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“It’s always the quiet ones.” - Folk wisdom

Abstract

When forecasting resource workloads (traffic, CPU load, memory usage, etc.), we often
extrapolate from the upper percentiles of data distributions. This works very well when the
resource is far enough from its saturation point. However, when the resource utilization gets
closer to the workload-carrying capacity of the resource, upper percentiles level off (the
phenomenon is colloquially known as flat-topping or clipping), leading to underpredictions of
future workload and potentially to undersized resources. This paper explains the phenomenon
and proposes a new approach that can be used for making useful forecasts of workload when
historical data for the forecast are collected from a resource approaching saturation.

Workload

The workload on an IT resource (network node or link, CPU, disk, memory, etc.) is usually
defined in terms of the number of commands (requests, jobs, packets, tasks,...) that are either
being processed or sitting in the arrival queue (in some cases, the buffer for arrival queues is
located on the sending element of the system; in such scenarios, it may be impossible for the
resource in question to be aware of the pending workload).

Little’s Law [LTTL2011], discovered, and expressed in stochastic terms, 40 years prior to John
Little by A.K. Erlang, connects the workload, the arrival rate, and the service time in a very
simple equation with unexpectedly complicated consequences:

W =X=*=T (1)
where X = arrival rate;

T = service time (aka latency or response time);
W = workload

The Xand T describe two very different features of the system: the arrival rate (X)
characterizes demand, while latency ( T') characterizes the system’s response to the workload.

As we collect throughput and latency data over time, we get two time series of measurements
X(t) and T(t), which together define a workload time series W(t). Under low-arrival-rate
conditions, the dependence of T(t) on X(t) can be treated as negligible. But when the resource
approaches saturation, we observe the knee in the Receiver Operating Curve (ROC).
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Figure 1. The Knee (an illustration)
At the point where green zone ends and yellow begins in Figure 1 (approaching “the Knee”),

arrival rate and response time become significantly interdependent (see [FERR2012(1)],
[GUNT2009], [GILG2013] and, for a truly rigorous discourse, [CHDY2014]).

This concept of knee behavior informs a number of practical considerations. One is that lead
times for parts and capacity installation times impose the need for forecasting system behavior
at a time far in the future. As economic forces often dictate seeking utilization levels "just below
the knee", the forecasting must often extrapolate histories of behavior below the knee into levels
within and above the knee.

Little’s Law also allows us to express the holding capacity of an IT resource (maximum
concurrency) as N = Xyax * T nom , Where Xpax = bandwidth , or throughput capacity , and

T nom = nominal latency . Nominal latency is latency observed under low load (when T(X) is
nearly const) or calculated, e.g., as link length divided by the speed of light. In networking,
holding capacity is known as BDP - Bandwidth-Delay Product; in a transactional system (e.g., a
database; a telephone station, a cache register), it will be the maximum number of transactions
that the system can hold at any given time without blocking.

Problem Statement
We have:
e An IT resource (e.g., network link) with a given holding capacity, N.
e Expected throughput for the element, X .
e Nominal latency (job holding time) for this element, 7 o .
e Historical data (time series) for Throughput, X(¢)and Latency, T(?)

We need to:
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Estimate when the element will reach its saturation point, usually with some built-in bias to
address risk.

Standard Approach:
1. Compute the historical workload, W (f), using Little's Law (see [GILG2013] and
[CHDY2014] for ways to deal with the high-workload conditions);
2. Get the 95th (or 99th, or 90th, or ... ) percentile of measurements on a suitable time step
(usually weekly, to have sufficient data to isolate the top 5% and to accommodate the

weekly and diurnal patterns often encountered in resource utilization data), W.95(i)
(Where i = time interval over which the percentile is calculated) ;

3. Forecast (see, e.g., [MAKR1998], [ARMS2001]) the W ¢5(i) — W195(;);

4. Add an overhead, A(?), to the forecasted W.95(;) value ([CRET2006], [OSTR2011]) to
create headroom for data variability.

5. ldentify the earliest time when W.95(;) + A(@) =N.

