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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Speech (real-valued time series) → Text (discrete symbol sequence)

Statistical machine translation (SMT)

Text (discrete symbol sequence) → Text (discrete symbol sequence)

Text-to-speech synthesis (TTS)

Text (discrete symbol sequence) → Speech (real-valued time series)
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Speech production process
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Typical flow of TTS system

Sentence segmentaiton
Word segmentation
Text normalization

Part-of-speech tagging
Pronunciation

Prosody prediction

Waveform generation

TEXT

Text analysis

SYNTHESIZED
SPEECH

Speech synthesisdiscrete ⇒ discrete

discrete ⇒ continuous

NLP

Speech

Frontend

Backend

This presentation mainly talks about backend
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Concatenative, unit selection speech synthesis

All segments

Target cost Concatenation cost

• Concatenate actual instances of speech from database

• Large data + automatic learning
→ High-quality synthetic voices can be built automatically

• Single inventory per unit → diphone synthesis [1]

• Multiple inventory per unit → unit selection synthesis [2]
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Statistical parametric speech synthesis (SPSS) [3]

Speech Speech

Text Text

Parameter
generation

Speech
synthesis

Text
analysis

Speech
analysis

Text
analysis

Model
training

x

y

x

ŷ

λ̂

Training

• Extract linguistic features x & acoustic features y

• Train acoustic model λ given (x,y)

λ̂ = arg max p(y | x, λ)

Synthesis

• Extract x from text to be synthesized

• Generate most probable y from λ̂ then reconstruct waveform

ŷ = arg max p(y | x, λ̂)
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ŷ = arg max p(y | x, λ̂)

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 7 of 104



Statistical parametric speech synthesis (SPSS) [3]

Speech Speech

Text Text

Parameter
generation

Speech
synthesis

Text
analysis

Speech
analysis

Text
analysis

Model
training

x

y

x

ŷ

λ̂

• Vocoded speech (buzzy or muffled)

• Small footprint

Hidden Markov model (HMM) as its acoustic model
→ HMM-based speech synthesis system (HTS) [4]
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HMM-based speech synthesis [4]

Training part

Synthesis part

Training HMMs

Context-dependent HMMs 
& state duration models

Labels

Spectral
parameters

Excitation
parameters

TEXT

Labels

SYNTHESIZED
SPEECH

Speech signal

Excitation

Parameter generation
from HMMs

Excitation
generation

Synthesis
Filter

Text analysis

Spectral
parameter
extraction
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DATABASE Excitation 

parameter
extraction

Spectral
parameters
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parameters
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Speech production process
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Source-filter model

pulse train

white noise

speech

linear
time-invariant

system
e(n)

h(n) x(n) = h(n) ∗ e(n)excitation

x(n) = h(n) ∗ e(n)

↓ Fourier transform

X(ejω) = H(ejω)E(ejω)

Source excitation part Vocal tract resonance part

H
(
ejω
)

should be defined by HMM state-output vectors
e.g., mel-cepstrum, line spectral pairs

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 12 of 104



Parametric models of speech signal

Autoregressive (AR) model Exponential (EX) model

H(z) =
K

1−
M∑

m=0

c(m)z−m

H(z) = exp
M∑

m=0

c(m)z−m

Estimate model parameters based on ML

c = arg max
c
p(x | c)

• p(x | c): AR model → Linear predictive analysis [5]

• p(x | c): EX model → (ML-based) cepstral analysis [6]
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Examples of speech spectra

0 1 2 3 4 5
Frequency (kHz)

-20

0

20

40

60

80

Lo
g 

m
ag

ni
tu

de
 (d

B
)

0 1 2 3 4 5
Frequency (kHz)

-20

0

20

40

60

80

Lo
g 

m
ag

ni
tu

de
 (d

B
)

(a) ML-based cepstral analysis (b) Linear prediction
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HMM-based speech synthesis [4]

Training part

Synthesis part

Training HMMs

Context-dependent HMMs 
& state duration models
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Structure of state-output (observation) vectors

