasets
that are not directly comparable. It remains to future re-
search to establish standard datasets and performance met-
rics for this field.

Another direction for future work is the further study of
small molecule featurization. In this work, we use only
one possible featurization (ECFP4), but there exist many
others. Additional performance may also be realized by
considering targets as well as small molecules in the fea-
turization. Yet another line of research could improve per-
formance by using unsupervised learning to explore much
larger segments of chemical space.

Although deep learning offers interesting possibilities for
virtual screening, the full drug discovery process remains
immensely complicated. Can deep learning—coupled with
large amounts of experimental data—trigger a revolution
in this field? Considering the transformational effect that
these methods have had on other fields, we are optimistic
about the future.
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Wan, Gramajo, Hugo, Tsai, Shiou-Chuan, and Baldi,
Pierre. Influence relevance voting: an accurate and inter-
pretable virtual high throughput screening method. Jour-
nal of chemical information and modeling, 49(4):756–
766, 2009.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.
Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

Unterthiner, Thomas, Mayr, Andreas, ünter Klambauer, G,
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A. Dataset Construction and Design
The PCBA datasets are dose-response assays performed by the NCATS Chemical Genomics Center (NCGC) and down-
loaded from PubChem BioAssay using the following search limits: TotalSidCount from 10000, ActiveSidCount from
30, Chemical, Confirmatory, Dose-Response, Target: Single, NCGC. These limits correspond to the search query:
(10000[TotalSidCount] : 1000000000[TotalSidCount]) AND (30[ActiveSidCount] : 1000000000[ActiveSidCount]) AND
“small molecule”[filt] AND “doseresponse”[filt] AND 1[TargetCount] AND “NCGC”[SourceName]. We note that the
DUD-E datasets are especially susceptible to “artificial enrichment” (unrealistic divisions between active and inactive
compounds) as an artifact of the dataset construction procedure. Each data point in our collection was associated with a
binary label classifying it as either active or inactive.

A description of each of our 259 datasets is given in Table A1. These datasets cover a wide range of target classes and assay
types, including both cell-based and in vitro experiments. Datasets with duplicated targets are marked with an asterisk (note
that only the non-DUD-E duplicate target datasets were used in the analysis described in the text). For the PCBA datasets,
compounds not labeled “Active” were considered inactive (including compounds marked “Inconclusive”). Due to missing
data in PubChem BioAssay and/or featurization errors, some data points and compounds were not used for evaluation of
our models; failure rates for each dataset group are shown in Table A.2. The Tox21 group suffered especially high failure
rates, likely due to the relatively large number of metallic or otherwise abnormal compounds that are not supported by the
RDKit package. The counts given in Table A1 do not include these missing data. A graphical breakdown of the datasets
by target class is shown in Figure A.1. The datasets used for the held-in and held-out analyses are repeated in Table A.3
and Table A.4, respectively.

As an extension of our treatment of task similarity in the text, we generated the heatmap in Figure A.2 to show the pairwise
intersection between all datasets in our collection. A few characteristics of our datasets are immediately apparent:

• The datasets in the DUD-E group have very little intersection with any other datasets.

• The PCBA and Tox21 datasets have substantial self-overlap. In contrast, the MUV datasets have relatively little
self-overlap.

• The MUV datasets have substantial overlap with the datasets in the PCBA group.

• The Tox21 datasets have very small intersections with datasets in other groups.

Figure A.3 shows the ∆ log-odds-mean-AUC for datasets with duplicate and unique targets.

Dataset Actives Inactives Target Class Target

pcba-aid411* 1562 69 734 other enzyme luciferase
pcba-aid875 32 73 870 protein-protein

interaction
brca1-bach1

pcba-aid881 589 106 656 other enzyme 15hLO-2
pcba-aid883 1214 8170 other enzyme CYP2C9
pcba-aid884 3391 9676 other enzyme CYP3A4
pcba-aid885 163 12 904 other enzyme CYP3A4
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Dataset Actives Inactives Target Class Target