Problem with Standard Approach

Standard Approach Assumptions

Usually the assumption in the standard approach is that latency will not change at higher
throughput, which implies that throughput trajectory will be a good proxy for workload trajectory,
and the workload forecast will be defined by that of the throughput: W() = X(2) * T . In
addition, capacities of IT resources are typically measured in units of throughput (humber of
transactions per second; bits per second; integer operations per second; etc), which makes it
convenient to measure workload as the rate of service of the arriving units of work. This creates
a lot of confusion, but it is the current “state of the art”. With that in mind, illustrations below
show throughput time series data.

When the percentiles’ trajectories behave “as expected”
The standard approach works well when the forecasted workload quantiles are nondecreasing,

so that, for example, W o(i) > W 5o(i) > W 1o(i) and T oo(i) > W 5o(i) > W 1(i), or
Xooi) > X50i) > X 1(0) and X o)) > X 5()) > X (i) (see Figure 2).
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Figure 2: Examples of Throughput Time Series where the Standard Approach above works

Examples in Figure 2 show unconstrained throughput time series where trajectories of all
percentiles are divergent (Figure 2a) and approximately parallel (Figure 2b). A close
examination of Figure 2b reveals that the 5th and the 25th percentiles (third and fourth dashed
lines from the bottom) appear to be converging, but their potential intersection is too far in the
future to be material.

When percentiles’ trajectories converge
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Figure 3: Throughput Time Series where percentiles’ trajectories converge

Figure 3 shows examples with behavior different than Figure 2. In Figure 3a, 95th and 97.5th
percentiles - second and third lines from the top - are converging to the 75th percentile. In
Figure 3b percentiles’ trajectories actually intersect, making the 3rd quartile higher than the
97.5th percentile (upper bound of the 95% confidence interval), and dropping the 97.5th
percentile below the median. These lines reflect the growth rates. Their intersection merely
means that they are converging very fast. Convergence, in turn, is important, because it points
to saturation, as will be shown below.

In other words, the phenomenon does occur in practice, deserves explanation, and requires
being dealt with.

Can it Be Explained?



Consider a resource-constrained system where a hidden or explicit feedback mechanism
moderates the demand based on the workload, illustrated conceptually in Figure 4.
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Figure 4: Workload Control System: a generalized view

If X (moderated demand) is below the the “knee” (Figure 1), the mechanism will implement little
or no reduction. At the knee, the latency (T ) grows quickly with growing X, leading to a
disproportional increase of the workload ( 77), as determined via Little’s Law. Thus W or a
similar signal can be used when X' is large to effect an arrival rate X so that W does not exceed
a target value.

Thus a congestion control mechanism like the one in Figure 4 seeks to ensure that
W =X*T <a*N, (2)

where o= a coefficient, 0 <a <1, and
N = holding capacity of the connection (in units of work; e.g., packets)

Empirically, if W <const,and W = X * T(X), upper percentiles of X will be dampened more
than lower percentiles, especially when the demand is near the knee.

Hyperbolic Intuition
As outlined in [GUNT2009] and independently in [FERR2014], the ROC curve near the knee
(Figure 1) is approximated very closely by a hyperbolic function:

X-L)y=(T —-H)= -4 (3)
Here L >0, H > 0, and A are parameters; A= f(a*N); A > 0; X = throughput; T = latency

This approximation follows from applying Little’s Law to a closed-loop queueing system. The
slopes of the asymptotes are defined by Eq. (3) parameters, which, as demonstrated in
[FERR2014], can be derived from known and measured parameters of the system.

For the open system, eq. (9) can be solved for T as :
T=H- 3 (4a)


https://drive.google.com/file/d/0BxrkSGZtvvHtZnZFc3YtcHNWVVE/view?usp=sharing

Sensitivity Analysis
Sensitivity is calculated by taking first derivative:

dr _ A4
dX ~ (x-Ly? (5)

Similarly, for throughput sensitivity to latency: in the open system

X =giz+tl (4b)
Sensitivity is calculated by taking first derivative:

ax — _[___4 _ _ 4

a = [ (H*TY] GRS, ©)

Note

Egs. (4a, 4b) , as well as their “cleaner forms” (5, 6) demonstrate the asymmetrical relationship
between throughput and latency in a closed system: higher throughput drives higher latency, but
not vice versa; see the Interpretation section below.

