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Abstract
Recently, it was shown that the performance of supervised time-
frequency masking based robust automatic speech recognition
techniques can be improved by training them jointly with the
acoustic model [1]. The system in [1], termed deep neural net-
work based joint adaptive training, used fully-connected feed-
forward deep neural networks for estimating time-frequency
masks and for acoustic modeling; stacked log mel spectra was
used as features and training minimized cross entropy loss. In
this work, we extend such jointly trained systems in several
ways. First, we use recurrent neural networks based on long
short-term memory (LSTM) units – this allows the use of un-
stacked features, simplifying joint optimization. Next, we use
a sequence discriminative training criterion for optimizing pa-
rameters. Finally, we conduct experiments on large scale data
and show that joint adaptive training can provide gains over a
strong baseline. Systematic evaluations on noisy voice-search
data show relative improvements ranging from 2% at 15 dB to
5.4% at -5 dB over a sequence discriminative, multi-condition
trained LSTM acoustic model.
Index Terms: automatic speech recognition, noise robustness,
joint adaptive training, deep neural network, LSTM

1. Introduction
With the adoption of artificial neural network (ANN) based
acoustic models (AMs), automatic speech recognition (ASR)
has made great strides and is gaining acceptance as a viable
mode for communicating with our devices [2]. The current
ASR systems work well in relatively clean conditions; the focus
now is on reducing error rates in real noisy environments. The
performance of even the best ASR systems in noisy conditions
is much worse than in clean. The reasons are similar as with
Gaussian mixture model (GMM) based AMs – the mismatch
between training and test data. But contrary to GMM AMs,
when trained using large-scale, multi-condition training (MTR)
data, ANN AMs have shown much better performance in noise
[3]. This paper focuses on improving performance of such MTR
AMs in matched and unmatched noisy test conditions.

Supervised time-frequency (T-F) masking based feature en-
hancement algorithms have been shown to improve perfor-
mance of MTR ANN AMs [1, 4]. Such algorithms use ANNs
to estimate an ideal ratio mask (IRM) directly from noisy sig-
nals. The IRM, which is defined for a T-F representation of
speech like a mel spectrogram, identifies the ratio of speech
energy with respect to the mixture energy at each T-F bin [5].
Typically, the estimated ratio masks are used to remove noise
via point-wise multiplication with the noisy spectrogram. The
enhanced spectrogram is then used as input to the AM. While
this shows improvement in extremely noisy conditions, perfor-

mance can be improved using mask-based speech and noise es-
timates as additional features, and by training the mask estima-
tor jointly with the acoustic model [1]. But improvements us-
ing such techniques have only been demonstrated on medium-
large vocabulary tasks (CHiME-2 [6]) with around 15 hours of
training data [1]. Moreover, typical systems use fully-connected
feed-forward deep neural network-based (FFDNN) AMs. Small
scale data and FFDNN AMs require the use of stacked features
augmented with delta components for obtaining good perfor-
mance, which in turn makes joint optimization structurally com-
plicated. Furthermore, sequence discriminative training, which
has now been shown to consistently improve performance of
ANN-based AMs, has not been explored in the context of joint
optimization. This study primarily addresses these shortcom-
ings and extends these early works.

The rest of the paper is organized as follows. In Section
2, we provide additional context for this work. Section 3 pro-
vides system description. Experimental setup, and detailed re-
sults and analysis are presented in Section 4. We conclude with
a discussion in Section 5.

2. Relationship to prior work
Time-frequency masking (TFM) has been widely studied in the
context of speech enhancement [7, 8], speaker [9] and speech
recognition [10]. While several alternatives exist for estimating
TFMs, the current best systems estimate ratio or soft valued
masks using ANNs trained with supervision. Most systems use
FFDNNs, but recurrent neural networks (RNNs), specifically
LSTM-RNNs, have also been shown to work well [4, 11]. Note
that, although we use LSTMs, the mask estimator in our system
is optimized using ASR criteria, unlike earlier work.