∆ Mel-cepstral coefficients

log F0

∆ log F0

∆∆ log F0

Spectrum part

Excitation part

∆ct

∆2ct

pt

δpt

δ2pt

ct

ot

∆∆ Mel-cepstral coefficients

Mel-cepstral coefficients
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Hidden Markov model (HMM)

. . . . . .
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Q

Observation sequence

State sequence

. .
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Multi-stream HMM structure
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Training process

Compute variance
floor (HCompV)

Initialize CI-HMMs by
segmental k-means (HInit)

Reestimate CI-HMMs by
EM algorithm

(HRest & HERest)

Copy CI-HMMs to 
CD-HMMs (HHEd CL)

Reestimate CD-HMMs by
EM algorithm (HERest)

Decision tree-based
clustering (HHEd TB)

Reestimate CD-HMMs
by EM algorithm (HERest)

Untie parameter tying
structure (HHEd UT)

monophone
(context-independent, CI)

fullcontext
(context-dependent, CD)

Estimated
HMMs

data & labels

Estimate CD-dur. models
from FB stats (HERest)

Decision tree-based
clustering (HHEd TB)

Estimated dur models
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Context-dependent acoustic modeling

• {preceding, succeeding} two phonemes

• Position of current phoneme in current syllable

• # of phonemes at {preceding, current, succeeding} syllable

• {accent, stress} of {preceding, current, succeeding} syllable

• Position of current syllable in current word

• # of {preceding, succeeding} {stressed, accented} syllables in phrase

• # of syllables {from previous, to next} {stressed, accented} syllable

• Guess at part of speech of {preceding, current, succeeding} word

• # of syllables in {preceding, current, succeeding} word

• Position of current word in current phrase

• # of {preceding, succeeding} content words in current phrase

• # of words {from previous, to next} content word

• # of syllables in {preceding, current, succeeding} phrase

. . .

Impossible to have all possible models
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Decision tree-based state clustering [7]

L=voice ?

L="w" ? R=silence ?yes

yes yes

no

no no

w-a+sil w-a+sh gy-a+pau

g-a+silgy-a+silw-a+t

k-a+b

t-a+n

 leaf nodes 

yes no yes no

 synthesized 
states

R=silence ? L="gy" ?
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Stream-dependent tree-based clustering

Decision trees
for

mel-cepstrum

Decision trees
for F0

Spectrum & excitation can have different context dependency
→ Build decision trees individually
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State duration models [8]

i

1 2 3 4 5 6 7 T=8
t

t0 t1

Probability to enter state i at t0 then leave at t1 + 1

χt0,t1(i) ∝
∑

j 6=i

αt0−1(j)ajia
t1−t0
ii

t1∏

t=t0

bi(ot)
∑

k 6=i

aikbk(ot1+1)βt1+1(k)

→ estimate state duration models
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Stream-dependent tree-based clustering

State duration
model

Decision trees
for

mel-cepstrum

Decision trees
for F0

Decision tree
for state dur.
models

HMM
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HMM-based speech synthesis [4]

Training part

Synthesis part

Training HMMs

Context-dependent HMMs 
& state duration models
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Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words

ô = arg max
o

p(o | w, λ̂)

= arg max
o

∑

∀q
p(o, q | w, λ̂)

≈ arg max
o

max
q

p(o, q | w, λ̂)

= arg max
o

max
q

p(o | q, λ̂)P (q | w, λ̂)

Determine the best state sequence and outputs sequentially

q̂ = arg max
q

P (q | w, λ̂)

ô = arg max
o

p(o | q̂, λ̂)
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Best state sequence

. . . . . .
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Q

Observation sequence

State sequence

. .

