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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)
Speech (real-valued time series)→ Text (discrete symbol sequence)

Statistical machine translation (SMT)
Text (discrete symbol sequence)→ Text (discrete symbol sequence)

Text-to-speech synthesis (TTS)
Text (discrete symbol sequence)→ Speech (real-valued time series)
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Speech production process
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Typical flow of TTS system

Sentence segmentaiton
Word segmentation
Text normalization

Part-of-speech tagging
Pronunciation

Prosody prediction
Waveform generation

TEXT

Text analysis

SYNTHESIZED
SEECH

Speech synthesisdiscrete ⇒ discrete

discrete ⇒ continuous

NLP

Speech

Frontend

Backend

This presentation mainly talks about backend
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Concatenative speech synthesis

All segments

Target cost Concatenation cost

• Concatenate actual small speech segments from database
→ Very high segmental naturalness
• Single segment per unit (e.g., diphone)→ diphone synthesis [1]
• Multiple segments per unit→ unit selection synthesis [2]

Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 5 of 62



Statistical parametric speech synthesis (SPSS) [4]

Speech Speech

Text Text

Feature
prediction

Vocoder
synthesis

Text
analysis

Vocoder
analysis

Text
analysis

Model
training

l

o

lΛ̂

Acoustic
model

ô

Training Synthesis

• Parametric representation rather than waveform
• Model relationship between linguistic & acoustic features
• Predict acoustic features then reconstruct waveform

SPSS can use any acoustic model, but HMM-based one is very popular
→ HMM-based speech synthesis [3]
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Statistical parametric speech synthesis (SPSS) [4]

Speech Speech

Text Text

Feature
prediction

Vocoder
synthesis

Text
analysis

Vocoder
analysis

Text
analysis

Model
training

l

o

lΛ̂

Acoustic
model

ô

Training Synthesis

Pros
• Small footprint
• Flexibility to change voice characteristics
• Robust to data sparsity and noise/mistakes in data

Cons
• Segmental naturalness
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Major factors for naturalness degradation

Speech Speech

Text Text

Feature
prediction

Vocoder
synthesis

Text
analysis

Vocoder
analysis

Text
analysis

Model
training

l

o

lΛ̂

Acoustic
model

ô

Training Synthesis

• Vocoder analysis/synthesis
– How to parameterize speech?

• Acoustic model
– How to represent relationship between speech & text?

• Oversmoothing
– How to generate speech from model?
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Formulation of SPSS

Training
• Extract linguistic features l & acoustic features o
• Train acoustic model Λ given (o, l)

Λ̂ = arg max
Λ

p(o | l,Λ)

Synthesis
• Extract l from text to be synthesized
• Generate most probable o from Λ̂ then reconstruct waveform

ô = arg max
o

p(o | l, Λ̂)
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Training – HMM-based acoustic modeling

q1

o1

q2

o2

q3

o3

q4

o4

l

l1 lN

o1 o2

o3 Too2 ... ... ... ...o4 o2

o6o5

...

...
: Discrete

: Continuous

p(o | l,Λ) =
∑

∀q
p(o | q,Λ)P (q | l,Λ) q: hidden states

=
∑

∀q

T∏

t=1

p(ot | qt,Λ)P (q | l,Λ) qt: hidden state at t

=
∑

∀q

T∏

t=1

N (ot;µqt ,Σqt)P (q | l,Λ)

ML estimation of HMM parameters→ Baum-Welch (EM) algorithm [5]
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Training – Linguistic features

Linguistic features: phonetic, grammatical, & prosodic features
• Phoneme

phoneme identity, position
• Syllable

length, accent, stress, tone, vowel, position
• Word

length, POS, grammar, prominence, emphasis, position, pitch accent
• Phrase

length, type, position, intonation
• Sentence

length, type, position
. . .
→ Impossible to have enough data to cover all combinations
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Training – ML decision tree-based state clustering [6]

L=voice ?

stress="0"? R=silence ?yes

yes yes

no

no no

g-e+sil/A=1/...gy-e+sil/A=0/...w-a+t/A=0/...

k-a+b/A=1/... t-e+n/A=0/...

 Leaf nodes 

yes no yes no

w-a+sil/A=0/... gy-a+pau/A=0/...

Synthesized
Gaussians 

R=silence ? L="gy" ?

t-e+n/A=0/...

...