Substitution of (5a) into (7) yields:

ax _ 4_ = A ;= A
dT (H-T) {H—[H—ﬁ]} [(7(%]2
Finally, for a closed system:

X— L)
= U (7)

Comparison of Eq.(6) and Eq.(7) confirms correctness of the derivation (3) - (7).

Interpretation

As throughput increases, latency can only increase (Eq. 4a), whereas as latency increases,
throughput can only decrease (Eq. 4b). Because 4 > 0, Equation (7) dictates that as we
increase throughput in a closed-loop system, its upper percentiles must grow at a slower pace
near the saturation point than lower percentiles; hence the patterns observed in Figure 3(a, b).

“One should always generalize.” - Carl Jacobi

This discussion can be generalized by claiming (and proving, see below) that in a closed-loop
system where X < X' | as throughput is approaching saturation point, its upper percentiles will
grow at a slower pace than lower percentiles (compression of quantiles):

If X * T <a* N, then

i < 8
X _)}}gzratiO)z AXP) N O ( )
where
Ay, = [F52] - [F522]. Xp = Pihpercentile of X; 50% < P < 100%



The next section formalizes that empirical result mathematically.

Quantile Compression Theorem
Here we provide some strong but reasonable assumptions where the empirical observation of
compressed upper percentiles can arise, and formalize that result as a theorem and proof.

Let X(i) be a collection of throughput measurements over an interval of time. While it is not
useful to speak of these measurements as drawn from a single distribution if there is a seasonal
pattern, it useful to speak of the expected value of each percentile. Thus for the a th percentile
of X(i)we can write expected value E[X,(i/)] and similarly for X'(:) we can write E[X",(i)]. For
convenience, we use Q to denote the natural logarithms of these expected values:

QD) = In(E[X«D])and Qi) = (E[X(D)]).

We assume that for any two time intervals i and ; where the expected values of the ath
percentiles of the unconstrained demand X' are scaled by some factor. For ease of derivations,
we will set this factor to €. Thus for all percentiles a

E[X'()] = eE[X()] (9).

For many resource-constrained systems (including data networks), the expected values of the
quantiles are dominated by diurnal and weekly patterns that vary little with scale and time, and
are well modeled by this assumption. Under conditions of demand growth over time, for j > i we

will have k> 0, but growing demand is not a requirement for the theorem below.

We assume that the time scale of the dynamics of the system illustrated in Figure 4 are such
that the expected values of X,(i) and X",(i) can be related directly by a function that is
dependent neither on the interval i nor the specific percentile a. For convenience, we write this
function in terms of QO as O = f(Q"), or in specific application as Q,(i) = f(Q'(i)). This
assumption is consistent with a system as shown in Figure 4 where the dynamical behavior
dies out on a much faster timescale than the period of measurements, so that the
measurements, or at least their expected values, can be treated according to a steady-state
relationship that is purely a characteristic of the system.

For the system illustrated in Figure 4, we might expect f{)to have a left asymptote that passes
through the origin with a slope of unity, a right asymptote that is horizontal, and a reasonably
smooth transition between the asymptotes For our theorem, we apply more precise and general
conditions consistent with these: that the derivative of f() is positive and monotonically

decreasing. See Figure 4a.



Q=f(Q) (@)

Fig. 4a: a form of the function f(Q’) and its first derivative

Under these conditions, the following theorem specifies how a scaled increase in unconstrained
demand produces lower percentiles that increase faster than upper percentiles.

Theorem
Consider a resource constrained system with a moderated arrival rate where:

X',(i) is the ath percentile of the unconstrained demands over a series of measurements in
interval i
X.(i) is the ath percentile of the moderated demands over the same series of measurements

The expected values of the percentiles of unconstrained and moderated demands in any
measurement are related by a function f() so that QO = f(Q) where O,(i) = In(E[X.(i)]) and

0, (i) = In(E[X'(i)]) and where the derivative of f()is positive and monotone decreasing.