State duration 4                 10                 5D
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Best state outputs
w/o dynamic features

Variance Mean

ô becomes step-wise mean vector sequence
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Using dynamic features

State output vectors include static & dynamic features

ot =
[
c>t , ∆c>t

]> ∆ct = ct − ct−1

M M
ct−1 ct+1ct−2 ct+2ct

∆ct−1 ∆ct+1∆ct−2 ∆ct+2∆ct

2M

Relationship between static and dynamic features can be arranged as

o c


...
ct−1

∆ ct−1

ct
∆ ct
ct+1

∆ ct+1

...




=




· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·
· · ·

...
...

...
... · · ·







...
ct−2

ct−1

ct
ct+1

...




W

o t

ot+1

ot−1
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Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

ô = arg max
o

p(o | q̂, λ̂) subject to o = Wc

If state-output distribution is single Gaussian

p(o | q̂, λ̂) = N (o; µ̂q̂, Σ̂q̂)

By setting ∂ logN (Wc; µ̂q̂, Σ̂q̂)/∂c = 0

W>Σ̂−1
q̂ Wc = W>Σ̂−1

q̂ µ̂q̂
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Speech parameter generation algorithm [9]
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Generated speech parameter trajectory
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HMM-based speech synthesis [4]

Training part

Synthesis part
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Waveform reconstruction

pulse train

white noise

synthesized
speech

linear
time-invariant

system
e(n)

h(n) x(n) = h(n) ∗ e(n)excitation

Generated
excitation parameter
(log F0 with V/UV)

Generated
spectral parameter

(cepstrum, LSP)
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Synthesis filter

• Cepstrum → LMA filter

• Generalized cepstrum → GLSA filter

• Mel-cepstrum → MLSA filter

• Mel-generalized cepstrum → MGLSA filter

• LSP → LSP filter

• PARCOR → all-pole lattice filter

• LPC → all-pole filter
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Any questions?
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Advantages

• Flexibility to change voice characteristics

• Small footprint

• More data
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Adaptation (mimicking voice) [10]

Average-voice model

Adaptive
Training

Adaptation

Training speakers Target speakers

• Train average voice model (AVM) from training speakers using SAT

• Adapt AVM to target speakers

• Requires small data from target speaker/speaking style
→ Small cost to create new voices
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Adaptation demo

 · Speaker adaptation 
	 - VIP voice: GWB         BHO 
	 - Child voice: 

 · Style adaptation (in Japanese) 
	 - Joyful
	 - Sad
	 - Rough

From http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html
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Interpolation (mixing voice) [11, 12, 13, 14]

λ1

λ2

λ3

λ4

λ′

I(λ′,λ1)
I(λ′,λ2)

I(λ′,λ3)
I(λ′,λ4)

λ : HMM set
I(λ′,λ) : Interpolation ratio

• Interpolate representive HMM sets

• Can obtain new voices w/o adaptation data

• Eigenvoice / CAT / multiple regression
→ estimate representative HMM sets from data
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Interpolation demo (1)

 · Speaker interpolation (in Japanese) 
	 - Male & Female
 

 · Style interpolation 
	 - Neutral → Angry
	 - Neutral → Happy

From http://www.sp.nitech.ac.jp/ 
      & http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

Male Female
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Interpolation demo (2)

 
 Speaker characteristics modification

 From http://www.sp.nitech.ac.jp/~demo/synthesis_demo_2001/

0
+30

-30

1st 2nd 3rd 4th 5th

Weights for eigenvectors

0
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-30
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Weights for eigenvectors
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Weights for eigenvectors
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Interpolation demo (3)
 
Style-control

 From http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

Joyful

Sad

Rough
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Drawbacks

• Quality
buzzy, muffled synthetic speech

• Major factors for quality degradation [3]

− Vocoder (speech analysis & synthesis)
− Acoustic model (HMM)
− Oversmoothing (parameter generation)
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Vocoding issues

• Simple pulse / noise excitation
Difficult to model mix of V/UV sounds (e.g., voiced fricatives)

Unvoiced Voiced

pulse train

white noise

e(n)

excitation

• Spectral envelope extraction
Harmonic effect often cause problem

 
0

 40

 80

0 2 4 6 8 [kHz]

