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Abstract

The rfmt code formatter incorporates a new algorithm that optimizes code layout with respect
to an intuitive notion of layout cost. This note describes the foundations of the algorithm, and
the programming abstractions used to facilitate its use with a variety of languages and code
layout policies.

1 Introduction

rfmt (Yelland 2015) is a new source code formatter for the R programming language. Though
the program itself is particular to R, it embodies a language-independent approach to source
code layout that seeks an “optimal” rendering of a program with respect to an intuitively-
appealing notion of layout cost. This paper describes the layout algorithm used in rfmt. In
the next section, we note the prior work to which it is related. Subsequent sections detail the
way in which alternate program layouts are provided to the algorithm, and the way in which
the algorithm chooses the optimal layout.

1.1 Related work

Methods for ensuring that printed output is appealingly formatted date from the earliest
days of computing (Harris 1956). With the widespread adoption of high-level programming
languages, it is perhaps natural, therefore, that programs were devised to format software
source code itself (Scowen et al. 1971). For the most part, such formatting—or pretty printing,
as it came to be known—seeks to improve the readability of source code by breaking it into
lines and indenting it by inserting whitespace characters.1

1Hughes (1995) draws a distinction between between pretty printing, which he reserves for the legible rendering
of internal data structures, and source code formatting—improving the readability of program text. As he observes,
the latter involves considerations such as the proper placement of comments (which are regarded as extra-syntactic
contructs in most languages). In this paper, we use the terms interchangeably, since the intent is to describe the
layout algorithm used by the source code formatter rfmt. It should be noted, however, that for the most part, the
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LISP (McCarthy 1960) has provided a particularly fertile environment for code format-
ting; LISP programs are themselves lists (LISP is homoiconic, to use Kay’s (1969) term), and
without at least a modicum of formatting, their printed representation is all but illegible.
An early survey paper by Goldstein (1973) examines the design space of LISP pretty print-
ers, and describes a search algorithm with limited look ahead—which he calls the recursive
re-predictor—implemented by one of the earliest, GRINDEF (Gosper 2015).

An influential paper by Oppen (1980) describes a language-independent pretty printing
algorithm based—like GRINDEF—on a limited-lookahead search. Input to Oppen’s algo-
rithm takes the form of program source code, annotated so as to break it into (possibly
nested) logical blocks, with separators that the algorithm may render either as spaces or as line
breaks (accompanied by suitable indentation). Annotations are attached to the source code to
reflect its syntactic structure—a conditional statement, for example, might constitute a logical
block, with the positive and negative arms of conditional nested as logical blocks themselves.
The structure of the logical blocks delineate the alternate formats that are open to exploration
by the algorithm, which in the example, might chose to print the entire conditional statement
on a single line, to split begin the statement and its arms on separate lines, and so on. Oppen’s
use of annotations to present possible formatting choices to a layout algorithm is mirrored
in more recent language-independent code formatting systems, such as those described in
(Jokinen 1989) and (van den Brand 1993).

Functional programming languages are heirs to the LISP tradition, and so the develop-
ment of pretty printers in functional languages such as Haskell and ML may be unsurprising.
In the main, however, from the pioneering work of Hughes (1995) in this area, through the
developments of Wadler (1999) and recent contributions such as (Chitil 2005), the emphasis
has been on the creative application of functional programming techniques to the problem,
rather than on algorithms for pretty printing per se—Wadler’s (1999) pretty printer, for exam-
ple, is based on a lazy functional version of Oppen’s (1980) algorithm. This paper has the
contrary orientation: We concentrate less on programming techniques than on algorithms for
code formatting. The work described here does nonetheless draw from this line of research in
using an abstract data type with values created by a set of generating functions or combinators
to describe alternate source code formats.

Closer to the actual formatting algorithm in this paper—in particular its reliance on
dynamic programming to find a layout optimal with respect an explicit cost function—is
the algorithm used by the TEX typesetting system. Here the objective is to produce well-
justified paragraphs by breaking their constituent words into lines. Knuth’s algorithm, later
expanded upon by Knuth and Plass (1981), uses dynamic programming to minimize the sum
of the squares of the width of the white space left at the end of each line.

A notable recent development has been the development of pretty printers—like the one
described here—which employ an explicit cost function (in the manner of the TEX) that is
optimized by a layout algorithm. The progenitor of these is clang-format (Jasper 2013), a
source code formatter for C/C++. Though broadly similar in approach, clang-format and its

scope of this paper (which does not cover the treatment of comments, for example) is restricted to those aspects
of rfmt that facilitate “pretty printing” in Hughes’ narrower sense.
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scion differ substantially from the formatter in this paper: clang-format begins by breaking
source code into “unwrapped lines,” usually corresponding to C/C++ language statements.
clang-format assumes that output width is limited, and inserts potential line breaks into the
each unwrapped line so as to fit it to the output width. Each potential line break is assigned
a cost, and the program uses them to construct a weighted graph connecting the initial
unwrapped state of the line with “solution” nodes that represent a broken version of the line
with horizontal extent no greater than the output width. Dijkstra’s (1959) algorithm is used
to find a path from the source node to a solution that is of minimal cost. By contrast, here
we use combinators to specify alternate candidate layouts directly—in rfmt these layouts are
derived in a(n arguably more natural) syntax-directed fashion from a parsed representation
of the language source. Rather than assuming a fixed output width and optimizing layout
cost conditional on satisfying the width restriction, here output width is constrained by the
cost function itself, which affords us a greater degree of flexibility (such as the ability to
insert a “soft margin,” as discussed later in section 7). Finally, we use dynamic programming
directly to optimize cost, instead of the more indirect approach taken by clang-format (Dijkstra’s
algorithm itself involving a form of dynamic programming).