Although traditional enhancement techniques show large
gains in performance when using ANN AMs trained in clean
conditions, AMs trained using MTR data have been shown to
be inherently noise robust [12, 10]. This is especially true when
only a monaural signal is available as input. More importantly,
it was shown in these works that retraining the AM using en-
hanced data, sometimes referred to as joint training, does not
improve performance, and in some cases deteriorates perfor-
mance. This was attributed to the the limited variability in train-
ing data when using enhanced features [12]. The distortions in-
troduced by frontend processing are also a factor. Noise aware
training (NAT), wherein a noise estimate obtained by averaging
the first few frames of a noisy signal is used as additional fea-
tures, was proposed as an alternative [12]. Subsequent studies
show that such a static estimate of noise does not help when us-
ing a well-trained AM [1]. Instead, a dynamic estimate of noise
obtained per frame using an estimated mask was shown to be
better. We refer to such methods as mask-based noise aware
training (mNAT) in this work. To the best of our knowledge,
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Figure 1: Joint optimization using LSTM-RNNs: (a) The overall
architecture. (b) Masking operation when using enhanced fea-
tures as input to the AM. (c) Masking operation for mask-based
noise aware training. The noise estimate is obtained using the
inverted mask (1 - M(t)).

none of these techniques have been evaluated using large-scale
MTR-trained AMs.

For GMM AMs, joint (adaptive) training is used to jointly
adapt parameters of the feature frontend and the acoustic mod-
els. Examples include speaker adaptive training [13], noise
adaptive training [14], and VTS-based joint adaptive training
[15]. In the context of ANN AMs, learning filterbank co-
efficients [16] and discriminative speaker codes [17] are ex-
amples of jointly optimizing the frontend. For noise robust-
ness, FFDNN-based joint adaptive training (JAT) has been pro-
posed for optimizing a masking-based enhancement frontend
jointly with the AM using cross entropy loss [1]. Such a strat-
egy can potentially be used for optimizing other enhancement
techniques, like discriminative non-negative matrix factoriza-
tion [18] and deep unfolding [19], as long as the frontend pro-
cessing can be represented as a differentiable transformation of
the noisy input features to enhanced clean features. As men-
tioned before, this study extends these early works.

3. System description
The overall architecture of the proposed system is shown in Fig.
1. 40-dimensional noisy log-mel spectrogram extracted from 25
msec windows with 10 msec hop size is used as input features.
The same features are used as input to both the mask estimator
and the (baseline) acoustic model. The features are normal-
ized using the mean and the standard deviation of the training
data. No utterance-level normalization is applied since it makes
streaming recognition, which is one of the target applications of
the proposed system, difficult.

Given log mel features, the mask estimation module uses
LSTM-RNNs for mask estimation [20]. LSTMs are now widely
used for modeling sequence data like speech [20] and language
[21], and have been shown to consistently outperform FFDNNs.
In addition to recurrent connections, LSTMs use input, output,
and memory ‘gates’ to control the sequential flow of informa-

tion, and cells that maintain internal states. This partly pre-
vents vanishing gradients, making learning easier, and also al-
lows them to learn long term dependencies better. LSTMs being
recurrent allows us to use per-frame log mel features as input
without any feature stacking or augmentation using delta com-
ponents. This simplifies joint optimization, even though the use
of LSTMs makes the individual models more complex. Further,
it reduces delays in streaming recognition. As we will show in
evaluations, for mask estimation LSTMs, perform at least as
well as a well-trained FFDNN that uses stacked features. We
use a 2-layer LSTM for mask estimation. Each layer uses 512
nodes and 256 projection nodes [20]. The input and output di-
mensionality are both 40 – the number of mel frequency bands.

The mask estimation module is trained to estimate the ideal
ratio mask. Assuming that speech and noise are uncorrelated,
the IRM is defined as the ratio of speech to mixture energy:

M(t, c) =
X(t, c)

X(t, c) +N(t, c)
. (1)

Here, X and N represent speech and noise mel spectrogram,
respectively, t and c correspond to time and frequency indices.
M represents the ideal ratio mask. Since we model real noisy
signals that contain both background noise and reverberation,
clean speech is no longer uncorrelated with the noise as it in-
cludes reverberation. Therefore, we treat reverberant speech as
‘clean’ speech, and everything else as noise. We do not directly
address reverberation. With MTR AMs, we have found that
mild reverberation does not severely affect performance.