P
ow

er
 [d

B
]

• Phase
Important but usually ignored
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Better vocoding

• Mixed excitation linear prediction (MELP)

• STRAIGHT

• Multi-band excitation

• Harmonic + noise model (HNM)

• Harmonic / stochastic model

• LF model

• Glottal waveform

• Residual codebook

• ML excitation
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MELP-style mixed excitation [15]
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MELP-style mixed excitation [15]
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STRAIGHT [16]

F0 extraction

Fixed-point analysis

Synthesis

Mixed excitation with 
phase manipulation

Analysis

F0 adaptive spectral
smoothing in the

time-frequency region

Waveform Synthetic waveform
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spectrum
Aperiodic

factors

F0

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 51 of 104



STRAIGHT [16]
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Trainable excitation model [17]
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Trainable excitation model [17]

0

0N
at

ur
al

0

0P
ul

se
/n

oi
se

0

0S
TR

A
IG

H
T

0

0

M
L 

ex
ci

ta
tio

n

Upper: Waveform         Lower: excitation (residual)

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 54 of 104



Limitations of HMMs for acoustic modeling

• Piece-wise constatnt statistics
Statistics do not vary within an HMM state

• Conditional independence assumption
State output probability depends only on the current state

• Weak duration modeling
State duration probability decreases exponentially with time

None of them hold for real speech
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Better acoustic modeling

• Piece-wise constatnt statistics → Dynamical model

− Trended HMM, autoregressive HMM (ARHMM)
− Polynomial segment model, hidden trajectory model (HTM)
− Trajectory HMM

• Conditional independence assumption → Graphical model

− Buried Markov model, ARHMM, linear dynamical model (LDM)
− HTM, Gaussian process (GP)
− Trajectory HMM

• Weak duration modeling → Explicit duration model

− Hidden semi-Markov model
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Trajectory HMM [18]

• Derived from HMM by imposing dynamic feature constraints

• Underlying generative model in HMM-based speech synthesis

p(c | λ) =
∑

∀q
p(c | q, λ)P (q | λ)

p(c | q, λ) = N (c; c̄q,Pq)

where

P−1
q = Rq = W>Σ−1

q W

rq = W>Σ−1
q µq

c̄q = Pqrq
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Trajectory HMM [18]
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Relation to HMM-based speech synthesis

• Mean vector of trajectory HMM

W>Σ−1
q Wc̄q = W>Σ−1

q µq

• Speech parameter trajectory used in HMM-based speech synthesis

W>Σ−1
q Wc = W>Σ−1

q µq

ML estimation of trajectory HMM
→ Make training & synthesis consistent
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Oversmoothing

• Speech parameter generation algorithm

− Dynamic feature constraints make generated parameters smooth
− Often too smooth → sounds muffled
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0            4             8
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• Why?

− Details of spectral (formant) structure disappear
− Use of better AM relaxes the issue, but not enough
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Oversmoothing compensation

• Postfiltering

− Mel-cepstrum
− LSP

• Nonparametric approach

− Conditional parameter generation
− Discrete HMM-based speech synthesis

• Combine multiple-level statistics

− Global variance (intra-utterance variance)
− Modulation spectrum (intra-utterance frequency components)
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Global variance [19]
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Speech parameter generation with GV [19]

• Speech parameter generation

ĉ = arg maxc logN (Wc;µq,Σq)

• Speech parameter generation w/ GV

ĉ = arg maxc logN (Wc;µq,Σq) + ω logN (v(c);µv,Σv)

2nd term works as a penalty for oversmoothing
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Effect of GV
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Any questions?
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Outline

Basics of HMM-based speech synthesis
Background
HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis
Flexibility
Improve naturalness

Neural network-based speech synthesis
Feed-forward neural network (DNN & DMDN)
Recurrent neural network (RNN & LSTM-RNN)
Results