pcba-aid887 1024 72 140 other enzyme 15hLO-1
pcba-aid891 1548 7836 other enzyme CYP2D6
pcba-aid899 1809 7575 other enzyme CYP2C19
pcba-aid902* 1872 123 512 viability H1299-p53A138V
pcba-aid903* 338 54 175 viability H1299-neo
pcba-aid904* 528 53 981 viability H1299-neo
pcba-aid912 445 68 506 miscellaneous anthrax LF-PA internalization
pcba-aid914 218 10 619 transcription fac-

tor
HIF-1

pcba-aid915 436 10 401 transcription fac-
tor

HIF-1

pcba-aid924* 1146 122 867 viability H1299-p53A138V
pcba-aid925 39 64 358 miscellaneous EGFP-654
pcba-aid926 350 71 666 GPCR TSHR
pcba-aid927* 61 59 108 protease USP2a
pcba-aid938 1775 70 241 ion channel CNG
pcba-aid995* 699 70 189 signalling path-

way
ERK1/2 cascade

pcba-aid1030 15 963 200 920 other enzyme ALDH1A1
pcba-aid1379* 562 198 500 other enzyme luciferase
pcba-aid1452 177 151 634 other enzyme 12hLO
pcba-aid1454* 536 130 788 signalling path-

way
ERK1/2 cascade

pcba-aid1457 722 204 859 other enzyme IMPase
pcba-aid1458 5805 202 680 miscellaneous SMN2
pcba-aid1460* 5662 261 757 protein-protein

interaction
K18

pcba-aid1461 2305 218 561 GPCR NPSR
pcba-aid1468* 1039 270 371 protein-protein

interaction
K18

pcba-aid1469 169 276 098 protein-protein
interaction

TRb-SRC2

pcba-aid1471 288 223 321 protein-protein
interaction

huntingtin

pcba-aid1479 788 275 479 miscellaneous TRb-SRC2
pcba-aid1631 892 262 774 other enzyme hPK-M2
pcba-aid1634 154 263 512 other enzyme hPK-M2
pcba-aid1688 2374 218 200 protein-protein

interaction
HTTQ103

pcba-aid1721 1087 291 649 other enzyme LmPK
pcba-aid2100* 1159 301 145 other enzyme alpha-glucosidase
pcba-aid2101* 285 321 268 other enzyme glucocerebrosidase
pcba-aid2147 3477 223 441 other enzyme JMJD2E
pcba-aid2242* 715 198 459 other enzyme alpha-glucosidase
pcba-aid2326 1069 268 500 miscellaneous influenza A NS1
pcba-aid2451 2008 285 737 other enzyme FBPA
pcba-aid2517 1136 344 762 other enzyme APE1
pcba-aid2528 660 347 283 other enzyme BLM
pcba-aid2546 10 550 293 509 transcription fac-

tor
VP16

pcba-aid2549 1210 233 706 other enzyme RECQ1
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Dataset Actives Inactives Target Class Target

pcba-aid2551 16 666 288 772 transcription fac-
tor

ROR gamma

pcba-aid2662 110 293 953 miscellaneous MLL-HOX-A
pcba-aid2675 99 279 333 miscellaneous MBNL1-CUG
pcba-aid2676 1081 361 124 GPCR RXFP1
pcba-aid463254* 41 330 640 protease USP2a
pcba-aid485281 254 341 253 miscellaneous apoferritin
pcba-aid485290 942 343 503 other enzyme TDP1
pcba-aid485294* 148 362 056 other enzyme AmpC
pcba-aid485297 9126 311 481 promoter Rab9
pcba-aid485313 7567 313 119 promoter NPC1
pcba-aid485314 4491 329 974 other enzyme DNA polymerase beta
pcba-aid485341* 1729 328 952 other enzyme AmpC
pcba-aid485349 618 321 745 protein kinase ATM
pcba-aid485353 603 328 042 protease PLP
pcba-aid485360 1485 223 830 protein-protein

interaction
L3MBTL1

pcba-aid485364 10 700 345 950 other enzyme TGR
pcba-aid485367 557 330 124 other enzyme PFK
pcba-aid492947 80 330 601 GPCR beta2-AR
pcba-aid493208 342 43 647 protein kinase mTOR
pcba-aid504327 759 380 820 other enzyme GCN5L2
pcba-aid504332 30 586 317 753 other enzyme G9a
pcba-aid504333 15 670 341 165 protein-protein