2 Code layout

As observed in the introduction, in its initial stages, rfmt takes the same approach to pretty
printing as that taken by Hughes and his fellow functional programmers: To wit, data
structures specifying alternative formats for a piece of source code are provided to the layout
algorithm, which selects a format that is minimal with respect to a specified cost function. In
this section, we describe these data structures—termed layout expressions here2—by way of
the combinator functions that are used to construct them. The combinators introduced in this
section constitute a set of “primitives,” on which the more practical set of layout contructors
offered in rfmt are based. In section 6, we show how the rfmt constructors may be built from
these primitive combinators.

2.1 Layouts and Combinators

Four combinators are used in this paper, the first three of which are illustrated in figure 1.
These three combinators are defined informally as follows:

‘txt’ A layout expression consisting only of the text string txt (which is assumed not to
contain formatting characters such as carriage returns, tabs and the like), to be output
on a single line.

l1 l l2 A layout expression comprising two layout expressions l2 and l2 “stacked” vertically,
with l1 above l2. When output, the first character of both layouts fall into the same
column, and the first line of l2 is immediately below the last line of l1.

2Layout expressions correspond roughly to the pretty documents or Docs in Hughes’ paper. Where convenient,
we will often use the term “layout” rather than ”layout expression”.

3



Optimal Code Formatting

Lorem ipsum dolor ‘txt’

Lorem ipsum dolor
consectetur adipiscing elit

l1 l l2

Lorem ipsum dolor
consectetur adipiscing elit Aliquam erat volutpat

condimentum vitae leo sit
l1↔ l2

Figure 1: Three layout combinators

l1↔ l2 A layout expression that juxtaposes expressions l1 and l2, with l2 to the right of
l1 when output. Note that in general, both components expression may contain
multiple lines of unequal span, and we follow Hughes (1995, p. 19) and later Wadler
(1999) in placing the first character of l2 on the same line as and immediately to the
right of the last character of l1, translating l2 bodily rightwards as shown in figure 1.

We can generate a wide variety of code layouts using these three combinators. As a simple
illustration, the following expression:

(‘if (voltage[t] < LOW_THRESHOLD)’ l ‘ ’)↔ ‘LogLowVoltage(voltage[t])’

specifies the formatted C conditional statement:

if (voltage[t] < LOW_THRESHOLD)

LogLowVoltage(voltage[t])

2.2 Choosing layouts

Observe that the code above may also be formatted using the layout expression:

(‘if (voltage[t] < LOW_THRESHOLD)’↔ ‘ ’)↔ ‘LogLowVoltage(voltage[t])’

which specifies:

if (voltage[t] < LOW_THRESHOLD) LogLowVoltage(voltage[t])

Syntactically and semantically, of course, both forms of the code are indistinguishable,
since C is largely oblivious to white space. They do, however, represent different trade-offs
between the horizontal and vertical space occupied by a piece of code, since the first layout
occupies one more line than does the latter, but it has a smaller horizontal extent. This sort
of trade-off becomes particularly pointed when restrictions are placed on the total width of
formatted code; prodigious modern-day screen widths notwithstanding, most code layout
is still obliged to honor (where possible) a fixed right-hand margin that restricts the overall
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output to 80 character widths, or columns. On the other hand, other things being equal, it is
generally desirable to minimize the vertical space occupied by a piece of code. To capture the
trade-off in quantitative terms, we associate a cost with a code layout: When code is output
according to the layout, we incur a cost of β units for each character beyond the right margin,
and a cost α for each line break output.3 Given a collection of alternative layouts for the same
piece of code, we should select one whose cost is on output is minimal.

Of course, on its own, the code fragment above is unlikely to breach an 80 character right
margin if output according to any reasonable layout. Imagine it, however, nested inside other
code structures, as illustrated in figure 2, for instance. In such circumstances, we might opt
for the first layout for the conditional statement, trading off an extra line in order to avoid
breaching the right margin might—that is, incurring a cost of α units so as to save nβ units,
for some number n ≥ 1 of characters which might otherwise lie beyond the margin.

for (t = 0; t < n; t++) if (voltage[t] < LOW_THRESHOLD) LogLowVoltage(voltage[t])

Figure 2: Conditional statement nested in another construct

To make such choices, we have a fourth layout combinator: Given layout expressions
l1 and l2 (which normally represent alternate ways of formatting the same code), output of
any layout expression containing l1 ? l2 results in the output whichever of l1 and l2 incurs
the lowest overall cost. For example, in the case of the conditional statement, the following
represents the choice between the alternate layouts given above:

lif = [(‘if (voltage[t] < LOW_THRESHOLD)’ l ‘ ’) ?

(‘if (voltage[t] < LOW_THRESHOLD)’↔ ‘ ’)]↔ ‘LogLowVoltage(voltage[t])’

Effective implementation of the choice combinator crucial to efficient code layout. This
is because in order to decide which of the component layout expressions l1 and l2 to select,
it is necessary to consider the context in which the choice expression l1 ? l2 appears. To
demonstrate, return to the nested code constructs presented in figure 2, and suppose that the
for loop itself has two alternate formats:

lfor = (‘for (t = 0; t < n; t++)’ l ‘ ’) ? (‘for (t = 0; t < n; t++)’↔ ‘ ’)

The layout of the code in figure 2 may then be expressed as lfor↔ lif, where the choices in
lfor and lif capture the different options involved in the layout of both the for loop and the if

statement. Note, however, that the choice of component layout in lfor affects the horizontal
position (or “column”) at which the output of lif begins. This in turn affects the relationship of
lif to the right margin, and thus the costs of the components of lif. To decide on the lowest-cost
component of lif, therefore, we need to take into account the choices made in lfor.

3That is, one less than the number of lines occupied by the code.
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Generalizing, in the composite layout:

(l11 ? l12)︸   ︷︷   ︸
l1

↔ (l21 ? l22)︸   ︷︷   ︸
l2

↔ . . .↔ (ln−1,1 ? ln−1,2)︸          ︷︷          ︸
ln−1

↔ (ln1 ? ln2)︸   ︷︷   ︸
ln

(1)

the choice of layout in sub-expression ln = ln1 ? ln2 depends potentially on all of the choices
made in sub-expressions l1 through ln−1. A naïve implementation of the “?” combinator would
enumerate each of the n choices involved, entailing examination of 2n layout combinations.
Clearly, exponential complexity of this kind would lead to unacceptable performance for
source programs of even moderate length.