Given an estimate of the IRM, M̂ , and the original mean-
variance normalized noisy features, fY , the input to the acoustic
model when using masked features directly is obtained as:

f̂X(t, c) = fY (t, c) + (α ∗ log(max(M̂(t, c), β))/σc). (2)

Here, f̂X is an estimate of the normalized clean speech features.
α is an exponential scaling factor for the mask to minimize
speech distortion while allowing some residual noise, β is a
spectral floor that prevents the log operation from misbehaving,
and σc is the standard deviation of the cth frequency channel of
the noisy features. Masking directly in the normalized feature
domain, as shown above, is made possible if we assume that the
normalization parameters of the enhanced features are the same
as the original noisy features. In practice, they are only similar;
we have found that this does not affect performance since ANN
parameters easily adapt to the values used for normalization as
long as they are reasonably close to the true values. It should
be pointed out that the masking operation is piecewise differen-
tiable (piecewise because of the max operation), and can easily
be incorporated into an ANN architecture.

For mask-based noise aware training, instead of using
masked features, we stack the original noisy features, the speech
estimate and a noise estimate (f̂N ). f̂N is obtained similar to Eq.
2, but using the inverted ratio mask, 1 − M̂ . mNAT has been
shown to be better than standard NAT [22] for both Aurora4
[23] and CHiME2.

The acoustic model that we use is also based on LSTMs
[20]. Specifically, it uses 2 LSTM layers, each with 832 nodes
and 512 projection nodes. We use cross entropy followed by
sequence discriminative training to optimize the model. For
sequence training, we use state level minimum Bayes risk
(sMBR), which optimizes the expected sequence error weighted
by the state accuracy of the correct paths. sMBR has been
shown to work well for ANN AMs [24, 25, 26] in prior work.



With the above formulation for obtaining features via mask-
ing, the full system can now be optimized to directly improve
the ASR criterion of CE and sMBR. During joint optimization,
the gradients of the ASR loss are used to update the weights
of the mask estimator and the acoustic model. Initialization is
necessary for joint optimization since it is harder for the joint
model to learn an appropriate mask estimator from scratch us-
ing just the ASR losses. For our experiments, we first inde-
pendently train the mask estimator. The acoustic model is then
trained either using the noisy features or stacked features (noisy
features, speech estimate, and noise estimate) by fixing the pa-
rameters of the mask estimator. The learned weights are used
to initialize the corresponding joint models. During joint train-
ing, only the ASR losses are used for updating the weights of
the full model. Joint optimization starts with CE training, and is
followed by sequence training. Starting sequence training from
the jointly optimized CE model was found to work better than
either starting from the independently trained CE model, or the
independently trained sMBR model.

4. Results
4.1. Experimental setup

All our acoustic models are trained using a 3 million utter-
ance training set (~2000 hours) comprised of spoken English
queries. The utterances are representative of Google search traf-
fic, and are anonymized and hand-transcribed before use. The
MTR set is created by mixing these relatively clean utterances
with random noise segments collected from YouTube and daily
life noisy environmental recordings. The signal-to-noise ratio
(SNR) of the mixtures is set randomly to be between 5 dB and
25 dB. To model reverberant conditions, we use a room simula-
tor based on the image model of reverberation [27]. We model
moderate levels of reverberation, with T60 ranging form 0 to
400 msec. Speech and noise are assumed to originate from dif-
ferent locations. Note that since we only use monaural record-
ings, none of the presented systems use any spatial informa-
tion implicitly or explicitly for enhancement. The evaluation
set is similarly derived from a 30,000 utterance set (~30 hours).
Noise is added artificially, similar to the training data, using the
room simulator. For development, we mix this set with unseen
segments of YouTube and daily life noises at similar SNR and
reverberation settings. For the final evaluations, we mix these
utterances with segments of unseen noise types taken from Au-
rora4 and NOISEX-92 [28]. SNRs are systematically varied
from -5 dB to 15 dB at 5 dB intervals. Rooms modeled are sim-
ilar, but contain more than one noise sources, unlike the training
data. These differences ensure that our final evaluations focus
on generalization properties of the systems considered. Only
for pre-training the mask estimator, we use an alternative train-
ing set that consists of 800,000 separate utterances (~500 hours)
created under similar noise and reverberation settings. All ut-
terances in the training and evaluation sets are at 16 kHz.