interaction
BAZ2B

pcba-aid504339 16 857 367 661 protein-protein
interaction

JMJD2A

pcba-aid504444 7390 353 475 transcription fac-
tor

Nrf2

pcba-aid504466 4169 325 944 viability HEK293T-ELG1-luc
pcba-aid504467 7647 322 464 promoter ELG1
pcba-aid504706 201 321 230 miscellaneous p53
pcba-aid504842 101 329 517 other enzyme Mm-CPN
pcba-aid504845 104 385 400 miscellaneous RGS4
pcba-aid504847 3515 390 525 transcription fac-

tor
VDR

pcba-aid504891 34 383 652 other enzyme Pin1
pcba-aid540276* 4494 279 673 miscellaneous Marburg virus
pcba-aid540317 2126 381 226 protein-protein

interaction
HP1-beta

pcba-aid588342* 25 034 335 826 other enzyme luciferase
pcba-aid588453* 3921 382 731 other enzyme TrxR1
pcba-aid588456* 51 386 206 other enzyme TrxR1
pcba-aid588579 1987 393 298 other enzyme DNA polymerase kappa
pcba-aid588590 3936 382 117 other enzyme DNA polymerase iota
pcba-aid588591 4715 383 994 other enzyme DNA polymerase eta
pcba-aid588795 1308 384 951 other enzyme FEN1
pcba-aid588855 4894 398 438 transcription fac-

tor
Smad3

pcba-aid602179 364 387 230 other enzyme IDH1
pcba-aid602233 165 380 904 other enzyme PGK
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Dataset Actives Inactives Target Class Target

pcba-aid602310 310 402 026 protein-protein
interaction

Vif-A3G

pcba-aid602313 762 383 076 protein-protein
interaction

Vif-A3F

pcba-aid602332 70 415 773 promoter GRP78
pcba-aid624170 837 404 440 other enzyme GLS
pcba-aid624171 1239 402 621 transcription fac-

tor
Nrf2

pcba-aid624173 488 406 224 other enzyme PYK
pcba-aid624202 3968 372 045 promoter BRCA1
pcba-aid624246 101 367 273 miscellaneous ERG
pcba-aid624287 423 334 388 signalling path-

way
Gsgsp

pcba-aid624288 1356 336 077 signalling path-
way

Gsgsp

pcba-aid624291 222 345 619 promoter a7
pcba-aid624296* 9841 333 378 miscellaneous DNA re-replication
pcba-aid624297* 6214 336 050 miscellaneous DNA re-replication
pcba-aid624417 6388 398 731 GPCR GLP-1
pcba-aid651635 3784 387 779 promoter ATXN
pcba-aid651644 748 361 115 miscellaneous Vpr
pcba-aid651768 1677 362 320 other enzyme WRN
pcba-aid651965 6422 331 953 protease ClpP
pcba-aid652025 238 364 365 signalling path-

way
IL-2

pcba-aid652104 7126 396 566 miscellaneous TDP-43
pcba-aid652105 4072 324 774 other enzyme PI5P4K
pcba-aid652106 496 368 281 miscellaneous alpha-synuclein
pcba-aid686970 5949 358 501 viability HT-1080-NT
pcba-aid686978* 62 746 354 086 viability DT40-hTDP1
pcba-aid686979* 48 816 368 048 viability DT40-hTDP1
pcba-aid720504 10 170 353 881 protein kinase Plk1 PBD
pcba-aid720532* 945 14 532 miscellaneous Marburg virus
pcba-aid720542 733 363 349 protein-protein