2.3 Dynamic programming and optimal layouts

A more practical implementation of the “?” combinator starts with the observation that in
expression (1), for i = 1, . . . ,n − 1, the influence that the choice in layout li has on that in
layout li+1 and its successors is mediated entirely by the starting column for li+1 determined
by the choice in li. So the minimum overall cost for layout li↔ . . .↔ ln can be calculated by
computing: a) which of the component layouts li1 and li2 in li incurs the lesser cost at the
current starting column, when added to b) the minimum cost choices for li+1↔ . . .↔ ln given
the new starting column fixed by the choice in a). This description of the layout problem
suggests that it is amenable to solution using dynamic programming, first explored by Bellman
(1957, ch. 3) and employed in a great variety of applications since (Skiena 2008, ch. 3).

Key to the use of dynamic programming in this application is the association of a layout
expression with a function—call it the layout’s minimum cost function—that maps a column to
the minimum cost incurred by the layout when started at that column. By way of illustration,
let us calculate the minimum cost function for l1↔ . . .↔ ln by induction:

First, let fn+1 be the constant function x 7→ 0 that maps any starting column to a cost of 0
units; this reflects the fact that the “empty layout” to the right of ln incurs no cost, regardless
of the column in which its output begins.

Then, for i = n, . . . , 1, assume that we are given fi+1, the minimum cost function corre-
sponding to the layout expression li+1↔ . . .↔ ln. To calculate the minimum cost function for
li↔ li+1↔ . . .↔ ln, we need to know the horizontal extents or spans of the two component
expressions in li = li1 ? li2. In general (as detailed later), these spans will depend on layout
choices made for li1 and li2 themselves, but for simplicity, we will assume here that they are
the constants si1 and si2 respectively. Therefore, if the output of li↔ li+1↔ . . .↔ ln starts at
column x, and we choose component li1, output of li+1↔ . . .↔ ln will begin at column x + si1.
Similarly, if we choose li2, output will begin at column x + si2.

By assumption, the minimum cost of li+1↔ . . .↔ ln when output at column x + si1 is
fi+1(x + si1), and fi+1(x + si2) when output at x + si2. Finally, let the costs of outputting just
the subcomponents li1 and li2 at column x be ci1 and ci2, resp., which again are assumed to
be constants for simplicity. The minimum cost associated with the output of li+1↔ . . .↔ ln at
column x reflects whichever choice of subcomponent results in the lowest overall cost, so its
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minimum cost function, fi, is:

x 7→ min{ci1 + fi+1(x + si1), ci2 + fi+1(x + si2)}. (2)

Once we have the minimum cost function for the entire expression l1↔ . . .↔ ln, the cost of
outputting its optimal layout is simply f1(0), since the starting column for the entire expression
is 0. And as we will see in the next section, by recording, for each x in (2), the component (li1
or li2) that yields the minimum cost at x, we are able to reconstruct the optimal layout itself,
as well.

Note that in deriving the optimal layout for the entire expression by this procedure, we
were obliged to compute only n minimum cost functions. With a suitable means of calculating
minimum cost functions, therefore, dynamic programming offers the prospect of avoiding
the exponential complexity entailed by the naïve approach to the layout problem.

3 Calculating minimum cost functions

Since a minimum cost function simply maps a starting column to a cost and its corresponding
optimal layout, an obvious implementation is simply a vector of costs and layouts, indexed
by starting column. Unfortunately, there are drawbacks to this representation:

1) The number of elements in such a vector must equal the maximum starting column for
any layout (call it xmax). This is difficult to establish a priori, and to adjust it dynamically
involves awkward reallocation and copying. Furthermore, once we have increased our
estimate for xmax, it is not obvious if and when we might decrease it.

2) For reasonably large values of xmax, such a representation is likely to be inefficient in
terms of space, and more importantly, in terms of time. To see the latter, observe that
with this representation, the evaluating expression (2) above, for example, requires us
to carry out at least xmax cost comparisons—one for each entry in the new minimum
cost function.

In this section, we describe a more parsimonious and efficient means of deriving minimum
cost function using piecewise constant functions, which we dub layout functions. To construct
layout functions, we implement a set of combinators that parallel those in section 2.1.

3.1 Knots

Fundamentally, a layout function is simply a function defined on a set of knots. Here, a knot is
a positive integer representing a starting column for a layout; the knots of a layout function
represent starting columns at which the value of the function changes—between the knots,
the value is assumed to remain constant.

More formally, a knot set K, is a (finite) set of positive integers (knots), such that 0 ∈ K.
We define two operations on knot sets that help locate knots associated with given column
positions.
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First, given a knot set K, for x ∈ [0,∞), define:

x−K = max{k ∈ K | k ≤ x}. (3)

Intuitively speaking, x−K is the rightmost knot in K at or to the left of x.
Correspondingly, define:

x+
K =

∞ if x ≥ max K,

min{k ∈ K | x < k} otherwise.
(4)

Informally, x+
K is the leftmost knot in K to the right of k, if such a member of K exists, and

equals infinity otherwise.
Where the knot set is clear from the context, we will often drop the subscript on x−K and

x+
K , writing x− for example, rather than x−K .

3.2 Layout functions

A layout function maps each knot in its knot set—which, to recall, represents output starting
columns—to a tuple of four values:

1) A layout expression without any occurrences of the “?” operator. This denotes the
layout—with all selections entailed by any “?” operators resolved—that is optimal for
output beginning at the knot.

2) An integer giving the span of the optimal layout, i.e. the width of its last line in characters.

3) An intercept—a real number equal to the cost incurred by the output of the optimal
layout at the knot.

4) A gradient specifying the amount by which the cost of output increases for each unit
increase of the starting column beyond the knot.