The models are trained using asynchronous stochastic gra-
dient descent (ASGD) using Google’s distributed ANN train-
ing infrastructure [29]. For CE training we use ASGD, and for
sMBR we use ASGD with AdaGrad. When using ASGD for
joint optimization, we also clip gradients when their norm ex-
ceeds a preset maximum to prevent the log operation in Eq. 2
from back-propagating extremely large values. Note that Ada-
Grad automatically accounts for large gradients by scaling the
learning rate down based on their moving average. The acoustic
models use ~13k tied context dependent states.

Table 1: Comparison of LSTM and FFDNN mask estimators.
System WER
CE baseline 18.52
+ FFDNN Masking 18.19
+ LSTM Masking 18.03

4.2. Development set results

We first compare performance obtained using LSTM and
FFDNN mask estimators. The FFDNN mask estimator is
trained using a context of 26 time frames, and has 4 layers, each
with 512 nodes. Word error rates (WER) are shown in Tab. 1.
α and β in Eq. 2 are set to 0.5 and 0.4, respectively. They are
chosen via a grid search for optimal performance on this set.
As shown, the FFDNN performs worse than the LSTM. In what
follows, we only present results based on LSTM mask estima-
tors.

WERs on the development set are shown in Tab. 2. The
baselines include the independently-trained models: CE/sMBR
baseline, independently-trained masking frontend (+ Masking),
and mNAT. For CE training, denoising using a well-tuned
spectral subtraction algorithm is also included as a baseline
(CE w/ SS). The table also shows results after joint optimiza-
tion of the direct masking (+ JAT) and the mNAT models (+ mJ-
NAT). α and β are set to 0.5 and 0.01 for obtaining the speech
estimate when performing joint optimization. A lower value for
β is chosen since one of the goals of joint optimization is to
achieve better noise suppression while preserving speech char-
acteristics that are important for ASR. To obtain the noise esti-
mate for mNAT and mJNAT, α is set to 1.0 and β to 0.01. Note
that the mask is inverted before deriving the noise estimate;
scaling and flooring, as in Eq. 2, is done after inversion. In mJ-
NAT, the jointly estimated mask is used to recalculate both the
speech and noise estimates. We also looked at variants where
only the speech estimate is updated using the jointly estimated
mask, with the noise estimate coming from the independently-
trained mask as was suggested in earlier work [1]. But this per-
formed slightly worse. It may be because with large training
data, the ANN is able to adapt the mask appropriately for deriv-
ing both these estimates.

Comparing the CE results, masking and mNAT improves
upon the noisy baseline by 0.5% absolute. JAT and mJNAT
improve performance further by roughly 0.7 to 0.8% absolute,
with mJNAT performing slightly better than JAT. In compari-
son, spectral subtraction fails to improve upon the CE baseline.
sMBR improves the CE baseline by 3.4% absolute. Sequence
training, although not directly addressing noise, seems to have
a very significant effect as has already been observed in the
CHiME-2 task [30]. Masking using independently-trained esti-
mators fails to significantly improve this strong baseline. JAT
improves performance by 0.3% absolute. mNAT performs com-
parably to JAT; mJNAT improves performance by another 0.2%
absolute. Compared to the sMBR baseline, mJNAT improves
WER by 0.6% absolute.

In Fig. 2 we show an example of the estimated masks be-
fore and after mJNAT. As shown, joint optimization uses the
mask to identify segments of the spectrogram that are most
speech-like and necessary for recognition, while aggressively
suppressing noise. Interestingly, the jointly optimized masks
are also able to correctly suppress noise in the original ‘clean’
recording (segments between 2.5 and 3 seconds). Comparing
the jointly optimized mask before and after sMBR training, it



Table 2: Comparison of various systems using CE- (left) and
sMBR-trained (right) MTR acoustic models. SS stands for spec-
tral subtraction.