interaction
AMA1-RON2

pcba-aid720551* 1265 342 387 ion channel KCHN2 3.1
pcba-aid720553* 3260 338 810 ion channel KCHN2 3.1
pcba-aid720579* 1913 304 815 miscellaneous orthopoxvirus
pcba-aid720580* 1508 324 844 miscellaneous orthopoxvirus
pcba-aid720707 268 364 332 other enzyme EPAC1
pcba-aid720708 661 363 939 other enzyme EPAC2
pcba-aid720709 516 364 084 other enzyme EPAC1
pcba-aid720711 290 364 310 other enzyme EPAC2
pcba-aid743255 902 388 656 protease USP1/UAF1
pcba-aid743266 306 405 368 GPCR PTHR1
muv-aid466 30 14 999 GPCR S1P1 receptor
muv-aid548 30 15 000 protein kinase PKA
muv-aid600 30 14 999 transcription fac-

tor
SF1

muv-aid644 30 14 998 protein kinase Rho-Kinase2
muv-aid652 30 15 000 other enzyme HIV RT-RNase
muv-aid689 30 14 999 other receptor Eph rec. A4
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Dataset Actives Inactives Target Class Target

muv-aid692 30 15 000 transcription fac-
tor

SF1

muv-aid712* 30 14 997 miscellaneous HSP90
muv-aid713* 30 15 000 protein-protein

interaction
ER-a-coact. bind.

muv-aid733 30 15 000 protein-protein
interaction

ER-b-coact. bind.

muv-aid737* 30 14 999 protein-protein
interaction

ER-a-coact. bind.

muv-aid810* 30 14 999 protein kinase FAK
muv-aid832 30 15 000 protease Cathepsin G
muv-aid846 30 15 000 protease FXIa
muv-aid852 30 15 000 protease FXIIa
muv-aid858 30 14 999 GPCR D1 receptor
muv-aid859 30 15 000 GPCR M1 receptor
tox-NR-AhR 768 5780 transcription fac-

tor
Aryl hydrocarbon receptor

tox-NR-AR-LBD* 237 6520 transcription fac-
tor

Androgen receptor

tox-NR-AR* 309 6955 transcription fac-
tor

Androgen receptor

tox-NR-Aromatase 300 5521 other enzyme Aromatase
tox-NR-ER-LBD* 350 6604 transcription fac-

tor
Estrogen receptor alpha

tox-NR-ER* 793 5399 transcription fac-
tor

Estrogen receptor alpha

tox-NR-PPAR-gamma* 186 6263 transcription fac-
tor

PPARg

tox-SR-ARE 942 4889 miscellaneous ARE
tox-SR-ATAD5 264 6807 promoter ATAD5
tox-SR-HSE 372 6094 miscellaneous HSE
tox-SR-MMP 919 4891 miscellaneous mitochondrial membrane potential
tox-SR-p53 423 6351 miscellaneous p53 signalling
dude-aa2ar 482 31 546 GPCR Adenosine A2a receptor
dude-abl1 182 10 749 protein kinase Tyrosine-protein kinase ABL
dude-ace 282 16 899 protease Angiotensin-converting enzyme
dude-aces 453 26 240 other enzyme Acetylcholinesterase
dude-ada 93 5450 other enzyme Adenosine deaminase
dude-ada17 532 35 900 protease ADAM17
dude-adrb1 247 15 848 GPCR Beta-1 adrenergic receptor
dude-adrb2 231 14 997 GPCR Beta-2 adrenergic receptor
dude-akt1 293 16 441 protein kinase Serine/threonine-protein kinase

AKT
dude-akt2 117 6899 protein kinase Serine/threonine-protein kinase

AKT2
dude-aldr 159 8999 other enzyme Aldose reductase
dude-ampc 48 2850 other enzyme Beta-lactamase
dude-andr* 269 14 350 transcription fac-

tor
Androgen Receptor

dude-aofb 122 6900 other enzyme Monoamine oxidase B
dude-bace1 283 18 097 protease Beta-secretase 1
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Dataset Actives Inactives Target Class Target

dude-braf 152 9950 protein kinase Serine/threonine-protein kinase B-
raf

dude-cah2 492 31 168 other enzyme Carbonic anhydrase II
dude-casp3 199 10 700 protease Caspase-3
dude-cdk2 474 27 850 protein kinase Cyclin-dependent kinase 2
dude-comt 41 3850 other enzyme Catechol O-methyltransferase
dude-cp2c9 120 7449 other enzyme Cytochrome P450 2C9
dude-cp3a4 170 11 800 other enzyme Cytochrome P450 3A4
dude-csf1r 166 12 149 other receptor Macrophage colony stimulating

