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Abstract—Hidden Markov Model (HMM)-based classifiers
have been successfully used for sequential labeling problems
such as speech recognition and optical character recognition for
decades. They have been especially successful in the domains
where the segmentation is not known or difficult to obtain,
since, in principle, all possible segmentation points can be taken
into account. However, the benefit comes with a non-negligible
computational cost. In this paper, we propose simple yet effective
new pruning algorithms to speed up decoding with HMM-based
classifiers of up to 95% relative over a baseline. As the number of
tunable decoding parameters increases, it becomes more difficult
to optimize the parameters for each configuration. We also
propose a novel technique to estimate the parameters based on
a loss value without relying on a grid search.

I. INTRODUCTION

Markov-model-based classifiers have successfully been
used in the context of Optical Character Recognition
(OCR) [1], [2]. Our Aksara OCR system follows the same
line in a generalized way with a log-linear model-based
sequential classifier [3]. HMM-based classifiers have been
effective especially for the cases where the segmentation is
not known or difficult to obtain [2], since, in principle, all
possible segmentation points can be taken into account. How-
ever, the benefit comes with a non-negligible computational
cost. Time-synchronous Viterbi decoding with beam pruning
is used for the decoding with an HMM-based classifier, where
an input is represented as a sequence of frames which are
processed one by one while expanding and pruning hypotheses.
The bottleneck of the approach is that all hypotheses to be
expanded at each potential segmentation point are extended
to all output labels (characters). This can be quite expensive,
especially if the system has a large number of labels. In this
paper, we propose two simple yet effective pruning algorithms
which directly deal with the problem and show that the new
algorithms yield significant improvements on decoding speed.

The new pruning algorithms introduce three additional
decoding parameters resulting in five pruning parameters in
total. It is not trivial to optimize those parameters for each
configuration (e.g., language) every time a component of the
system has been updated. To solve this issue, we also propose
a novel algorithm to optimize the parameters based on the
quality of the decoding without relying on a grid search. It
makes it possible for us to optimize the parameters every time
a model is updated for a configuration using the same criterion.

We present accuracy results comparing with two well-known
OCR systems.

This paper is organized as follows: Section II describes
our system based on the log-linear model-based sequential
classifier. Section III elaborates on the new pruning algorithms.
The algorithm to tune the decoding parameters will be de-
scribed in Section IV. The experimental results will be shown
in Section V followed by the conclusions and future work in
Section VI.

II. SYSTEM DESCRIPTION

A. Log-linear model-based sequential classifier

We define OCR as a task which takes an image as input,
determines the text regions in it and produces sequences of
Unicode points, or UTF-8 strings for them. In this work, we
assume that each region corresponds to a horizontal or vertical
line and such regions are provided a priori. We use a layout
engine provided by Tesseract [4] to extract lines from images
and focus only on the line recognition in this paper.

Aksara employs a log-linear model framework which can
incorporate a variety of knowledge from different sources
to compute the cost between an input line image X and a
sequence of Unicode points Y through feature functions. We
compute the cost between X and Y as follows:

C(X,Y ) =
∑
i

λiΦi(X,Y ) (1)

where Φi(X,Y ) is a cost between X and Y computed by a
feature function i and λi is its weight. To make the decoding
feasible, we assume that the input is represented as a sequence
of frames and the cost is computed for each frame. Let Z =
(zt)

T
1 be a sequence of states of a feature function. We assume

1-to-n correspondence between Y and Z where a single Y can
be uniquely inferred given a single Z. Let zi(Y ) be a function
to return a set of Z from which Y is inferred for a feature
function i. We compute Φi(X,Y ) as follows:

Φi(X,Y ) = min
Z∈zi(Y )

∑
t

φi(X, zt−1, zt, t) (2)

We distinguish feature functions depending on whether they
rely on zt−1 or not. The former are called transition feature



functions while the latter are called observation feature func-
tions.

The weights of the feature functions are optimized using
Minimum Error Rate Training (MERT) [5]. We use character
error rate (CER), defined as the character edit distance from the
reference, divided by the reference length, as the error metric.