Characteristics of SPSS

• Advantages

− Flexibility to change voice characteristics

◦ Adaptation
◦ Interpolation / eigenvoice / CAT / multiple regression

− Small footprint
− Robustness

• Drawback

− Quality

• Major factors for quality degradation [3]

− Vocoder (speech analysis & synthesis)
− Acoustic model (HMM) → Neural networks
− Oversmoothing (parameter generation)
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Linguistic → acoustic mapping

• Training
Learn relationship between linguistic & acoustic features

• Synthesis
Map linguistic features to acoustic ones

• Linguistic features used in SPSS

− Phoneme, syllable, word, phrase, utterance-level features
− e.g., phone identity, POS, stress, # of words in a phrase
− Around 50 different types, much more than ASR (typically 3–5)

Effective modeling is essential
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HMM-based acoustic modeling for SPSS [4]

yes noyes no

...

yes no

yes no yes no

Acoustic space

Decision tree-clustered HMM w/ GMM state-output distributions
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NN-based acoustic modeling for SPSS [20]

Acoustic

features y

Linguistic

features x

h
1

h2

h3

NN output → E [yt | xt] → replace decision trees & GMMs

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 70 of 104



Advantages of NN-based acoustic modeling for SPSS

• Integrating feature extraction

− Efficiently model high-dimensional, highly correlated features
− Layered architecture w/ non-linear operations
→ Integrated linguistic feature extraction to acoustic modeling

• Distributed representation
More efficient than localist one if data has componential structure
→ Better modeling / Fewer parameters

• Layered hierarchical structure in speech production
concept → linguistic → articulatory → vocal tract → waveform
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Framework
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Framework

Is this new? . . . no

• NN [21]

• RNN [22]

What’s the difference?

• More layers, data, computational resources

• Better learning algorithm

• Statistical parametric speech synthesis techniques
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Experimental setup

Database US English female speaker

Training / test data 33000 & 173 sentences

Sampling rate 16 kHz

Analysis window 25-ms width / 5-ms shift

Linguistic 11 categorical features
features 25 numeric features

Acoustic 0–39 mel-cepstrum
features logF0, 5-band aperiodicity, ∆,∆2

HMM 5-state, left-to-right HSMM [23],
topology MSD F0 [24], MDL [25]

DNN 1–5 layers, 256/512/1024/2048 units/layer
architecture sigmoid, continuous F0 [26]

Postprocessing Postfiltering in cepstrum domain [15]
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Example of speech parameter trajectories

w/o grouping questions, numeric contexts, silence frames removed
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Subjective evaluations

Compared HMM-based systems with DNN-based ones with
similar # of parameters

• Paired comparison test

• 173 test sentences, 5 subjects per pair

• Up to 30 pairs per subject

• Crowd-sourced

HMM DNN
(α) (#layers × #units) Neutral p value z value

15.8 (16) 38.5 (4 × 256) 45.7 < 10−6 -9.9
16.1 (4) 27.2 (4 × 512) 56.8 < 10−6 -5.1
12.7 (1) 36.6 (4 × 1 024) 50.7 < 10−6 -11.5

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 76 of 104



Limitations of DNN-based acoustic modeling

y
1

y
2

Data samples

NN prediction

• Unimodality

− Human can speak in different ways → one-to-many mapping
− NN trained by MSE loss → approximates conditional mean

• Lack of variance

− DNN-based SPSS uses variances computed from all training data
− Parameter generation algorithm utilizes variances

Linear output layer → Mixture density output layer [27]
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Mixture density network [27]

µ1(x1) µ2(x1)σ1(x1) σ2(x1)w1(x1) w2(x1)

µ1(x1) µ2(x1)

σ2(x1)
σ1(x1)

w1(x1)
w2(x1)

y

: Weights → Softmax activation function

: Means → Linear activation function

: Variances → Exponential activation function

∑
zj =

4

i=1

hiwij

w1(x) =
exp(z1)∑2

m=1 exp(zm)

µ1(x) = z3

σ1(x) = exp(z5)