factor receptor
dude-cxcr4 40 3406 GPCR C-X-C chemokine receptor type 4
dude-def 102 5700 other enzyme Peptide deformylase
dude-dhi1 330 19 350 other enzyme 11-beta-hydroxysteroid dehydro-

genase 1
dude-dpp4 533 40 943 protease Dipeptidyl peptidase IV
dude-drd3 480 34 037 GPCR Dopamine D3 receptor
dude-dyr 231 17 192 other enzyme Dihydrofolate reductase
dude-egfr 542 35 047 other receptor Epidermal growth factor receptor

erbB1
dude-esr1* 383 20 675 transcription fac-

tor
Estrogen receptor alpha

dude-esr2 367 20 190 transcription fac-
tor

Estrogen receptor beta

dude-fa10 537 28 315 protease Coagulation factor X
dude-fa7 114 6250 protease Coagulation factor VII
dude-fabp4 47 2750 miscellaneous Fatty acid binding protein

adipocyte
dude-fak1* 100 5350 protein kinase FAK
dude-fgfr1 139 8697 other receptor Fibroblast growth factor receptor 1
dude-fkb1a 111 5800 other enzyme FK506-binding protein 1A
dude-fnta 592 51 481 other enzyme Protein farnesyltrans-

ferase/geranylgeranyltransferase
type I alpha subunit

dude-fpps 85 8829 other enzyme Farnesyl diphosphate synthase
dude-gcr 258 14 999 transcription fac-

tor
Glucocorticoid receptor

dude-glcm* 54 3800 other enzyme glucocerebrosidase
dude-gria2 158 11 842 ion channel Glutamate receptor ionotropic
dude-grik1 101 6549 ion channel Glutamate receptor ionotropic

kainate 1
dude-hdac2 185 10 299 other enzyme Histone deacetylase 2
dude-hdac8 170 10 449 other enzyme Histone deacetylase 8
dude-hivint 100 6650 other enzyme Human immunodeficiency virus

type 1 integrase
dude-hivpr 536 35 746 protease Human immunodeficiency virus

type 1 protease
dude-hivrt 338 18 891 other enzyme Human immunodeficiency virus

type 1 reverse transcriptase
dude-hmdh 170 8748 other enzyme HMG-CoA reductase
dude-hs90a* 88 4849 miscellaneous HSP90
dude-hxk4 92 4700 other enzyme Hexokinase type IV
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Dataset Actives Inactives Target Class Target

dude-igf1r 148 9298 other receptor Insulin-like growth factor I recep-
tor

dude-inha 43 2300 other enzyme Enoyl-[acyl-carrier-protein]
reductase

dude-ital 138 8498 miscellaneous Leukocyte adhesion glycoprotein
LFA-1 alpha

dude-jak2 107 6499 protein kinase Tyrosine-protein kinase JAK2
dude-kif11 116 6849 miscellaneous Kinesin-like protein 1
dude-kit 166 10 449 other receptor Stem cell growth factor receptor
dude-kith 57 2849 other enzyme Thymidine kinase
dude-kpcb 135 8700 protein kinase Protein kinase C beta
dude-lck 420 27 397 protein kinase Tyrosine-protein kinase LCK
dude-lkha4 171 9450 protease Leukotriene A4 hydrolase
dude-mapk2 101 6150 protein kinase MAP kinase-activated protein ki-

nase 2
dude-mcr 94 5150 transcription fac-

tor
Mineralocorticoid receptor

dude-met 166 11 247 other receptor Hepatocyte growth factor receptor
dude-mk01 79 4549 protein kinase MAP kinase ERK2
dude-mk10 104 6600 protein kinase c-Jun N-terminal kinase 3
dude-mk14 578 35 848 protein kinase MAP kinase p38 alpha
dude-mmp13 572 37 195 protease Matrix metalloproteinase 13
dude-mp2k1 121 8149 protein kinase Dual specificity mitogen-activated