Let the value of the layout function g at knot k be the tuple (lk , sk , ak , bk), comprising
respectively the layout, span, intercept and gradient at knot k. We define accessor functions
such that:

lg(k) = lk , sg(k) = sk ,

ag(k) = ak , bg(k) = bk .

If K is the knot set that constitutes the domain of g, using the “.−” operator defined
above, we can extend these accessors to (positive) starting column values in general. Thus
for example, ag(x) = ag(x−K) is the gradient that g associates with the knot immediately to the
left of x; since the layout function is piecewise constant, ag(x) is also the value of the gradient
from x−K up to (but not including) x+

K .
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With the intercept and gradient accessors defined for an arbitrary starting column, we
recover the minimum cost function associated with a layout function by linear extrapolation
from the closest knot; it is the function that maps x to the value vg(x), where:

vg(x) = ag(x) + bg(x)[x − x−]. (5)

As before, when the layout function is evident from the context, we will often suppress
the subscript on lg(k), etc. Furthermore, when dealing with an indexed collection of layout
functions such as g1, . . . , gi, . . . , gn, we will refer to ai(x), bi(x) and so on, rather than the more
cumbersome agi(x), bgi(x), etc.

When we need to define a particular layout function explicitly, we present a collection of
entries of the form “k 7→ (l, s, a, b),” where k is a knot value, and l, s, a and b are respectively
the layout, span, intercept and gradient associated with that knot.

In terms of data structures, a layout function is expediently represented by an ordered
vector containing its knots, and parallel vectors with the corresponding layouts, spans, etc.
The operations defined above for layout functions, (namely the operators .−, .+, the acces-
sor functions and vg), may be implemented by scanning the knot vector,4 retrieving such
supplementary data as is required from the parallel vectors.

4 Combinators for layout functions

Having introduced the representation of layout functions, we move on to the definition of
combinators constructing layout functions, analogous to those given for layout expressions.

4.1 A text string

s

Lorem ipsum dolor . . . sit amet

x m

Figure 3: Output of a text string

We begin with the first kind of layout expression in section 2.1: Expressions of the form
‘txt’, where txt is a text string (free of carriage returns, etc.). Assume that the text string
txt consist of s characters—that is, it has a fixed span span s.5 Consider the output of such

4Since knot sets are fairly small in practice, a linear scan suffices, though more efficient binary, hashed, etc.
searches are also possibilities.

5For the sake of simplicity, we assume that s ≤ m; the more general case is a fairly straightforward elaboration
of that presented here.
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a string, beginning in column x, as depicted in figure 3. Here, m denotes the right margin
discussed in section 2.2.

Let us derive the minimum cost function6 for this layout expression. Recall that output
incurs a cost β for every character that projects beyond the margin—or equivalently, for every
character width the end of a line falls to the right of the margin. Therefore, if when output,
the first character of the text begins in column x, a cost of β units will be incurred for every
character by which x + s exceeds m. Since there are no choices involved in the output, this is
also the minimum cost that might be incurred. Therefore the minimum cost function for this
layout is:

x 7→

0 if x + s < m,

β[(x + s) −m] if x + s ≥ m.
(6)

Since x is required to be at least 0 (and finite), with little algebra we can restate this:

x 7→

0 if 0 ≤ x < m − s,

β[x − (m − s)] if m − s ≤ x < ∞.
(7)

Inspecting the mapping in (7), it is not difficult to see that it constitutes the piecewise linear
function illustrated in figure 4, consisting of a segment [0,m − s) with gradient 0, followed by
a segment [m − s,∞) with gradient β.7

0

cost

xm- s

gradient β

Figure 4: Costs of a single line of text as a piecewise linear function

This piecewise linear minimum cost function—along with other information needed to
characterize the optimal layout—can be specified using a layout function on two knots, 0 and
m − s. The beginning cost and gradient—both 0—in the segment [0,m − s) of the minimum
cost function are associated with knot 0, and knot m− s is mapped to the beginning cost 0 and
gradient β of the segment [m − s,∞). Since the span (namely s) and optimal layout (‘txt’) are
the same in both segments, we have the full layout function:

6Not the layout function that represents this minimum cost function—that is derived later.
7Arguably, the figure should reflect the restriction of the starting column offset x to the integers, but for clarity

we suppress this consideration here and throughout the paper.
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Definition 1 For text string txt consisting of s characters, let 〈‘txt’〉 be the layout function: 0 7→ (‘txt’, s, 0, 0)

m − s 7→ (‘txt’, s, 0, β)

 (8)

4.2 Stacking

s1

Lorem ipsum dolor . . . sit amet

Quisque pretium lib . . . ero feugiat sagittis

s2

x m

Figure 5: Two vertically-stacked lines of text

Moving on to the analog of the stacking combinator, consider by way of example the costs
associated with the output depicted in figure 5—two lines of text with spans s1 and s2, stacked
onto successive lines, both beginning at column x. Without loss of generality, we will assume
that s1 ≥ s2.8 If we consider for the moment only the costs incurred by characters beyond the
right margin, reasoning similar to that in the previous section yields the cost function:

x 7→


0 if 0 ≤ x < m − s1,

β[x − (m − s1)] if m − s1 ≤ x < m − s2,

β[(m − s2) − (m − s1)] + 2β[x − (m − s2)] if m − s2 ≤ x < ∞.

(9)

Here, the three cases apply to starting positions for which resp. 0, 1, and 2 lines of text project
beyond the margin at m (the reason for the rather stilted expression in case 3 will become
apparent below).

This is not, however, a full account of the costs associated with the output depicted in
figure 5. The discussion of costs in section 2.2 implies that since this output contains a line
break, we need to add a constant penaltyα to all values of the cost function. If we let k1 = m−s1

8Otherwise, simply reorder the subscripts associated with the lines.
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and k2 = m − s2, we can write out the amended minimum cost function as:

x 7→


α if 0 ≤ x < k1,

α + β[x − k1] if k1 ≤ x < k2,

α + β[k2 − k1] + 2β[x − k1] if k2 ≤ x < ∞.