B. Decoding

The task of decoding is to find Ŷ which yields the lowest
cost for a given input X based on Eq. (1),

Ŷ = argmin
Y

C(X,Y ). (3)

The cost computed by Eq. (1) can be divided into frames
based on Eq. (2) for all feature functions. Therefore, we
can use the standard time-synchronous Viterbi decoding to
solve Eq. (3). The recognition states are created by combining
the state of each feature function on-the-fly during decoding.
Normally, beam pruning is used to reduce the number of
hypotheses to be examined. The most basic pruning algorithm
are based on two criteria: histogram pruning [6] and cost-
width pruning [7]. Histogram pruning keeps only a specified
number of hypotheses at each frame based on the costs of
the hypotheses, while cost-width pruning keeps only those
hypotheses whose costs are less than the cost of the best
hypotheses plus a specified threshold. Let h be a hypothesis at
a frame. Let H(t,X) be a set of hypotheses to be pruned at
frame t given an input X . Let c(h) be a function to return the
cost of h. Let r(h,H) be a function to return the rank of h
in H based on the cost. The set of hypotheses H ′hist(t,X) and
H ′width(t,X) pruned by the histogram pruning and the cost-
width pruning from H(t,X), respectively, are then computed
as follows:

H ′hist(t,X) = {h ∈ H(t,X)| r(h,H(t,X)) ≤ θh} , (4)

H ′width(t,X) =
{
h ∈ H(t,X)| c(h) ≤ c(ĥ) + θw

}
, (5)

where

ĥ = argmin
h∈H(t,X)

c(h), (6)

and θh and θw are tunable parameters to control the maxi-
mum number of hypotheses and the maximum cost difference
between a hypothesis and the best hypothesis at each frame,
respectively. H ′(t,X), a set of hypotheses after pruning at
frame t, is obtained as follows:

H ′(t,X) = H ′hist(t,X) ∩H ′width(t,X). (7)

C. Feature functions

We define feature functions from HMMs and a language
model. An HMM is defined for each Unicode grapheme
cluster1 [8] unless there are hand-crafted rules to split the
grapheme cluster into smaller chunks. If they exist, we use
the split chunks as units of modeling. The units of such
modeling are referred to as atoms in this paper. Specifically,
the atoms are the labels output by HMMs. We assume a left-
to-right topology for HMMs and allow skip transitions. As

1Grapheme cluster and character are used interchangeably; the former to
emphasize that a character may be composed of several parts.

the emission model, we use either Gaussian mixture models
(GMMs) or deep neural networks (DNNs) in the form of the
hybrid approach as described in [9]. The transitions are defined
based on the distance between the original and destination
states and all transitions are tied across all HMMs. We use
emission probabilities, transitions probabilities, transitions be-
tween labels (a.k.a. insertion penalty), transitions for a null
label (for thin spaces between characters, i.e., single-frame
spaces that are lingustically inert) as feature functions from
the HMMs. State prior probabilities are also used as a feature
function if DNNs are used as the emission model.

Language models are defined over sequences of Unicode
points. We use probabilities from the language models as a
feature function. We do not use a dictionary or word-based
language model because it is not well-defined in the written
form for many languages, for example, Chinese. In addition,
we prefer not to have the problem of out-of-vocabulary words
which dictionary-based approaches entail. The method has not
ruled out a hybrid approach that includes both character- and
word-based language models although the present work uses
only the former.

III. LABEL TRANSITION AND SELECTION PRUNING

The system described in Section II allows us to support a
large number of languages in a unified framework. However,
the decoding speed can be slow with the standard beam prun-
ing algorithm explained in Section II-B since any label (atom)
can be connected to any label at all potential segmentation
points, causing an explosion in the number of hypotheses
created at each potential segmentation point. However, we
can speed the decoding up if the number of label transition
hypotheses (i.e. hypotheses to be expanded with new labels)
and the number of labels to be connected at each frame are
reduced appropriately.