protein kinase kinase 1
dude-nos1 100 8048 other enzyme Nitric-oxide synthase
dude-nram 98 6199 other enzyme Neuraminidase
dude-pa2ga 99 5150 other enzyme Phospholipase A2 group IIA
dude-parp1 508 30 049 other enzyme Poly [ADP-ribose] polymerase-1
dude-pde5a 398 27 547 other enzyme Phosphodiesterase 5A
dude-pgh1 195 10 800 other enzyme Cyclooxygenase-1
dude-pgh2 435 23 149 other enzyme Cyclooxygenase-2
dude-plk1 107 6800 protein kinase Serine/threonine-protein kinase

PLK1
dude-pnph 103 6950 other enzyme Purine nucleoside phosphorylase
dude-ppara 373 19 397 transcription fac-

tor
PPARa

dude-ppard 240 12 247 transcription fac-
tor

PPARd

dude-pparg* 484 25 296 transcription fac-
tor

PPARg

dude-prgr 293 15 648 transcription fac-
tor

Progesterone receptor

dude-ptn1 130 7250 other enzyme Protein-tyrosine phosphatase 1B
dude-pur2 50 2698 other enzyme GAR transformylase
dude-pygm 77 3948 other enzyme Muscle glycogen phosphorylase
dude-pyrd 111 6450 other enzyme Dihydroorotate dehydrogenase
dude-reni 104 6958 protease Renin
dude-rock1 100 6299 protein kinase Rho-associated protein kinase 1
dude-rxra 131 6948 transcription fac-

tor
Retinoid X receptor alpha

dude-sahh 63 3450 other enzyme Adenosylhomocysteinase
dude-src 524 34 491 protein kinase Tyrosine-protein kinase SRC
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Dataset Actives Inactives Target Class Target

dude-tgfr1 133 8500 other receptor TGF-beta receptor type I
dude-thb 103 7448 transcription fac-

tor
Thyroid hormone receptor beta-1

dude-thrb 461 26 999 protease Thrombin
dude-try1 449 25 967 protease Trypsin I
dude-tryb1 148 7648 protease Tryptase beta-1
dude-tysy 109 6748 other enzyme Thymidylate synthase
dude-urok 162 9850 protease Urokinase-type plasminogen acti-

vator
dude-vgfr2 409 24 946 other receptor Vascular endothelial growth factor

receptor 2
dude-wee1 102 6150 protein kinase Serine/threonine-protein kinase

WEE1
dude-xiap 100 5149 miscellaneous Inhibitor of apoptosis protein 3

Table A.2. Featurization failures.

Group Original Featurized Failure Rate (%)

PCBA 439 879 437 928 0.44
DUD-E 1 200 966 1 200 406 0.05
MUV 95 916 95 899 0.02
Tox21 11 764 7830 33.44
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Figure A.1. Target class breakdown. Classes with fewer than five members were merged into the “miscellaneous” class.
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Table A.3. Held-in datasets.

Dataset Actives Inactives Target Class Target

pcba-aid899 1809 7575 other enzyme CYP2C19
pcba-aid485297 9126 311 481 promoter Rab9
pcba-aid651644 748 361 115 miscellaneous Vpr
pcba-aid651768 1677 362 320 other enzyme WRN
pcba-aid743266 306 405 368 GPCR PTHR1
muv-aid466 30 14 999 GPCR S1P1 receptor
muv-aid852 30 15 000 protease FXIIa
muv-aid859 30 15 000 GPCR M1 receptor
tox-NR-Aromatase 300 5521 other enzyme Aromatase
tox-SR-MMP 919 4891 miscellaneous mitochondrial membrane potential

Table A.4. Held-out datasets.