(10)

Note that the span of the stacked expression—the character width of its last line—is a
constant s2, and the layout expression output is the same regardless of the starting column.
Let l1 and l2 denote the layouts of the two component lines in the figure, so that the stacked
layout expression output is l1 l l2. Reasoning as above we can derive the layout function for
the layout expression depicted in figure 5:

0 7→ (l1 l l2, s2, α, 0)

k1 7→ (l1 l l2, s2, α, β)

k2 7→ (l1 l l2, s2, α + β[k2 − k1], 2β)

 (11)

Similar arguments apply to the derivation of layout functions for stacked layout expres-
sions in general, but in the general case we work from the layout functions associated with
each of the components expressions:

Definition 2 For layout functions g1 and g2, with knot sets K1 and K2, let g1 〈l〉 g2 be the layout
function with knot set K = K1 ∪ K2, and for each k ∈ K:

l(k) = l1(k) l l2(k),

s(k) = s2(k),

a(k) = v1(k) + v2(k) + α,

b(k) = b1(k) + b2(k).

Verifying that this operation does indeed reflect the stacking operation in the case of the
example in figure 5 is straightforward: Then we have g1 = {0 7→ (l1, s1, 0, 0), k1 7→ (l1, s1, 0, β)}
and g2 = {0 7→ (l2, s2, 0, 0), k2 7→ (l2, s2, 0, β)}, so that g1 〈l〉 g2 has a combined knot set {0, k1, k2},
with corresponding tuples matching the result in (11).

4.3 Juxtaposition

Output of a layout expression involving the juxtaposition combinator “↔” is illustrated in
figure 6. We can define an analogous juxtaposition operator on layout functions as follows:

Definition 3 Given layout functions g1 and g2, with knot sets K1 and K2, let g1 〈↔〉 g2 be the cost
function with knot set K:

K = K1 ∪ {k − t | k ∈ K2 and s1(k − t) = t},
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Lorem ipsum dolor sit

Quisque pretium a libero

s1

Curabitur tincidunt

Suspendisse

s2

x m

Figure 6: Juxtaposed outputs

and such that with k′ = k + s1(k) for each k ∈ K:

l(k) = l1(k)↔ l2(k′),

s(k) = s1(k) + s2(k′),

a(k) = v1(k) + v2(k′) − βmax(k′ −m, 0),

b(k) = b1(k) + b2(k′) − βI(k′ ≥ m),

where the indicator expression I(k′ ≥ m) is equal to 1 if k′ ≥ m and 0 otherwise.

The knot set of the juxaposed combination must contain all those offsets (the value x in
figure 6) at which the gradient, intercept or span of the combination may change. Now any
offset x of the combination places the left hand component at offset x, and the right hand
component at that offset plus the span of the left hand component at that offset. Thus the
knot set of the combination contains all the knots of the first operand, g1, together with all
those offsets which, added to the span of g1 at that offset, coincide with a knot of g2.

The layout and span of the combination at each knot are reasonably easy to calculate,
provided we draw from the second component function at the appropriate offset (i.e. the
sum of the knot and the span of g1 at that knot). However, in calculating the gradients
and intercepts of the combined cost function at each knot, we also need to account for the
fact (illustrated in figure 6) that the end of the last line of g1 is no longer a line end in the
composition, since it becomes a prefix of the first line of g2. This means that we must eliminate
any contributions it makes to the gradients and intercepts of the combined function. As we
saw in section 4.1, these contributions are only positive in as far as the end of the line projects
beyond the right margin, m. For each knot, the end of the last line of g1 (which is also the
starting offset for g2) is given by the quantity k′ in definition (3), and so in the calculations of
b(k) and a(k), we compare this quantity with the right margin on order to make the appropriate
adjustments.

4.4 The choice operator

The analog of the final combinator—the choice operator, “?”—may be derived as a general-
ization of the motivating example given in section 2.3. An intuitive explanation follows its
definition below.

13
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ki ki + χ(ki) ki
+ k j k j + χ(k j) k j

+0

cost

x

f1

f2

Figure 7: Costs associated with component layout functions

Definition 4 Let g1 and g2 be given layout functions with knot sets K1 and K2. Let L = K1 ∪ K2,
and for each k ∈ L, let:

χ(k) =
v2(k) − v1(k)
b1(k) − b2(k)

. (12)

Now, recalling the definition of k+
L from equation (4), let K be the knot set:

K = L ∪ {dk + χ(k)e | k ∈ L, dk + χ(k)e < k+
L }, (13)

where dxe is the largest integer greater than or equal to x. Now for each k ∈ K, let:

µ(k) =

1 if v1(k) < v2(k) or [v1(k) = v2(k) and b1(k) ≤ b2(k)],

2 otherwise.

Finally, define g1 〈?〉 g2 as the layout function with knot set K, such that for all k ∈ K:

l(k) = lµ(k)(k), s(k) = sµ(k)(k),

a(k) = vµ(k)(k), b(k) = bµ(k)(k).

Thus the layout function g1 〈?〉 g2 associates a starting column x with the layout (and cost
thereof) of either g1 or g2, depending on which layout yields the lowest cost when output at
x. Since the layouts, spans, intercepts or gradients of g1 and g2 may change at their knots,
the knot set of g1 〈?〉 g2 contains at least the union of the component knot sets. In addition to
these points, however, we must also consider those offsets between knots at which the costs
of the constituent functions may cross. Two such instances are depicted in figure 7: There,
knots ki and k j, as well as their immediate successors, ki

+ and k j
+, are taken from the knot sets

14
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of the constituent functions.9 Observe that while at ki the cost of g1 is less than that of g2, the
costs cross at a point between ki and ki

+. The distance of this latter point from ki, χ(ki), may
be calculated from the values and gradients of g1 and g2 at ki, as shown in equation (12). The
upshot is that while the value (i.e. the tuple comprising layout, span, intercept and gradient)
of g1 〈?〉 g2 is that of g1 at ki, it must be set to the value of g2 for all (integer) column offsets
greater than or equal to ki +χ(ki), thus requiring another knot at dki +χ(ki)e; a similar situation
pertains at k j, with the rôles of g1 and g2 reversed. The full knot set K for g1 〈?〉 g2, defined
in equation (13), adds such intermediate knots as required, and the values in the new layout
function are set accordingly.