A. Label transition pruning

The first approach is to reduce the number of label transi-
tion hypotheses. In speech recognition, it is empirically known
that a tighter cost threshold can be used for word-ending states
than for word-interior states [6]. In a similar vein, we propose
to apply a different (tighter) cost width threshold only for the
label transition hypotheses and change the criterion for the cost
width pruning as follows:

H ′width(t) =
{
h ∈ H(t,X))| c(h) ≤ c(ĥ) + θw(h)

}
, (8)

where

θw(h) =

{
θw if h is not label transition hypothesis,
θtw otherwise,

(9)

where θtw is a tunable parameter to determine the maximum
difference of the costs of label transition hypotheses from
the best hypothesis at each frame. This method is similar to
language model pruning [6] which uses a tighter threshold for
word ending states. The difference between our method and
language model pruning is that we compute the difference of
the costs against the best hypothesis of all the hypotheses,
while language model pruning typically computes the differ-
ence within the word ending states.



B. Label selection pruning

The second approach is to reduce the number of labels to be
connected to label transition hypotheses. In speech recognition,
a technique known as phoneme look-ahead has been used to
quickly obtain a set of labels to be connected by computing the
costs of the connections in a fast but approximated way [10].
We propose a method to select labels to be connected based
only on the costs incurred by observation feature functions
without any approximations. Let L(t) be the set of all possible
labels to be connected to label transition hypotheses along with
their costs computed by only observation feature functions at
frame t. We propose to select L′(t) based on the following
criterion:

L′(t) =
{
l ∈ L(t)| r(l, L(t)) ≤ θls , c(l) ≤ c(l̂) + θlw

}
(10)

where

l̂ = argmin
l∈L(t)

c(l), (11)

and θls and θlw are tunable parameters to determine the
maximum number of labels allowed to be connected and the
maximum difference of the costs between a label and the best
label at each frame, respectively. As mentioned above, the
cost of each label is computed only by using the observation
feature functions. In our case, this corresponds to using the
cost of the initial state of each label computed by the emission
model of the HMM. The costs computed for the label selection
can be cached and used when creating the hypotheses for
the surviving labels. While it might seem that this does not
reduce any computational costs, the label selection happens
before new hypotheses are created, and therefore it reduces a
significant amount of overhead as well as the computational
costs for the transition feature functions (such as the language
model).

IV. AUTOMATIC DECODING PARAMETER OPTIMIZATION

As the number of tunable decoding parameters increases,
it becomes more difficult to optimize them. Usually, a grid-
search, which tries to find the best configuration by examining
a set of configurations, is used to tune the parameters. This
has two major problems, though. First, the range of values
of a parameter can be different for each model (system) and
therefore it is not known a priori. Second, it is time-consuming
since it needs to decode all samples in a development set for
each configuration.

To solve these problems, we propose a novel algorithm
to optimize the parameters based on a loss value without
relying on a grid search. We consider the following constrained
optimization problem:

Θ̂ = argmin
Θ

T (D; Θ) s.t. L(D; Θ) ≤ α, (12)

where D = {(Xi, Y i)}|D|1 is the development set, T (D; Θ)
is the decoding speed given D with the set of decoding
parameters Θ = (θh, θw, θtw , θls , θlw), L(D; Θ) is a loss
function for D with Θ, and α is an allowable loss value. We
define the loss function as follows:

L(D; Θ) =
∑

(X,Y )∈D

min

(
1,
∑
i

δ
(
Ẑi, ẐiΘ

))
, (13)

where δ(·, ·) is Kronecker’s delta,

Ẑi = argmin
Z∈zi(Ŷ )

∑
t

φi(X, zt−1, zt, t), (14)

and ẐiΘ is the decoding result under Θ and the feature function
i. We can obtain Θ̂ based on the following algorithm if we use
Eq.(13) as the loss function, there is a monotonic relationship
between the value of a decoding parameter and its computa-
tional cost and we optimize each parameter independently:

1) Decode (X,Y ) ∈ D with Θ̇ and create a lattice
for each sample. Θ̇ is empirically chosen so that the
Viterbi paths for a lattice and the input are the same.

2) Compute the optimal value for each decoding param-
eter over all lattices. The actual algorithm to compute
the value for each parameter is described below.

3) Sort the computed values in ascending order of the
computational cost.

4) The k-th element in this sorted sequence is the opti-
mal value for the parameter where k = d(1−α) · |D|e
with 0 ≤ α < 1.

Note that unlabeled data can be also used as D since it does
not require transcriptions for the optimization. This algorithm
requires samples in the development set to be decoded only
once.