Inputs of activation function

1-dim, 2-mix MDN

w2(x) =
exp(z2)∑2

m=1 exp(zm)

µ1(x) = z4

σ2(x) = exp(z6)

NN + mixture model (GMM)
→ NN outputs GMM weights, means, & variances
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DMDN-based SPSS [28]
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Experimental setup

• Almost the same as the previous setup

• Differences:

DNN 4–7 hidden layers, 1024 units/hidden layer
architecture ReLU (hidden) / Linear (output)

DMDN 4 hidden layers, 1024 units/ hidden layer
architecture ReLU [29] (hidden) / Mixture density (output)

1–16 mix

Optimization AdaDec [30] (variant of AdaGrad [31]) on GPU

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 80 of 104



Subjective evaluation

• 5-scale mean opinion score (MOS) test (1: unnatural – 5: natural)

• 173 test sentences, 5 subjects per pair

• Up to 30 pairs per subject

• Crowd-sourced

1 mix 3.537 ± 0.113
HMM 2 mix 3.397 ± 0.115

4×1024 3.635 ± 0.127
DNN 5×1024 3.681 ± 0.109

6×1024 3.652 ± 0.108
7×1024 3.637 ± 0.129

1 mix 3.654 ± 0.117
DMDN 2 mix 3.796 ± 0.107

(4×1024) 4 mix 3.766 ± 0.113
8 mix 3.805 ± 0.113
16 mix 3.791 ± 0.102
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Limitations of DNN/MDN-based acoustic modeling

Fixed time span for input features

• Fixed number of preceding / succeeding contexts

• Difficult to incorporate long time span contextual effect

Frame-by-frame mapping

• Each frame is mapped independently

• Smoothing is still essential

Preference score (%)
DNN w/ dyn DNN w/o dyn No pref

67.8 12.0 20.0

Recurrent connections → Recurrent NN (RNN) [32]
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Simple Recurrent Network (SRN)

Output y

Input x

Recurrent
connections

xt

yt yt+1yt−1

xt+1xt−1

SRN-based acoustic modeling

ht = f (Whxxt +Whhht−1 + bh) , yt = φ (Wyhht + by)

With squared loss. . .

• DNN output (prediction) ŷt → E [yt | xt]
• RNN output (prediction) ŷt → E [yt | x1, . . . ,xt]
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Simple Recurrent Network (SRN)

Output y

Input x

Recurrent
connections

xt

yt yt+1yt−1

xt+1xt−1

• Only able to use previous contexts
→ bidirectional RNN [32]

• Trouble accessing long-range contexts
− Information in hidden layers loops through recurrent connections
→ Quickly decay over time

− Prone to being overwritten by new information arriving from inputs
→ long short-term memory (LSTM) RNN [34]
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Long short-term memory (LSTM) [34]

• RNN architecture designed to have better memory

• Uses linear memory cells surrounded by multiplicative gate units

ct

bi xt h t−

it

tanh
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bo xt h t−
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Block

Output gate Input gate: Write

Output gate: Read

Forget gate: Reset
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Advantages of RNN-based acoustic modeling for SPSS

• Model dependency between frames

− HMM: discontinuous (step-wise) → smoothing
− DNN: discontinuous (frame-by-frame mapping) [35] → smoothing
− RNN: smooth [36, 35]

• Low latency

− Unidirectional structure allows fully frame-level streaming [35]

• More efficient representation

− RNN offers more efficient representation than DNN for time series
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Synthesis pipeline

TEXT

SPEECHAcoustic feature
prediction

Vocoder
synthesis

Text
analysis

Linguistic feature
extraction

Duration
prediction

Duration & acoustic feature prediction blocks involve NN
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Duration modeling

h e l ou
h e2 l ou1

hello

phoneme

syllable

word

9 12 10 10

Acoustic features

Alignments

Durations (targets)

Linguistic Structure

Linguistic features (phoneme)