5 Deriving layout functions from layout expressions

Given the analogs of the layout combinators defined in the previous section, it is straightfor-
ward to use structural recursion to define a function C(·), mapping a layout expression to its
corresponding layout function; for layout expressions l1, l2, and text string t:

C(l1↔ l2) = C(l1) 〈↔〉C(l2) (14)

C(l1 l l2) = C(l1) 〈l〉C(l2) (15)

C(l1 ? l2) = C(l1) 〈?〉C(l2) (16)

C(‘t’) = 〈‘t’〉. (17)

Unfortunately, though the definition of C(·) is appealingly straightforward, it does not
yield a practical solution to the code formatting problem. Again, the source of the difficulty
is the “?” operator—in particular, its interaction with the juxtaposition operator “↔”. To
illlustrate why this is, return to expression (1), and note that if we are to decide on the optimal
choice in subexpression l11 ? l12, the effect of the choice on the juxtaposed layouts li+1 . . . ln
must be taken into account. This means that the layout function for l11 ? l12 (which must
reflect this optimal choice) depends on li+1 . . . ln. Equation (16), however, stipulates that the
layout function C(l11 ? l12) = C(l11) 〈?〉C(l12) depends only on l11 and l12.

To address this problem, we restrict ourselves to “expanded” expressions in which the
only subexpressions involving horizontal juxtaposition operator “↔” are of the form ‘t’↔ l,
where l is also an expanded layout expression. This means in particular that there are no
occurrences of subexpressions involving the choice operator “?” in the left operand of a
juxtaposition. Thus all information about juxtaposed layouts required to make the choice
implied by the “?” operator are present in its operands, in keeping with the requirements of
equation (16).

No loss of generality is entailed by the restriction to expanded expressions because we can
define a function E(·), which transforms any layout expression to its expanded equivalent.
First, let � denote the empty layout expression; note that it is the right identity element of

9It should be noted that in general, cost functions are not required to be continuous at their knots, though in
the figure they are portrayed so for clarity’s sake.
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“↔”, so that l↔� = l. Now for layout expressions l, l1, l2 and r, and text string t let:

E(l) = E′(l,�) (18)

where:

E′(l1↔ l2, r) = E′(l1,E′(l2, r)) (19)

E′(l1 l l2, r) = E′(l1, r) lE′(l2, r) (20)

E′(l1 ? l2, r) = E′(l1, r) ? E′(l2, r) (21)

E′(‘t’, r) = ‘t’↔ r. (22)

For example, we have:

E((‘a’ ? ‘b’)↔(‘c’ ? ‘d’)) = (‘a’↔(‘c’ ? ‘d’)) ?(‘b’↔(‘c’ ? ‘d’)).

Note that as we require, in the expression on the right hand side of the above, the operands
of the “?” operators contain all the layouts needed to make the choice of component, given a
starting column.

But though the expanded form of a layout expression defines the same layout as the
original expression, without special provision, the size of the expanded term may grow
exponentially. Again, to illustrate, take an instance of the form in (1):

(‘t11’ ? ‘t12’)↔(‘t21’ ? ‘t22’)↔ . . .↔(‘tn1’ ? ‘tn2’), (23)

where t11, t21, . . . , tn1, tn2 are text strings. While this expression contains only 3n − 1 combina-
tors,10 is not too hard to show that its expanded form contains some 2n+2

− 5 combinators.
Thus if we were to derive the layout function of the layout expression in (23) by applying the
function C(·) defined by equations (14 - 17) to the expanded term computed by E(·) in (19 -
22), performance would again become unacceptable, even for fairly small values of n.

This difficulty can be circumvented by performing expansion and translation of layout
expressions simultaneously, “expanding out” the composition of E(·) and C(·) beforehand. To
do this, we arrange for a distinguished “empty” layout function �, requiring in addition that
C(�) = �, and for any gi, gi 〈↔〉� = gi.11 Next define a function C′(·, ·), such that for layouts l
and r:

C′(l,C(r)) = C(E′(l, r)). (24)

Finally, let JlK, the layout function associated with the layout expression l, be C′(l,�).

10To be pedantic, combinator instances.
11The latter is most expediently arranged simply by adding a clause to the definition of “〈↔〉”checking for the

distinguished value “�” in the arguments.
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Now we can show that as required:

JlK = C′(l,�) definition of J·K,

= C′(l,C(�)) property of �,

= C(E′(l,�)) equation (24),

= C(E(l)) equation (18).

Furthermore, expanding the right hand side of equation (24) using equations (19 - 22), we can
derive a recursive (constructive) definition of C′(·, ·). From equations (24) and (19):

C′(l1↔ l2,C(r)) = C(E′(l1↔ l2, r))

= C(E′(l1,E′(l2, r)))

= C′(l1,C(E′(l2, r)))

= C′(l1,C′(l2,C(r))).

We can arrange to satisfy this equality by defining, for layout function g:

C′(l1↔ l2, g) = C′(l1,C′(l2, g)). (25)

Similarly, we derive:

C′(l1 l l2, g) = C′(l1, g) 〈l〉C′(l2, g) (26)

C′(l1 ? l2, g) = C′(l1, g) 〈?〉C′(l2, g) (27)

C′(‘t’, g) = 〈‘t’〉 〈↔〉 g. (28)

It may appear that little has been gained by this exercise; after all, the equations defining
C′(·, ·) mirror those for E′(·, ·) exactly. Note, however, that the argument g to C′(·, ·) is a layout
function, not a layout expression, as are the objects on the right hand sides of equations (25 -
28). In particular, the two occurrences of g on the right hand sides of equations (26) and (27)
refer to a single a layout function that is computed only once, while deriving the same layout
function by application of C(·) to the expanded term from E(·) involves computing the same
function twice.