System WER
CE baseline 18.52
+ Masking 18.03
+ JAT 17.30
mNAT 18.01
+ mJNAT 17.18
CE w/ SS 18.51

System WER
sMBR baseline 15.15
+ Masking 15.13
+ JAT 14.81
mNAT 14.84
+ mJNAT 14.58
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Figure 2: Masks estimated before and after joint optimization:
(a) The ‘clean’ log mel spectrogram. The clean signal being
a real recording, already contains some noise. (b) The noisy
mel spectrogram. (c) The independently estimated mask. (d)
Estimated mask after mJNAT CE training. (e) Estimated mask
after mJNAT sMBR.

can be observed that sMBR training modifies the mask fur-
ther for stronger noise suppression. It should be noted that
the jointly optimized mask is not necessarily more similar to
the IRM because the mask that is ideal for ASR is non-ideal
for ‘perfectly’ resynthesizing the target. We believe that this
makes joint optimization a more attractive strategy for training
denoising frontends in conditions where the true clean speech
is unavailable and only the correct transcription is given. This
is quite common in large scale ASR tasks since obtaining real
noisy signals with the correct transcription is easier than obtain-
ing studio quality speech signals.

4.3. Evaluation set results

In this section we present results on the evaluation sets created
with unseen noise types. The results in the previous section
show that joint optimization typically performs better. There-
fore, we only present the baseline and the results obtained after
joint optimization. The results are shown in Tab. 3.

We obtain large improvements in performance over the

Table 3: Performance on the evaluation sets using CE- and
sMBR-trained MTR AMs.

System WER
-5 dB 0 dB 5 dB 10 dB 15 dB

CE baseline 55.11 33.96 23.07 18.94 17.20
+ JAT 49.11 30.60 21.43 17.90 16.54
+ mJNAT 49.86 30.81 21.40 17.78 16.45

sMBR baseline 45.50 26.60 18.57 15.63 14.48
+ JAT 43.05 25.50 18.05 15.38 14.32
+ mJNAT 43.32 25.60 17.96 15.23 14.19

baseline in low SNR conditions when using CE models. At
-5 dB, JAT works better than mJNAT, and reduces WER by
6% absolute compared to the CE baseline. At 15 dB, mJNAT
works better and reduces WER by 0.8% absolute. Compared to
the stronger sequence-trained baseline, the overall relative im-
provements are lower. At -5 dB, JAT improves over the sMBR
baseline by 2.2% absolute, and at 15 dB mJNAT improves by
0.3% absolute. As can be see, JAT works better than mJNAT at
low SNRs. The training data for the models does not include
a lot of low SNR signals, and it is likely that mJNAT is more
sensitive to this due to the additional features it derives from
the masks. Nonetheless, it is interesting to see that joint opti-
mization continues to provide gains in unseen conditions over a
strong baseline trained on large scale data.

5. Discussions

In this paper we have shown that joint optimization contin-
ues to provide improvements in noisy conditions over a very
strong sequence-trained acoustic model baseline, even when us-
ing large scale training data. Extending earlier work, we show
that joint optimization can be simplified using LSTMs for mask
estimation and acoustic modeling, which makes feature stack-
ing and augmentation unnecessary. As with prior work, we have
shown that mask-based noise aware training works better than
direct masking in most cases, and that joint optimization pro-
vides further gains. The final system obtains relative improve-
ments ranging from 5.4% at -5 dB to 2% at 15 dB.

In future work, we will explore the use of convolutional
models in addition to LSTMs [31] in this framework. In ini-
tial experiments not reported in this work, we have observed
that jointly optimized models learn characteristics that are com-
plimentary to those learned by an acoustic model trained di-
rectly on noisy features: A simple averaging of posteriors from
these two models seems to significantly improve WERs. Such
model averaging techniques will be explored as part of future
work. Finally, we will also explore ways of handling reverber-
ation within this framework. While mild reverberation may not
cause significant increase in WER given MTR-trained acoustic
models, it is likely that a more systematic way of handling re-
verberation will prove useful in severely reverberant conditions.
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