...
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Training – Example
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Formulation of SPSS

Training
• Extract linguistic features l & acoustic features o
• Train acoustic model Λ given (o, l)

Λ̂ = arg max
Λ

p(o | l,Λ)

Synthesis
• Extract l from text to be synthesized
• Generate most probable o from Λ̂ then reconstruct waveform

ô = arg max
o

p(o | l, Λ̂)
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Synthesis – Predict most probable acoustic features

ô = arg max
o

p(o | l, Λ̂)

= arg max
o

∑

∀q
p(o, q | l, Λ̂)

≈ arg max
o

max
q

p(o, q | l, Λ̂)

= arg max
o

max
q

p(o | q, Λ̂)P (q | l, Λ̂)

≈ arg max
o

p(o | q̂, Λ̂) s.t. q̂ = arg max
q

P (q | l, Λ̂)

= arg max
o
N
(
o;µq̂,Σq̂

)

= µq̂

=
[
µ>q̂1 , . . . ,µ

>
q̂T

]>
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Synthesis – Most probable acoustic features given HMM

Variance Mean

ô→ step-wise→ discontinuity can be perceived
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Synthesis – Using dynamic feature constraints [7]

ot =
[
c>t , ∆c>t

]> ∆ct = ct − ct−1

M M
ct−1 ct+1ct−2 ct+2ct

∆ct−1 ∆ct+1∆ct−2 ∆ct+2∆ct

2M

o c


...
ct−1

∆ ct−1

ct
∆ ct
ct+1

∆ ct+1

...




=




· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·
· · ·

...
...

...
... · · ·







...
ct−2

ct−1

ct
ct+1

...




W

o t

ot+1

ot−1

Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 19 of 62



Synthesis – Speech parameter generation algorithm [7]

ô = arg max
o

p(o | q̂, Λ̂) s.t. o = Wc

ĉ = arg max
c
N (Wc;µq̂,Σq̂)

= arg max
c

logN (Wc;µq̂,Σq̂)

∂

∂c
logN (Wc;µq̂,Σq̂) ∝W>Σ−1

q̂ Wc−W>Σ−1
q̂ µq̂

W>Σ−1
q̂ Wc = W>Σ−1

q̂ µq̂

where

µq =
[
µ>q1 ,µ

>
q2 , . . . ,µ

>
qT

]>

Σq = diag [Σq1 ,Σq2 , . . . ,ΣqT ]
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Synthesis – Speech parameter generation algorithm [7]
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Synthesis – Most probable acoustic features
under constraints between static & dynamic features
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Variance Mean ĉ
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HMM-based acoustic model – Limitations (1)
Stepwise statistics

q1

o1

q2

o2

q3

o3

q4

o4

l

Variance Mean

• Output probability only depends on the current state
• Within the same state, statistics are constant
→ Step-wise statistics
• Using dynamic feature constraints
→ Ad hoc & introduces inconsistency betw. training & synthesis [8]
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HMM-based acoustic model – Limitations (2)
Difficulty to integrate feature extraction & modeling

. . . . . .c1 c2 c3 c4 c5 cT. .

. . . . . .s1 s2 s3 s4 s5 sT
. .

Cepstra

Spectra

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ dimensinality
reduction

• Spectra or waveforms are high-dimensional & highly correlated
• Hard to be modeled by HMMs with Gaussian + digonal covariance
→ Use low dimensional approximation (e.g., cepstra, LSPs)
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HMM-based acoustic model – Limitations (3)
Data fragmentation

yes noyes no

...

yes no

yes no yes no

• Trees split input into clusters & put representative distributions
→ Inefficient to represent dependency betw. ling. & acoust. feats.
• Minor features are never used (e.g., word-level emphasis [9])
→ Little or no effect
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Alternatives – Stepwise statistics

q1

c1

q2

c2

q3

c3

q4

c4

l

ARHMM

x1

c1

x2

c2

x3

c3

x4

c4

l

LDM

q1

c1

q2

c2

q3

c3

q4

c4

l

Trajectory HMM

• Autoregressive HMMs (ARHMMs) [10]
• Linear dynamical models (LDMs) [11, 12]
• Trajectory HMMs [8]
• · · ·

Most of them use clustering→ Data fragmentation
Often employ trees from HMM→ Sub-optimal
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Alternatives – Difficulty to integrate feature extraction

Spectrum

q1

c1

q2

c2

q3

c3

q4

c4

l

s1 s2 s3 s4

Cepstrum (hidden)

• Statistical vocoder [13]
• Minimum generation error with log spectral distortion [14]
• Waveform-level model [15]
• Mel-cepstral analysis-integrated HMM [16]

Use clustering to build tying structure→ Data fragmentation
Often employ trees from HMM→ Sub-optimal
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Alternatives – Data fragmentation

⇒

Tree1 (8 classes) Tree2 (7 classes) Combined (17 classes)

• Factorized decision tree [9, 17]
• Product of experts [18]

Each tree/expert still has data fragmentation→ Data fragmentation
Fix other trees while building one tree [19, 20]→ Sub-optimal
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Linguistic→ Acoustic mapping

• Training
Learn relationship between linguistic & acoustic features

• Synthesis
Map linguistic features to acoustic ones

• Linguistic features used in SPSS
− Phoneme, syllable, word, phrase, utterance-level features
− Around 50 different types
− Sparse & correlated

Effective modeling is essential
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Decision tree-based acoustic model

HMM-based acoustic model & alternatives
→ Actually decision tree-based acoustic model

Statistics of acoustic features o

...