Then if, in two intervals i and jthe expected values scale by a common factor for all percentiles
as E[X'(j)] = ¢*E[X',(i)] with k> 0, then for any two percentiles « and b with b>a,

E[Xy()] E[Xa()]
E[X(D)] < E[X(i)] (10)

Proof
By the definition of f{(),

() — Q) = AQ() — AQ0)) (11)

By taking the logarithm of both sides of the scaling relationship [might want to give it an
equation number], we have

Q) = QL) + k



Then from elementary calculus and the characteristics of f(),

[0 Q'bji)*k (0] (0]

0,0) ~ 0) = | fordy=" | fo)dv="| po+bdy < | f0)dy = 00 — Ou).
') Q' (i)+k Q') 0',(0)

So

0,0) — ) < 0,(0) — 0u(i) (12)

Or, substituting and manipulating slightly,

EG0) _ EIXd)]
EX(0] ~ ELXa(d)]

QED

In words, as long as moderated demand Xis related to unmoderated demand X' via a
monotonically increasing damped function, when the system is approaching saturation, smaller
percentiles of moderated demand grow on average faster than higher percentiles. .".

Applications

We have demonstrated that phenomena of “flat-topping” near resource saturation point need to
be accounted for in capacity planning and performance engineering. Relationship (3) opens
the way to a number of interesting approaches to, and applications of, analysis of
resource-constrained system dynamics: the relative slowdown of growth in the upper bound is
an indicator of the working point on the ROC curve getting closer to the saturation point.

Resampling
One way to do so is to use resampling (jackknife or bootstrap):
1. Generate the bundle of lines representing the trajectory of all quantiles
2. Rebuild the distribution for each timestamp
3. Sample from the new distribution and obtain the 95th percentile for each timestamp.
Downsides of using resampling here:
Resampling implementation is prohibitively slow and CPU-intensive.
Resampling hides underlying problems with the system’s dynamics.
Resampling does not explain the “why” of the phenomenon.
It introduces a resampling error due to approximation of the distribution at a future point.

Congestion Detection

Throughput (being proportional to task arrival rate) is not normally distributed. In an
unconstrained system, it is generally right-skewed (bulk of the data is on the left, or lower, side
of the distribution, Figure 5a).

10
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(b) Constrained
Figure 5: Throughput time series and distributions (the straight lines illustrate the use of
linear interpolation to connect data samples)

As a corollary of the statement above, in a constrained closed-loop system the data can
become bimodal and even right-skewed. (Figure 5b).

Saturation Prediction
The percentiles’ trajectories in Figure 3b point to a future saturation and possibly congestion.
This statement is a direct corollary from the Statement (3) above. It leads to a very simple
approach to congestion forecasting:
For the Throughput, X(?), data:
1. Forecast the trajectories of two symmetrical far-away percentiles (e.g., first and third
quartiles, 10th and 90th percentiles, etc.). Compute the distance between these two
lines at each timestamp, D(¥). B
2. Forecast the D(¢) and find where D(f) = 0. This is the saturation point as found by
these percentiles.
Following the same steps for multiple pairs of percentile lines will result in a distribution of the
congestion point prediction, leading to a measure of prediction interval. In capacity planning,
this will give the analyst an idea of how urgent it is to add capacity to a resource, and how much
latitude there is.

Forecasting Growth
If the growth rates of different percentiles are asymmetric - upper percentiles are unable to grow
as fast as lower bound due to capacity constraint (reaching saturation point) - how much

11



capacity do we need to add to enable upper percentiles it to grow as fast or faster than lower
percentiles? Because in capacity planning, we want to provision for the upper bound of the
throughput distribution, it is a very relevant question.

If the throughput is growing, we can use an earlier time, when it was not constrained, to
compute the skewness of the throughput distribution. Skewness, being the third standardized
moment, is a property of the distribution that is distinct from the other moments (mean, variance,
and kurtosis). It is fair to say that it is the property of the distribution itself and will be preserved
unless the system becomes constrained.