Dataset Actives Inactives Target Class Target

pcba-aid1461 2305 218 561 GPCR NPSR
pcba-aid2675 99 279 333 miscellaneous MBNL1-CUG
pcba-aid602233 165 380 904 other enzyme PGK
pcba-aid624417 6388 398 731 GPCR GLP-1
pcba-aid652106 496 368 281 miscellaneous alpha-synuclein
muv-aid548 30 15 000 protein kinase PKA
muv-aid832 30 15 000 protease Cathepsin G
muv-aid846 30 15 000 protease FXIa
tox-NR-AhR 768 5780 transcription factor Aryl hydrocarbon receptor
tox-SR-ATAD5 264 6807 promoter ATAD5
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Figure A.2. Pairwise dataset intersections. The value of the element at position (x, y) corresponds to the fraction of dataset x that is
contained in dataset y. Thin black lines are used to indicate divisions between dataset groups.
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Figure A.3. Multitask performance of duplicate and unique targets. Outliers are omitted for clarity. Notches indicate a confidence
interval around the median, computed as ±1.57× IQR/

√
N (McGill et al., 1978).
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B. Performance metrics

Table B.1. Sign test CIs for each group of datasets. Each model is compared to the Pyramidal (2000, 100) Multitask Neural Net, .25
Dropout model.

Model
PCBA

(n = 128)
MUV

(n = 17)
Tox21

(n = 12)

Logistic Regression (LR) [.3, .11] [.13, .53] [.00, .24]
Random Forest (RF) [.05, .16] [.00, .18] [.14, .61]

Single-Task Neural Net (STNN) [.02, .10] [.13, .53] [.00, .24]
Pyramidal (2000, 100) STNN, .25 Dropout (PSTNN) [.05, .15] [.13, .53] [.00, .24]

Max{LR, RF, STNN, PSTNN} [.09, .21] [.13, .53] [.14, .61]
1-Hidden (1200) Layer Multitask Neural Net (MTNN) [.05, .15] [.22, .64] [.01, .35]

Table B.2. Enrichment scores for all models reported in Table 2. Each value is the median across the datasets in a group of the mean
k-fold enrichment values. Enrichment is an alternate measure of model performance common in virtual drug screening. We use the
“ROC enrichment” definition from (Jain & Nicholls, 2008), but roughly enrichment is the factor better than random that a model’s top
X% predictions are.

Model PCBA MUV Tox21
0.5% 1% 2% 5% 0.5% 1% 2% 5% 0.5% 1% 2% 5%

LR 19.4 16.5 12.1 7.9 20.0 23.3 15.0 8.0 23.9 18.3 10.6 6.7
RF 40.0 27.4 17.4 9.1 40.0 26.7 16.7 7.3 23.2 19.5 13.6 7.8
STNN 19.0 15.6 11.8 7.7 26.7 20.0 11.7 8.0 16.2 14.4 9.8 6.1
PSTNN 21.8 16.9 12.4 7.9 26.7 16.7 13.3 8.0 23.8 16.1 10.0 6.7
MTNN 33.8 23.6 16.9 9.8 26.7 16.7 16.7 8.7 24.5 18.0 11.4 6.9
PMTNN 43.8 29.6 19.7 11.2 40.0 23.3 16.7 10.0 23.5 18.5 13.7 8.1
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Figure B.1. Graphical representation of data from Table 2 in the text. Notches indicate a confidence interval around the median, computed
as ±1.57 × IQR/

√
N (McGill et al., 1978). Occasionally the notch limits go beyond the quartile markers, producing a “folded down”

effect on the boxplot. Paired t-tests (2-sided) relative to the PMTNN across all non-DUD-E datasets gave p ≤ 1.86× 10−15.
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C. Training Details
The multitask networks in Table 2 were trained with learning rate .0003 and batch size 128 for 50M steps using stochastic
gradient descent. Weights were initialized from a zero-mean Gaussian with standard deviation .01. The bias was initialized
at .5. We experimented with higher learning rates, but found that the pyramidal networks sometimes failed to train (the top
hidden layer zeroed itself out). However, this effect vanished with the lower learning rate. Most of the models were trained
with 64 simultaneous replicas sharing their gradient updates, but in some cases we used as many as 256.

The pyramidal single-task networks were trained with the same settings, but for 100K steps. The vanilla single-task
networks were trained with learning rate .001 for 100K steps. The networks used in Figure 3 and Figure 4 were trained
with learning rate 0.003 for 500 epochs plus a constant 3 million steps. The constant factor was introduced after we
observed that the smaller multitask networks required more epochs than the larger networks to stabilize.