⇒ ⇒ ⇒ ⇒Feature functions

Duration prediction LSTM

Feature function examples
phoneme == ’h’? syllable stress == ’2’? # of syllables in word?
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Acoustic modeling

h e l ou
h e2 l ou1

hello

phoneme

syllable

word

Acoustic features (targets)

Linguistic Structure

Linguistic features (phoneme)

⇒ ⇒ ⇒ ⇒Feature functions
⇒ ⇒ ⇒ ⇒Append frame-level features

Linguistic features (input) 

Acoustic feature prediction LSTM

Append frame-level features
Relative position of frame in phoneme
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Streaming synthesis

h e l ou
h e2 l ou1

hello

phoneme

syllable

word

Linguistic Structure

Acoustic feature prediction LSTM

Duration prediction LSTM
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Data & speech analysis

Database US English female speaker
34 632 utterances

Speech 16 kHz sampling
analysis 25-ms width / 5-ms shift

Synthesis Vocaine [?]
Postfiltering-based enhancement

Input DNN: 442 linguistic features
ULSTM: 291 linguistic features

Target 0–39 mel-cepstrum features
continuous logF0 [26]
5-band aperiodicity
optionally ∆,∆2
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Training

Preprocessing Acoustic: removed 80% silence
Duration: removed first/last silence

Normalization Input: mean / standard deviations
Output: 0.01 – 0.99

Architecture DNN: 4 × 1024 units, ReLU [29]
ULSTM: 1 × 256 cells

Output Acoustic: feed-forward or recurrent
layer Duration: feed-forward

Initialization DNN: random + layer-wise BP [?]
ULSTM: random

Optimization Common: squared loss, SGD
DNN: GPU, AdaDec [?]
ULSTM: distributed CPU [?]
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Subjective tests

Common 100 sentences
Crowd-sourcing
Using head-phones

MOS 7 evaluations per sample
Up to 30 stimuli per subject
5-scale score in naturalness
(1: Bad – 5: Excellent)

Preference 5 evaluations per pair
Up to 30 pairs per subject
Chose prefered one or “neutral”
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# of future contexts

# of future contexts 5-scale MOS

0 3.571 ± 0.121
1 3.751 ± 0.119
2 3.812 ± 0.115
3 3.779 ± 0.118
4 3.753 ± 0.115
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Preference scores

DNN ULSTM

Feed-forward Feed-forward Recurrent Neutral

w/ w/o w/ w/o w/ w/o

67.8 12.0 20.0
18.4 34.9 47.6

21.0 12.2 66.8
21.8 21.0 57.2

16.6 29.2 54.2
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MOS

• DNN w/ dynamic features

• ULSTM w/o dynamic features, w/ recurrent output layer

Model # params 5-scale MOS

DNN 3,747,979 3.370 ± 0.114
ULSTM 476,435 3.723 ± 0.105
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Latency

• Nexus 7 2013

• Use Advanced SIMD (NEON), single thread

• Audio buffer size: 1024

• HMM one used time-recursive version w/ L = 15
• HMM & ULSTM used the same text analysis front-end

Average latency (ms)

HMM ULSTM

chars 26 25
short 123 55
long 311 115
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Summary

Statistical parametric speech synthesis

• Vocoding + acoustic model

• HMM-based SPSS

− Flexible (e.g., adaptation, interpolation)
− Improvements

◦ Vocoding
◦ Acoustic modeling
◦ Oversmoothing compensation

• NN-based SPSS

− Learn mapping from linguistic features to acoustic ones
− Static network (DNN, DMDN) → dynamic ones (LSTM)
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Google academic program

• Award programs

− Google Faculty Research Awards
Provides unrestricted gifts to support fulltime faculty members

− Google Focused Research Awards
Fund specific key research areas

− Visiting Faculty Program
Support full-time faculty in research areas of mutual interest

• Student support programs

− Graduate Fellowships
Recognize outstanding graduate students

− Internships
Work on real-world problems with Google’s data & infrastructure
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