The algorithm to compute the optimal value for a lattice
is different for each decoding parameter. The algorithms are
derived based on the following assumption:

H(t,X) ⊆ H̄(t,X)→ H(t+ 1, X) ⊆ H̄(t+ 1, X). (15)

We use hvt and lvt to indicate the Viterbi hypothesis in H(t,X)
and L(t,X), respectively, and Tv to indicate a set of frames
whose Viterbi hypotheses are label transition hypotheses. The
following are the optimization algorithms for the decoding
parameters we used in this paper.

Histogram pruning (θh):

θ̂h = max
t

r(vt, H(t,X)) + 1. (16)

Cost width pruning (θw):

θ̂w = max
t

c(vt)− min
h∈H(t,X)

c(h). (17)

Label transition hypotheses pruning (θtw ):

θ̂tw = max
t∈Tv

c(vt)− min
h∈H(t,X)

c(h). (18)

Label selection pruning (θls , θlw ):

θ̂ls = max
t∈Tv

r(lvt+1, L(t+ 1, X)) + 1, (19)

θ̂lw = max
t∈Tv

c(lvt+1)− min
l∈L(t+1,X)

c(l). (20)

V. EXPERIMENTS

A. Setup

The effectiveness of the proposed algorithms were mea-
sured by performing OCR experiments for 5 languages: Ara-
bic, English, Hindi, Japanese and Russian. These languages
were selected to cover major scripts and various atom sizes.



We sampled around 2000 line images broadly from Google
Books for each language (10,000 for English) and created
manual transcriptions by 3 annotators for each line. Half of
them were used as development data while the another half
of them were used as evaluation data. In computing error
rate, the transcription which is closest in edit distance to
the one being scored is always taken as the reference. We
report the normalized character error rate (N-CER) which does
not distinguish characters that are visually the same, such as
hyphen and dash, on the evaluation data. The development data
was used to optimize feature weights and decoder options.

As described in Section II-C, the atom-based HMMs and
the Unicode codepoint-based language modes were used as
feature functions. The HMMs were trained based on the
following procedure: 1) Render text obtained from Wikipedia
(approximately 4M words) using Pango [11] with various
fonts, sizes and resolutions and create synthesized text im-
ages. They are further artificially degraded with blur, rotation,
binarization, contrast, etc. 2) Train atom-based left-to-right
HMMs with GMMs on the degraded synthesized data. We
allow one skip transition. The number of states for each atom
is determined based on the statistics of the actual width of the
atom. We use 45 two-dimensional DCT coefficients as features.
3) Perform the forced-alignment for the degraded synthesized
data using the trained HMM and obtain the state-alignment
for the data. 4) Train a feed-forward DNN using the data with
the state-alignment information to form a hybrid system. We
use DistBelief [12] to train the DNN. The input to the DNN is
360 two-dimensional DCT coefficients. The numbers of hidden
nodes in the DNN are 1008, 752, 256 and 48, respectively,
from bottom to top for all languages. 5) Optimize feature
function weights using MERT on the development data. 6)
Decode unsupervised data obtained from Google Books (up to
5M lines obtained from a different set of volumes than both
the development and test sets) and create self-labeled data. The
data is filtered based on its confidence probabilities which are
computed using a regression tree. The threshold is set to 0.8.
7) Repeat steps 3-6 with the self-labeled data twice.

We trained 5-gram language models for English and Rus-
sian using text obtained from Wikipedia, 9-gram language
models for Arabic and Hindi using text obtained from Google
News, and trigram language model for Japanese using text
obtained from Wikipedia. We used stupid-backoff [13] as a
smoothing method.

Decoding time was measured on a Linux machine equipped
with an Intel(R) Xeon(R) CPU E5-1650 and 32GB of memory.
The measurements were conducted 5 times and the averaged
value of them are reported.

B. Results: New pruning algorithms

Fig. 1 shows the trade-offs between N-CERs and the
decoding speed per frame for each language with each pruning
method. The graphs were created by decoding the evaluation
data with decoding parameters optimized for various loss
values and Θ̇ = (1000,∞,∞,∞,∞). The same loss value
was used for all parameters to create one data point in the
graphs. For example, we used the same loss value for θh and
θw to create a data point of the graph for “Baseline”. The
graphs show that both pruning methods improved the decoding

TABLE I. THE VALUES OF DECODING PARAMETERS FOR α = 0.04.