The networks in Figure 5 were trained with a Pyramidal (1000, 50) Single Task architecture (matching the networks in
Figure 3). The weights were initialized with the weights from the networks represented in Figure 3 and then trained for
100K steps with a learning rate of 0.0003.

As we noted in the main text, the datasets in our collection contained many more inactive than active compounds. To
ensure the actives were given adequate importance during training, we weighted the actives for each dataset to have total
weight equal to the number of inactives for that dataset (inactives were given unit weight).

Table C.1 contains the results of our pyramidal model sensitivity analysis. Tables C.2 and C.3 give results for a variety of
additional models not reported in Table 2.

Table C.1. Pyramid sensitivity analysis. Median 5-fold-average-AUC values are given for several variations of the pyramidal architec-
ture. In an attempt to avoid the problem of training failures due to the top layer becoming all zero early in the training, the learning rate
was set to 0.0001 for the first 2M steps then to 0.0003 for 28M steps.

Model
PCBA

(n = 128)
MUV

(n = 17)
Tox21

(n = 12)

Pyramidal (1000, 50) MTNN .846 .825 .799
Pyramidal (1000, 100) MTNN .845 .818 .796
Pyramidal (1000, 150) MTNN .842 .812 .798
Pyramidal (2000, 50) MTNN .846 .819 .794
Pyramidal (2000, 100) MTNN .846 .821 .798
Pyramidal (2000, 150) MTNN .845 .839 .792
Pyramidal (3000, 50) MTNN .848 .801 .796
Pyramidal (3000, 100) MTNN .844 .804 .799
Pyramidal (3000, 150) MTNN .843 .810 .789
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Table C.2. Descriptions for additional models. MTNN: multitask neural net. “Auxiliary heads” refers to the attachment of independent
softmax units for each task to hidden layers (see Szegedy et al., 2014). Unless otherwise marked, assume 10M training steps.

A 8-Hidden (300) Layer MTNN, auxiliary heads attached to hidden layers 3 and 6, 6M steps
B 1-Hidden (3000) Layer MTNN, 1M steps
C 1-Hidden (3000) Layer MTNN, 1.5M steps
D Pyramidal (1800, 100), 2 deep, reconnected (original input concatenated to first pyramid output)
E Pyramidal (1800, 100), 3 deep
F 4-Hidden (1000) Layer MTNN, auxiliary heads attached to hidden layer 2, 4.5M steps
G Pyramidal (2000, 100) MTNN, 10% connected
H Pyramidal (2000, 100) MTNN, 50% connected
I Pyramidal (2000, 100) MTNN, .001 learning rate
J Pyramidal (2000, 100) MTNN, 50M steps, .0003 learning rate
K Pyramidal (2000, 100) MTNN, .25 Dropout (first layer only), 50M steps
L Pyramidal (2000, 100) MTNN, .25 Dropout, .001 learning rate

Table C.3. Median 5-fold-average AUC values for additional models. Sign test confidence intervals and paired t-test (2-sided) p-values
are relative to the PMTNN from Table 2 and were calculated across all non-DUD-E datasets.

Model
PCBA

(n = 128)
MUV

(n = 17)
Tox21

(n = 12)
Sign Test CI Paired t-Test

A .836 .793 .786 [.01, .06] 9.37× 10−43

B .835 .855 .769 [.11, .22] 1.17× 10−17

C .837 .851 .765 [.12, .24] 2.60× 10−16

D .842 .842 .816 [.08, .18] 1.89× 10−21

E .842 .808 .789 [.02, .08] 9.25× 10−43

F .858 .836 .810 [.10, .22] 4.85× 10−13

G .831 .795 .774 [.03, .11] 1.15× 10−31

H .856 .827 .796 [.04, .13] 5.34× 10−21

I .860 .862 .824 [.07, .17] 6.23× 10−14

J .830 .810 .801 [.05, .14] 9.25× 10−25

K .859 .843 .803 [.24, .38] 3.25× 10−9

L .872 .837 .802 [.35, .50] 2.74× 10−2
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