Linguistic
features l

yes no

yes no yes no

Regression tree: linguistic features→ Stats. of acoustic features

Replace the tree with a general-purpose regression model
→ Artificial neural network

Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 31 of 62



Decision tree-based acoustic model

HMM-based acoustic model & alternatives
→ Actually decision tree-based acoustic model

Statistics of acoustic features o

...

Linguistic
features l

yes no

yes no yes no

Regression tree: linguistic features→ Stats. of acoustic features

Replace the tree with a general-purpose regression model
→ Artificial neural network

Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 31 of 62



ANN-based acoustic model [21] – Overview

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

ht = f (Whllt + bh) ôt = Wohht + bo

Λ̂ = arg min
Λ

∑

t

‖ot − ôt‖2 Λ = {Whl,Woh, bh, bo}

ôt ≈ E [ot | lt]→ Replace decision trees & Gaussian distributions
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ANN-based acoustic model [21] – Motivation (1)
Distributed representation [22, 23]

c1 c2

partition 2

partition 1
(c1,c2,c3)
=(1,0,1)

(c1,c2,c3)
=(1,1,1)

(c1,c2,c3)
=(0,1,0)

(c1,c2,c3)
=(0,0,1)

yes no

yes no yes no

yes noyes no

yes no

(c1,c2,c3)
=(0,0,0)

(c1,c2,c3)
=(1,1,0)

(c1,c2,c3)
=(1,0,0)

partition 3

c3

• Fragmented: n terminal nodes→ n classes (linear)
• Distributed: n binary units→ 2n classes (exponential)
• Minor features (e.g., word-level emphasis) can affect synthesis
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ANN-based acoustic model [21] – Motivation (2)
Integrate feature extraction [24, 25, 26]

q1

c1

q2

c2

q3

c3

q4

c4

l

s1 s2 s3 s4

l1

h11

l2

h12

l3

h13

l4

h14

h21 h22 h23 h24

h31 h32 h33 h34

s1 s2 s3 s4

• Layered architecture with non-linear operations
• Can model high-dimensional/correlated linguistic/acoustic features
→ Feature extraction can be embedded in model itself
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ANN-based acoustic model [21] – Motivation (3)
Implicitly mimic layered hierarchical structure in speech production
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DNN-based speech synthesis [21] – Implementation
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DNN-based speech synthesis [21] – Example
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Natural speech DNN (smoothed)
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DNN-based speech synthesis [21] – Subjective eval.

Compared HMM- & DNN-based TTS w/ similar # of parameters
• US English, professional speaker, 30 hours of speech data
• Preference test
• 173 test sentences, 5 subjects per pair
• Up to 30 pairs per subject
• Crowd-sourced

Preference scores (higher one is better)
HMM DNN No pref. #layers × #units
15.8% 38.5% 45.7% 4 × 256
16.1% 27.2% 56.7% 4 × 512
12.7% 36.6% 50.7% 4 × 1024
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Feedforward NN-based acoustic model – Limitation

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

Each frame is mapped independently→ Smoothing is still essential

Preference scores (higher one is better)
DNN with dyn DNN without dyn No pref.

67.8% 12.0% 20.0%

Recurrent connections→ Recurrent NN (RNN) [27]

Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 39 of 62



Feedforward NN-based acoustic model – Limitation

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

Each frame is mapped independently→ Smoothing is still essential

Preference scores (higher one is better)
DNN with dyn DNN without dyn No pref.

67.8% 12.0% 20.0%

Recurrent connections→ Recurrent NN (RNN) [27]
Heiga Zen Acoustic Modeling for Speech Synthesis Dec. 14th, 2015 39 of 62



RNN-based acoustic model [28, 29]

Target o

Input l

Recurrent
connections

lt

o t o t+1o t−1

lt+1lt−1

ht = f (Whllt +Whhht−1 + bh) ôt = Wohht + bo

Λ̂ = arg min
Λ

∑

t

‖ot − ôt‖2 Λ = {Whl,Whh,Woh, bh, bo}

• DNN: ôt ≈ E [ot | lt]
• RNN: ôt ≈ E [ot | l1, . . . , lt]
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RNN-based acoustic model [28, 29]

Target o

Input l

Recurrent
connections

lt

o t o t+1o t−1

lt+1lt−1

• Only able to use previous contexts
→ Bidirectional RNN [27]: ôt ≈ E [ot | l1, . . . , lT ]