An alternative measure of skewness is the Quartile (Bowley’s) form, which defines it using only
the three quartiles:

quartile skewness = % (14)

where Q5 = UB = upper bound (p75); Q, =M = median; Q, = LB = lower bound (p25)

Forecasting Method for the Higher Percentiles based on Lower Percentiles

1. For each time interval (hour, or day, or week), compute history-based skewness':

B ) UB(f) + LB(f) — 2 * M(f)
C = median [ UBG) - LBO (15)

where C = estimate of quartile skewness for the time series . It is natural to assume that the
measured skewness (14) will vary from one time interval to the next; if we treat quartile
skewness as stationary, we are dealing with a distribution of quartile skewness. We further
assume that quartile skewness, or at least its median, can be treated as stationary. Stationarity
will be lost during transition into and out of constrained state; however, such transitions tend to
happen undetectably fast in data spans typically used in forecasting (hours or days in transition
vs. months or years of historical data). Figure 6 is an illustration of quartile skewness of
throughput for a network link over the course of 7 months.

Figure 6. Daily Quartile Skewness for a typical resource

The median is used, rather than the mean, in order to reduce the influence of extreme values. It
is computed over all historical-data intervals for which UB, LB, M have been computed.

' We had success with daily quartile skewness, but time interval choice depends on the data.
12



2. For each point ; of the forecast horizon, use quantile regression (see, e.g.,
[FERR2012(2)] for using quantile regression in capacity planning) to compute

where the bars designate future values: E(}) is the forecasted value of &at time ‘.
An implementation of a forecasting algorithm based on Eq. (16) is shown in Figure 7.

1 | Identify the most appropriate |
(Cstat )—> Getx() | | i
Compute LB (p25), C = UBsLB-2:M > Forecast LB (p25) and M (p50)
M (p50), LB (p75) == UB - LB using Quantile Regression
(LB, M)

!

For each timestamp

— 3 M -LBe(C+I
UB = =7

!

I | Save the forecast |

Figure 7: Inferring the forecast of the high percentiles of throughput distribution

If the data were constrained in the historical time range used in forecasting, then the inferred
line will come out same or below the directly computed line.

Results

Figure 8 illustrates throughput data along with quantile-regression and inferred forecasts for
network connections. The lines correspond to the first quartile (Q1), median (Q2), and third
quartile (Q3), as well as inferred Q3 and forecasted and inferred upper and lower outlier
boundaries (constructed using Tukey’s IQR method) for the three possible scenarios.
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o thay et it meciad LI

s

L

(b): Slightly constrained resource: Inferred outlier boundary is close to the computed
outlier boundary, but overtakes it at TS ~ 3000.

o B bt rmoded | LN

14



(c) Already congested

Figure 8: Inferred and calculated upper bounds and their relative positioning to other
percentiles’ trajectories

For a congested resource (Figure 8c), we see that the distribution is completely skewed to the
left; the inferred outlier boundary is so steep that it is outside the frame of the picture; the
inferred Q3 projection is going significantly higher and steeper than the forecasted Q3
projection, and the median line catches up to the computed Q3 projection at TS ~ 3900.

A Use Case Example

Consider an enterprise having one or more ISP connections from their offices. The IT group
needs to forecast the ISP requirement at least 6-12 months in advance to ensure on-time
delivery. The throughputX(?) leaving the enterprise’s interface is limited by the link’s bandwidth
(e.g., for an OC-3 -- 155 mbps -- link and packet sizes of 1000 bytes, Xua(f) < 19375 pps).
One can analyze the observed hourly or daily boxplots of X(¢) for the past year and estimate
the quartile skewness using Eq (15). Using methodology outlined in Figure 7, one can then
obtain the forecast of the inferred 75th percentile of X(#)and use it to infer the upper boundary
forecast. The latter can be converted to line bandwidth requirement of the ISP connection.
Note that if at any point in the forecast horizon the inferred upper boundary projection exceeds
19375 pps , then this connection would require urgent attention of the IT team.

Conclusion

When we forecast demand for an IT resource based on the 95th percentile, the information
carried by the lower percentiles (95% of the data) remains unused, “the quiet ones”.

On the other hand, we have demonstrated and proved mathematically that when the resource is
already approaching its saturation point, the 95th-percentile approach can mislead capacity
planners to undersizing the demand. Consequently, we will always be keeping ourselves busy
upgrading capacity for such resources, which are often on critical path.

The method proposed in this paper allows detecting and predicting congestion and sizing
resource based on the trajectory of the bulk of the flow (the quartiles, and in particular the first
and second quartiles), which makes it possible to improve the efficiency of the capacity
planners’ and performance analysts’ work.
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