It is the ability of a single layout function to characterize the optimum layout of a layout
expression for any given starting column that facilitates this sharing. Figure 8 illustrates this
point. In the figure, the layout function 〈‘e’〉 〈?〉〈‘ff’〉 appears twice in the expansion of the
subexpression (‘c’ ? ‘dd’)↔(‘e’ ? ‘ff’), and the latter itself appears twice in the expansion
of the entire expression. Depending on the choices between the text strings made in the
two leftmost choice expressions, therefore, this single layout function must determine the
optimal choice between the strings “e” and “ff” starting 2, 3 or 4 character widths12 beyond
the starting column of the entire expression. As Skiena (2008, chp. 3) notes, this capacity to

12Coresponding to choices “a”, “c” (2 character widths), “a”, “dd” or “bb”, “c” (3 character widths) and “bb”,
“dd” (4 character widths) in the two leftmost choices.
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<?>

<↔> <↔>

<?>

<↔> <↔>

<?>

<‘e’> <‘ff’>

<‘a’> <‘bb’>

<‘c’> <‘dd’>

Figure 8: Sharing in the layout function calculation for (‘a’ ? ‘bb’)↔(‘c’ ? ‘dd’)↔(‘e’ ? ‘ff’).

identify and effectively address overlapping subproblems (in this case, the optimal layouts in
subexpressions) is key to the effective application of dynamic programming.

6 Layout constructors in rfmt

As we pointed out in section 2, the rfmt program itself does not directly expose implementa-
tions of the primitive layout expression combinators. Instead, more convenient constructors—
called blocks, with slight abuse of terminology—are provided, the implementations of which
are composed from the primitive combinators. The rfmt blocks are described below.
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6.1 Blocks and their implementations

TextBlock(txt) A layout consisting of a single line of unbroken text. This block is essentially
a renaming of the “‘.’” combinator, with the trivial implementation:

TextBlock(txt) , ‘txt’

LineBlock(l1, l2, . . . , ln) A layout consisting of the horizontal juxtaposition of layouts l1, . . . , ln.
The implementation of this block is simply a composition of the appropriate number of “↔”
combinators:

LineBlock(l1, l2, . . . , ln) , ((l1↔ l2)↔ . . .)↔ ln

StackBlock(l1, l2, . . . , ln) A vertical stack comprising l1, . . . , ln. Implemented by composition
of “l” combinators:

StackBlock(l1, l2, . . . , ln) , ((l1 l l2) l . . .) l ln

ChoiceBlock(l1, . . . , ln) A layout choosing one of l1, . . . , ln, according to which layout has
minimum cost on output. Again, we simply compose “?” combinators to implement this
block:

ChoiceBlock(l1, l2, . . . , ln) , ((l1 ? l2) ? . . .) ? ln

IndentBlock(n, l) This block “indents” the layout l by n spaces. Its implementation juxtaposes
a string of spaces of the requisite length (here denoted “spaces(n)”) on the left of l:

IndentBlock(b) , ‘spaces(n)’↔ l

WrapBlock(l1, l2, l3 . . . , ln−1, ln) The WrapBlock packs constituent layouts l1, l2, . . . , ln−1, ln hor-
izontally, inserting line breaks between them so as to minimize the total cost of output, in a
manner analogous to the composition of words in paragraph. (As with paragraphs, output
after line breaks begins at the starting column of the entire WrapBlock.) When placed next
to each other on the same line (i.e. where a line break does not intervene), the constituent
layouts are separated by single spaces.

The implementation of this constructor is rather more involved than those above. Its
expansion in terms of the primitive combinators is assembled by working from the final
constituent layouts backwards, at each stage composing a choice whose alternatives entail
placing increasing numbers of constituent layouts on the first line of the composite. For the
sake of convenience, we use the blocks defined above, and the abbreviation “�” for the layout
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expression TextBlock(’ ’)—the text block containing a single space:

WrapBlock(l1, l2, l3 . . . , ln−1, ln) ,

let bn = ln in

let bn−1 = ChoiceBlock(ln−1 l bn,

LineBlock(ln−1, � , ln)) in

let bn−2 = ChoiceBlock(ln−2 l bn−1,

LineBlock(ln−2, � , ln−1) l bn,

LineBlock(ln−2, � , ln−1, � , ln)) in

. . .

ChoiceBlock(l1 l b2,

LineBlock(l1, � , l2) l b3,

. . . ,

LineBlock(l1, � , l2, � , . . . , � , ln−1) l bn,

LineBlock(l1, � , l2, � , . . . , � , ln−1, � , ln))

The layout functions corresponding to simpler blocks may be derived directly by appli-
cation of the function defined in equations (25) – (28) of section 5. The WrapBlock, however,
poses a further challenge, because if we expand out the definitions of b1, . . . , bn in the im-
plementation above, the size of the resulting layout expression is exponential in n. We can
address this problem by deriving the layout function corresponding to each bi only once,
reusing them in the derivation of subsequent layout functions, similar to the sharing of
layout functions illustrated in figure 8.

To do this, we extend the definitions of J.K and C′ to accommodate an addition argument,
namely a tuple ρ = (h1, . . . , hn), whose elements are initially set (arbitrarily) to the empty
layout function, �:13

JlK = C′(l, (�, . . . ,�),�)

And trivially:

C′(l1↔ l2, ρ, g) = C′(l1, ρ,C′(l2, ρ, g))

C′(l1 l l2, ρ, g) = C′(l1, ρ, g) 〈l〉C′(l2, ρ, g)

C′(l1 ? l2, ρ, g) = C′(l1, ρ, g) 〈?〉C′(l2, ρ, g)

C′(‘t’, ρ, g) = 〈‘t’〉 〈↔〉 g.