• Trouble accessing long-range contexts
− Information in hidden layers loops quickly decays over time
− Prone to being overwritten by new information from inputs
→ Long short-term memory (LSTM) [30]
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LSTM-RNN-based acoustic model [29]
Subjective preference test (same US English data)

DNN: 3 layers, 1024 units
LSTM: 1 layer, 256 LSTM units

DNN with dyn LSTM with dyn No pref.
18.4% 34.9% 47.6%

LSTM with dyn LSTM without dyn No pref.
21.0% 12.2% 66.8%

→ Smoothing was still effective
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Why?

ct

bi xt h t−

it

tanh

sigm

tanh

bc

xt

h t−

Input gate

Forget gate

Memory cell

bo xt h t−

ht

bf xt h t−

sigm

sigm
Block

Output gate

ft

ot

Gate output: 0 -- 1

Input gate == 1
→ Write memory

Forget gate == 0
→ Reset memory

Output gate == 1
→ Read memory

• Gates in LSTM units: 0/1 switch controlling information flow
• Can produce rapid change in outputs
→ Discontinuity
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How?

• Using loss function incorporating continuity

• Integrate smoothing→ Recurrent output layer [29]
ht = LSTM (lt) ôt = Wohht +Wooôt−1 + bo

Works pretty well

LSTM with dyn LSTM without dyn
(Feedforward) (Recurrent) No pref.

21.8% 21.0% 57.2%

Having two smoothing togeter doesn’t work well→ Oversmoothing?

LSTM with dyn LSTM without dyn
(Recurrent) (Recurrent) No pref.

16.6% 29.2% 54.2%
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Low-latency TTS by unidirectional LSTM-RNN [29]

HMM / DNN
• Smoothing by dyn. needs to solve set of T linear equations

W>Σ−1
q̂ Wc = W>Σ−1

q̂ µq̂ T : Utterance length

• Order of operations to determine the first frame c1 (latency)
− Cholesky decomposition [7]→ O(T )
− Recursive approximation [31]→ O(L) L : lookahead, 10 ∼ 30

Unidirectional LSTM with recurrent output layer [29]
• No smoothing required, fully time-synchronous w/o lookahead
• Order of latency→ O(1)
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Low-latency TTS by LSTM-RNN [29] – Implementation

h e l ou
h e2 l ou1

hello

phoneme

syllable

word

Linguistic Structure

Acoustic feature prediction LSTM

Duration prediction LSTM
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Some comments

Is this new? . . . no
• Feedforward NN-based speech synthesis [32]
• RNN-based speech synthesis [33]

What’s the difference?
• More layers, data, computational resources
• Better learning algorithm
• Modern SPSS techniques
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Making LSTM-RNN-based TTS into production
Client-side (local) TTS for Android
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Network architecture

LSTMP

FF / ReLU

LSTMP

LSTMP

RNN / Linear

~ 400 sparse input

49 dense output

⇐ Embed to continuous space

⇐ Encourage smooth trajectory
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Results – HMM / LSTM-RNN
Subjective 5-scale Mean Opinion Score test (i18n)
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Results – HMM / LSTM-RNN
Latency & Battery/CPU usage

Latency (Nexus 7 2013)

Average/Max latency (ms)
Sentence HMM LSTM-RNN

very short (1 character) 26/30 37/72
short (∼30 characters) 123/172 63/88
long (∼80 characters) 311/418 118/190

CPU usage
HMM→ LSTM-RNN: +48%

Battery usage (Daily usage by a blind Googler)
HMM: 2.8% of 1475 mAH→ LSTM-RNN: 4.8% of 1919 mAH
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Results – HMM / LSTM-RNN
Summary

• Naturalness
LSTM-RNN > HMM
• Latency

LSTM-RNN < HMM
• CPU/Battery usage

LSTM-RNN > HMM

LSTM-RNN-based TTS is in production at Google
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Background
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Training & synthesis
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Acoustic models for speech synthesis – Summary

• HMM
− Discontinuity due to step-wise statistics
− Difficult to integrate feature extraction
− Fragmented representation

• Feedforward NN
− Easier to integrate feature extraction
− Distributed representation
− Discontinuity due to frame-by-frame independent mapping

• (LSTM) RNN
− Smooth→ Low latency
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Acoustic models for speech synthesis – Future topics

• Visualization for debugging
− Concatenative→ Easy to debug
− HMM→ Hard
− ANN→ Harder

• More flexible voice-based user interface
− Concatenative→ Record all possibilities
− HMM→Weak/rare signals (input) are often ignored
− ANN→Weak/rare signals can contribute

• Fully integrate feature extraction
− Current: Linguistic features→ Acoustic features
− Goal: Character sequence→ Speech waveform
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Thanks!
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