Decoding parameter Arabic English Hindi Japanese Russian

θh 424 126 268 788 123
θw 58.8 57.8 45.6 58.4 58.9
θtw 35.0 32.2 18.5 18.6 23.8
θls 93 17 42 222 18
θlw 9.5 7.2 9.4 8.7 6.1

TABLE II. N-CER [%] BY TESSERACT, ABBYY-V12 AND AKSARA.

Language Tesseract ABBYY-v12 Aksara

Arabic 20.4 15.3 5.20
English 1.30 1.02 0.89
Hindi 9.75 N/A 3.47

Japanese 13.40 8.42 6.51
Russian 2.62 1.66 0.88

speed dramatically without loosing accuracy (40-60% by the
label transition pruning and 70-95% by the label selection
pruning). We obtained the best result when both methods were
used. The relative improvements to the baseline were over
75% for English and Russian and 95% for Arabic, Hindi and
Japanese in terms of speed without losing accuracy.

C. Results: Automatic decoding parameters optimization

We used the same set of loss values to create all curves in
Fig. 1. This means that we did not need to know the range of
each decoding parameter a priori. It solves one of the problems
with the grid search. From the graphs, we found that the N-
CERs increased after around α = 0.04 for all configurations.
Table I shows the actual values of the decoding parameters
with α = 0.04 for each language. It shows that the value of
each decoding parameter was different for each language for
the same loss value and the same trade-off point. Although the
values of θw were close to each other in Table I, we found that
the effective range of the value was significantly different when
GMMs were used as the emission model instead of the hybrid
approach. The proposed method can find appropriate values
for loss values automatically regardless of the configuration.
It verifies the effectiveness of the approach.

Table II compares Aksara optimized with α = 0.04 and
both pruning algorithms with Tesseract [14] and ABBYY-
v12 [15] in terms of N-CER. The N-CERs were computed for
the line images contained in the evaluation data but recognition
was performed on the page images for a fair comparison with
engines that use page-level information (e.g. adaption). We
used a larger data set only for English (10871 lines from
Google Books; from a different set of volumes than develop-
ment set). The results showed that Aksara outperformed other
systems on the data across the board.

VI. CONCLUSION

In this paper, we proposed two novel pruning algorithms
which reduce the number of hypotheses created at label
boundaries for time-synchronous Viterbi decoding. Experimen-
tal results showed that they were simple yet quite effective.
We also proposed a novel algorithm to optimize decoding
parameters based on a loss value without relying on a grid
search. Experimental results showed the robustness and the
effectiveness of the approach.



(a) Arabic (#Atom: 1208, #States: 4628) (b) English (#Atom: 346, #States: 2085) (c) Hindi (#Atom: 2641, #States: 11527)

(d) Japanese (#Atom: 6675, #States: 45055) (e) Russian (#Atom: 375, #States: 2159)

Fig. 1. N-CER vs. decoding time curves. X-axes use logarithmic scale. The baseline uses the histogram and cost width pruning. The label transition uses
the label transition pruning in addition to the baseline. The label selection uses the label selection pruning in addition to the baseline. The both uses the label
transition and selection pruning in addition to the baseline. The numbers in parentheses mean the number of atoms and states for each language. The width of
the frame shift corresponds to one pixel of an image whose height is 30 pixels.

The effectiveness of the proposed pruning methods in other
configurations such as a system with a word-based language
model and domains such as speech recognition will need to
be investigated in future work as well as more comparisons
with other pruning methods. Extending the algorithm for
Weighted Finite State Transducer (WFST)-based decoders will
be another direction for future work, since input and output
symbols are not necessarily synchronized in WFSTs and the
proposed methods cannot be used directly. Currently, the loss
function, which can be used in the parameter optimization
algorithm, is limited to the one used in this paper. Extending
the algorithm to use an arbitrary function such as CER will
be future work. In addition, developing a method to optimize
all decoding parameters at once will be another interesting
problem.
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