13The account of C′ given here is somewhat simplified for pedagogical purposes—in the actual implementation
of rfmt itself, sharing of layout functions is arranged by tagging both expressions and layout functions, and
memoising the results of C′.
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Rather than expanding out “let . . . in” clauses prior to calculation of layout functions, the
extended version of C′ is applied to them directly. Definition of intermediate result bi stores
the corresponding layout function to be saved in ρ, from where it is retrieved each time the
layout function of bi is required:

C′(let bi = e1 in e2, ρ, g) = C′(e2, ρ[i 7→ C′(e1, ρ, g)], g),

C′(bi, (h1, . . . , hi, . . . , hn), g) = hi.

Here, the notation ρ[i 7→ h′] denotes a tuple with its ith element updated:

(h1, . . . , hi, . . . , hn)[i 7→ h′] = (h1, . . . , h′, . . . , hn).

6.2 An example layout

In section 2, we introduced the primitive layout combinators with a selection of simple
motivating examples. Here, we tackle a more realistic code layout problem, taking advantage
of the relative convenience and clarity afforded by the blocks defined in the previous section.

Function calls of the form “f (a1, a2, . . . , am)”—where f is a function name, and a1, . . . , am

are argument expressions—are found in most programming languages. A common way of
formatting such calls is exemplified by the following:

FnName(argument1, argument2, argument3, argument4,

argument5, argument6, argument7, argument8,

argument9, argument10)

In this example, the right margin has been set at column 50, to highlight the effect of restricted
output width. The function name appears on the first line, immediately followed by the
arguments. Where it is necessary to insert line breaks so as to avoid breaching the right
margin, arguments are wrapped to align with the initial character of the first argument.
Finally, the closing parenthesis is placed immediately after the final argument.

To specify this formatting strategy using a layout expression, let us assume that we are
given layout expressions a1, . . . , am for each of the arguments, and that the string f names the
function. Then the layout expression for the function call is given:

LineBlock(LineBlock(TextBlock( f ),TextBlock(‘(‘))),

WrapBlock(a1, . . . , am),

TextBlock(‘)‘)

This layout is a LineBlock with three components:

1) Another LineBlock containing the name of the function and the opening parenthesis of
the call,

2) A WrapBlock that packs successive arguments to the call into lines, wrapping where
necessary, and
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3) The call’s closing parenthesis.

Note that since the WrapBlock containing the arguments is placed immediately to the right
of the opening parenthesis, any wrapped arguments will also begin immediately to the right
of the parenthesis (though on different lines).

The inclusion of a WrapBlock in the layout above enables it to adjust dynamically, accord-
ing to the requirements of the context. For example, if in the example, we reduce the output
width to 30 characters from the original 50, fewer arguments are placed on each line:

FnName(argument1, argument2,

argument3, argument4,

argument5, argument6,

argument7, argument8,

argument9, argument10)

Such adjustments are limited, however. For example, let us revert to a 50 character output
width, and consider the following call expression, output using the some layout:

AVeryLongAndDescriptiveFunctionName(argument1,

argument2,

argument3,

argument4,

argument5,

argument6,

argument7,

argument8,

argument9,

argument10)

It is clear that with a lengthy function name, a strategy that involves wrapping immedi-
ately after the opening parenthesis makes for rather unappealing output. In such circum-
stances, we might wish to use a different layout:

StackBlock(LineBlock(TextBlock( f ),TextBlock(‘(‘))),

IndentBlock(4,WrapBlock(a1, . . . , am)),

TextBlock(‘)‘)

In this layout, the arguments begin on the line after the function name an opening parenthesis,
and are wrapped not to the column immediately to the right of the parenthesis, but at an
indent of 4 characters from the beginning of the function name. In addition, the closing
parenthesis appears on a line by itself, immediately below the beginning of the function
name. Output of the second example is much improved with this layout:
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AVeryLongAndDescriptiveFunctionName(

argument1, argument2, argument3, argument4,

argument5, argument6, argument7, argument8,

argument9, argument10

)

Finally, to allow for short or long function names, we can use a ChoiceBlock to switch
layout strategies as required:

ChoiceBlock(

LineBlock(LineBlock(TextBlock( f ),TextBlock(‘(‘))),

WrapBlock(a1, . . . , am),

TextBlock(‘)‘),

StackBlock(LineBlock(TextBlock( f ),TextBlock(‘(‘))),

IndentBlock(4,WrapBlock(a1, . . . , am)),

TextBlock(‘)‘)).

Since for short function names the first alternative in this combined layout will occupy
fewer lines than the second alternative (and thus incur a lower cost), it will be preferred by
the ChoiceBlock. With increasingly long names, however, and the consequent wrapping of
arguments over increasingly many lines, the ChoiceBlock is more likely to select the second
alternative, in spite of the additional fixed cost its two mandatory line breaks involve.

7 Conclusion

This paper has given a detailed overview of the algorithms embodied in the rfmt source
code formatter. Though rfmt joins a rich tradition of pretty printers and code formatters
with several decades of history, we feel that it does make a unique contribution, in that it
marries the convenience of the combinator-oriented approach widely employed for functional
programming languages with the rigor of optimization-based formatters such as TEX and
clang-format.

Furthermore, the layout function representation employed in rfmt affords great flexibility:
A simple embellishment of the cost function for text strings described in section 4.1 allows rfmt
to incorporate a “soft margin” like that described by Hughes (1995), which favors shorter lines
over longer ones, without imposing mandatory line breaks.14 Alternative cost functions may

14In detail, we have two margins, m0 (“soft”) and m1 (“hard”) with associated costs β0 and β1, where m0 ≤ m1

and β0 � β1. The layout function in (8) is amended:
0 7→ (‘txt’, s, 0, 0)

m0 − s 7→ (‘txt’, s, 0, β0)

m1 − s 7→ (‘txt’, s, β0(m1 −m0), β0 + β1)

 .
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also be accommodated—piecewise quadratic, for example, rather than piecewise linear—
with minor alterations to the calculations in section 3. Currently, practical experience with
rfmt has been limited to the R langugage, with the option of two layout styles. As it is applied
to a wider range of languages and formatting styles, it should be possible to assess which—if
any—such developments are most desirable.

All the other layout functions and associated calculations from section 3 remain unchanged.
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